非线性隔振抗冲器的设计与建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设备在工作过程中,不仅受周期性的振动载荷,而且经常还会受到冲击载荷,冲击作用对设备造成的破坏往往比振动造成的破坏更严重。为了减小冲击造成的损坏,必须对设备作冲击防护或隔离。冲击防护和隔离的效果好坏取决于隔离器件的性能和系统参数的匹配。大多数情况下进行系统设计时很少考虑其抗冲击能力,因此对隔振系统的抗冲击性能研究以及新型隔振抗冲击元器件的研究与开发是非常必要的。
     在十一五海军装备预研项目“新型抗冲隔离器性能、建模理论和开发研究”的资助下,本文对含不同阻尼的单自由度系统的抗冲击性能进行了研究,推导了抗冲击性能指标与系统参数之间的关系,并对不同系统的抗冲击性能进行了比较。以此为基础设计了一种结构新颖的,多机理同时作用的非线性隔振抗冲元件,建立了器件的非线性数学模型,对模型中的待定参数进行了辨识,并对其抗冲击性能进行了研究。
     论文主要完成了以下几方面的工作:
     1.论文总结了国内外有关系统在冲击载荷作用下的参数优化问题的研究方法及研究现状以及工程实践中常用的减振抗冲击元器件的作用原理、结构特点、数学模型和它们在各工业领域中的应用,对非线性减振抗冲击器件建模的研究意义、国内外的研究现状、已有的研究成果及存在的问题作了较为全面的论述。
     2.利用微分方程理论和不等式理论对线性阻尼系统(线性刚度和线性阻尼并联)、平方阻尼系统(线性刚度和平方阻尼并联)以及库仑阻尼系统(线性刚度和库仑阻尼并联)等的抗冲击性能进行了详细的研究。推导了上述系统具有最优抗冲击性能的条件,以及抗冲击性能指标与系统参数之间的关系,导出了系统具有最优抗冲击性能时的系统参数。对不同系统的最优抗冲击性能进行了比较。
     3.设计了一种多机理共同作用的结构新颖的非线性隔振抗冲元件,器件的回复力由弹性体材料的弹性提供,利用弹性体材料的粘性和接触面间的摩擦来提供阻尼。然后对其进行了有限元建模,利用有限元模型对其关键参数进行了设计。对器件进行了动静态特性仿真,获得了器件的刚度特性—非线性硬特性。
     4.根据对所设计隔振抗冲器件的仿真结果,建立了两中不同的研究器件振动性能的数学模型,一种是基于力-位移关系曲线的非线性模型,同时将Bouc-Wen迟滞曲线模型引入到非线性隔振抗冲器件的建模中,另一种是基于频率响应曲线的非线性模型,并研究了各模型中的待定参数对器件振动性能的影响。
     5.提出了所建立振动模型的参数辨识方法,加工制作了试验样机,测试了器件的动静态特性,特性曲线的趋势与有限元仿真结果非常一致,验证了有限元模型的有效性。利用试验数据和辨识方法对模型中的参数进行了辨识。对两种模型在相同初始条件下的自由振动响应和在不同频率下激励的受迫振动响应进行了数值求解,结果表明这两种模型的自由振动的频率非常一致,而受迫振动的振幅基本相同,这说明用这两种模型来模拟器件的振动性能是可行的。
     6.建立了器件的抗冲击数学模型,计算了在典型冲击脉冲激励下,系统的冲击响应。在跌落试验台上对其进行了冲击性能测试,验证了模型的可靠性。
The equipments bear not only the periodic oscillating load but the shock load, and the shock load often does more destruction than vibration itself. To reduce the destruction, it is better to take measures to protect or isolate the equipment. The effect of the protection or isolation depends on the performance of the isolators and the match of the system parameters. In most cases, it does not take the system’s anti-shock ability into consideration when design. So it is necessary to investigate the anti-shock ability of the isolation system and to develop new isolators.
     Under the support of the project“The study on the performance, theory of modeling and design of new shock isolator”, the author accomplishes the research on performance of the single degree of freedom which contains different damping deduces the relationship between index of anti-shock performance and system parameters, and compares anti-shock performance of the different systems. Based on these, the author designs a novel nonlinear vibration and shock isolator. Then the nonlinear mathematical model of the isolator was established and the parameter of the model was identified.
     The main research work and conclusions are as follows:
     1 In the paper, the author reviews some research methods and current research status on the parameter optimization of shock isolation, some common isolators’mechanism, the characteristic of the structure, mathematic model, and their application in industry.
     2 Many efforts are put on the anti-shock performance of linear damping system (linear stiffness in parallel with linear damping), quadratic damping (linear stiffness in parallel with quadratic damping) and Coulomb damping system (linear stiffness in parallel with Coulomb damping), deduces the condition when these systems show the optimal anti-shock performance. The optimal anti-shock performance of different systems is also compared.
     3 A novel nonlinear vibration and shock isolator was designed whose restoring force is supported by the elasticity of the elastomer, and damping force is produced by the viscosity of the elastomer and the friction on contact surfaces. Then the finite element model is built, which is important to confirm the key parameters. The dynamic and static simulation to the isolator shows the stiffness characteristic of the isolator is hard.
     4 According to the simulation results of the designed vibration and shock isolator, the two nonlinear mathematical models are established to simulate the vibration performance of the isolator. One is based on force-displacement hysteresis curve, and the Bouc-Wen model is introduced to describe the curve. The other is based on frequency response curve. The effect of the parameters of different models to the isolator is studied
     5 The identification methods to the two models are presented. An experimental sample of the isolator is created, and the characteristic curve is tested which is accordance with the result of finite elements simulation, that validates the validity of the finite element model. Based on these, the unknown parameters of the two models are identified. With these parameters the numerical simulation of the forced vibration response with different original conditions and different excitation frequency are calculated. The result shows that the free vibration’s frequencies of the two models agree well, while the forced vibration amplitudes of the models are consistent. All these prove it is feasible to model the vibration performance of the isolator using the two models referred and the identification methods are valid.
     6 The nonlinear mathematical model of anti-shock performance is established, and the shock responses of the isolator are caculated under different shock input. The shock experiment is made on the drop test platform, which validates the feasibility of the mathematical model.
引文
[1] 丁文镜 减振理论 清华大学出版社 1988
    [2] Sevin. E., and Pilkey. W.D. Optimum Shock and Vibration Isolation, Shock and Vibration Information Analysis Center, Washington, D.C 1971
    [3] Guretskii. V.V. On the problem of minimizing the maximum displacement,” ( in Russian) Trudy LPI 1969(307) 11-21
    [4] Guretskii, V.V.,Limiting Capabilities of the Equipment Protection Against Shock Action, (in Russian),Izv.AN SSSR. Mekhanika, 1965(1) 159~162
    [5] Gureskii. V.V., Kolovskii. M.Z., and Mazin. L.S., On the limiting capabilities of shock isolation,” Mechanics of solids , 1970(6) 17-22
    [6] Saranchuk. V.G., and Troitskii. V.A., Vibration Isolation Devices with Minimum Rattlespace, ( in Russian) Trudy LPI, 1969(307) pp 39-46
    [7] Manoilenko,V.D and Rutman, Yu.L, An Elastic Analogy for the Optimal Control of an Isolated Object when the Peak Load is Minimized. Mechanics of Solids , 1974(3) 3-11
    [8] Bolotnik,N.N., Optimization of Characteristics and Design Variables of Shock Isolation Systems Moscow 1983
    [9] D.V.Balandin,N.N.Bolotnik W.D.Pilkey Optimal protection impact, shcok and vibration. Gordon and Breach Science Publishers, 2001
    [10] Afimiwala,K.A.,and Mayne,R.W., Optimum Design of an Impact Absorber. Journal of Engineering for Industry, 1974(96), 124-130
    [11] Balandin,D.V., On Maximum Energy of Mechanical Systems under shock Disturbances. Shock and Vibration 1993(1) 135-144,
    [12] Ryaboy , V.M. , , Shock Isolation by a Low-Damped Multi-Degree-of-Freedom Mechanical System. Journal of Sound and Vibration, 1996(197) 381-385
    [13] Schmit,L.A.,and Fox,R.L. Synthesis of a Smiple Shock Isolator 1964 NASA CR-55
    [14] 杨平 抗大冲击非线性耦合型缓冲器参数的优化设计探讨 现代机械 2001(4)42~46
    [15] 王东升 振动、冲击环境下支架减振器刚度优化设计 航天器环境工程 2006 4(23)86~89
    [16] 江国和,沈荣嬴,吴广明.舰船设备冲击隔离系统优化设计计算 噪声与振动控制 2003 12(6)25~28
    [17] 张小华,江国和. 基于遗传算法的水下爆炸冲击隔离系统的极限性能分析噪声与振动控制 2005 4(2)7~10
    [18] 张小华, 江国和, 尹立国, 沈荣瀛. 遗传算法在冲击隔离系统优化设计的应用 华东船舶工业学院学报(自然科学版) Vo1118 No13 Jun. 2004
    [19] 成志清, Pilkey Walter D. 小波函数在最佳冲击隔离中的应用(英文). 南京航空航天大学学报,2001,18(1):1- 10.
    [20] 邱贵芳.高速机车车辆油压减振器结构特点.铁道车辆,1993 (6)
    [21] 薛群 新型油压减振器的研制. 机车电传动 1997 .13 (2)
    [22] 赵云生 提速客车油压减振器的阻力特性和试验方法分析. 铁道车辆 2003 41(1)
    [23] Stefaan. Duym, Randy. Steins and Koenraad. Reybrouck, Evaluation of shock absorber models. Vehicle System Dynamics 1997 (27) 109-127
    [24] R.Basso, L.Fabbri and E.Zagatti. A Method to Analysis the Dynamic Behavior ff a Motorcycle front Suspension Equipped with Sequential. Damper. Vehicle System Dynamic 1998(29) 213-230
    [25] Stefaan. Duym, Simulation Tools, Modelling and Identification, for an Automotive Shock Absorber in the Context of Vehicle Dynamics. Vehicle System Dynamic. 2000(33) . 261~285
    [26] Popov G., Sankar S. Modelling and analysis of non-linear orifice type damping in vibration isolators. Journal of Sound and Vibration, 1995 (183): 751-764
    [27] 谢仕良.双筒充气式液压减振器阻尼力及其受温度的影响.四川兵工学报, 1993,27(3):163-165
    [28] 陈耀钧. 夏历轿车减振器阻力特性分析 上海汽车 1995.5
    [29] 蔡家明. 液压减振器阻力特性的非线性模拟及分析.上海汽车,1997,33(6):32-35
    [30] 檀润华. 汽车减振器及乘坐动力学非线性建模研究(博士学位论文). 杭州: 浙江大学, 1998
    [31] 王文林. 油压减振器的油温敏度与散热参数设计研究 中国机械工程 2003 14(8) 637-640
    [32] 陈吉安、陈晓峰 . 液压减振器工作特性分析 [J]. 哈尔滨工业大学学报 ,1999:31 (3):114-117.
    [33] 宋桂玉.液压减振器性能的试验研究[J].机械科学与技术,1998 (1):109~112
    [34] 付兰芳,刘勇,刘夫云; 振冲隔离器油阻尼特性的试验建模研究 [J];桂林电子工业学院学报; 1999(4)
    [35] Popov G,Sankar S.Modelling And Analysis Of Non-linear Orifice Type Damping In Vibration Isolators[J].Journal of Sound and Vibration,1995,183 (5): 751-764.
    [36] 张英会 等编著 弹簧手册 机械工业出版社 2005.4
    [37] 郭荣生. 空气弹簧悬挂设计与计算. 青岛: 四方车辆研究所,1973 50-65.
    [38] MSC 公司 ADAMS 用户手册.
    [39] Giuseppe Auaglis ,Massimo Sorli. Air Suspension Dimensionless Analysis and Design Procedure. Vehicle system Dynamics ,2001 ,35 (6) :443 —475.
    [40] Sj?berg. M. Three-dimensional air spring model with friction and orifice damping. Vehicle System Dynamics , 2000 ,33 (suppl) :528 —539.
    [41] Katsuya Toyofuku, Chuuji Yamada, Toshiharu Kagawa, Toshinori Fujita. Study ondynamic characteristic analysis of air spring with auxiliary chamber. JSAE Review 20 (1999) 349}355
    [42] 张广世 沈刚. 带有连接管路的空气弹簧动力学模型研究. 铁道学报 2005 27(4) 36-41
    [43] 李蒂,付茂海,黄运华.空气弹簧动力学特性参数分析[J].西南交通大学学报, 2003, 38(3): 276-281.
    [44] 原亮明,宫相太,刘爽堃,等.铁道车辆空气弹簧垂向动态特性分析方法的研究.中国铁道科学,2004,25 (4):37~40
    [45] Giuseppe Quaglia,Massimo Rorli.Air suspension dimensionless analysis and design procedure[J]. Vehicle System Dynamic, 2001, 35:443-475.
    [46] MALIN P.Derivation of Air Spring Model Parameters for Train Simulation [D].Lulea: Lulea University of Technology, 2002.
    [47] Sanjay Goyal,Timothy M.Whalen.Design and application of nonlinear energy sink to mitigate vibrations of an air spring supported slab[J]. ASME 2005 International Design Engineering and Technical Conference.
    [48] 胡海岩. 振动控制中的非线性组合结构动力学研究. (博士学位论文) 南京 南京航空学院 1988
    [49] 白鸿柏 张培林 郑坚等编著. 迟滞振动系统及工程应用 科学出版社 2002
    [50] Bouc R. Forced vibration of mechanical system with hysteresis. Abstract, Proceedings of 4th Conference on Nonlinear Oscillation. Prague, Czechoslovakia, 1967
    [51] Wen. Y. K. Method for random vibration of hysteretic systems. Journal of the Engineering Mechanics Division. ASCE, 1976, 102, 249–263.
    [52] Lo. H. R. Hammond, J. K. and Sainsbury, M. G. Non- linear system identification and modelling with application to an isolator with hysteresis. In Proceedings of the Sixth International Modal Analysis Conference, Kissimmee, Florida, USA, 1988, 1453– 1459.
    [53] Demetriades. G. F., Constantinou, M. C. and Reinhorn, A. M. Study of wire rope systems for seismic protection of equipment in buildings. Engineering Structures, 1993, 15, 321–334
    [54] Y.Q.Ni, J. M. Ko, C. W. Wong e.t. Modeling and identification of a wire-cable vibration isolator via a cyclic loading test part 1: experiments and model development. Journal of Systems and Control Engineering, IMechE, 1999. 213(3): 163-171
    [55] Y.Q.Ni, J. M. Ko, C. W. Wong e.t. Modeling and identification of a wire-cable vibration isolator via a cyclic loading test part 2: identification and response prediction Journal of Systems and Control Engineering, IMechE, 1999. 213(3): 173-182
    [56] 龚宪生 谢志江 骆振黄等. 非线性隔振器阻尼特性研究 振动工程学报 2001 14(3) 334-338
    [57] 周强.钢丝绳隔振器的非线性特性及应用[J].噪声与振动控制,1994 (8):8-11.
    [58] 赵寿根,程伟,顾忠明; 高冲击力减振系统的试验研究 [J];实验力学; 2002(1)
    [59] 刘广璞,王福明,樊文欣.钢丝绳隔振器动态特性试验研究[J].华北工学院测试技术学报,1999,13(3):180-184
    [60] 朱海潮,何琳,霍睿,施引; 用钢丝绳隔振器进行船舶主机隔振[J]; 船海工程, 2002 (4):14-17
    [61] Gerges, R.R., and B.J. Vickery. Parametric Experimental Study of Wire Rope Spring Tuned Mass Dampers. Journal of Wind Engineering and Industrial Aerodynamics 2003,91. (12-15): 1363-1385.
    [62] W. Chen, G. Liu, W. Chen, Research on ring structure wire-rope isolators, Journal of Materials Processing Technology 1997, 72 (1):24-27.
    [63] Ko, J.M., Chen, Y., Zheng, G., and Ni, Y.Q., Experimental study on vibration mitigation of a stay cable using nonlinear hysteretic dampers, Advances in Structural Dynamics, 2000(II), 1325-1332.
    [64] 户原春彦 主编 牟传文译 防震橡胶 中国铁道出版社 1982 北京
    [65] Bagley. R. L. and Torvik. P. J., Fractional Calculus – A different approach to the analysis of viscoelastically damped structures, AIAA Journal 21, 1983, 741–748.
    [66] Sj?berg. M. and Kari, L., Non-linear behavior of a rubber isolator system using fractional derivatives, Vehicle System Dynamics 37(3), 2002, 217–236.
    [67] Brackbill. C. R., Lesieutre, G. A., Smith, E. C., and Ruhl, L. E., Characterization and modeling of the low strain amplitude and frequency dependent behavior of elastomeric damper materials, Journal of the American Helicopter Society 45(1), 2000, 34–42.
    [68] Brackbill. C. R., Smith, E. C., and Lesieutre, G. A., Application of a refined time domain elastomeric damper model to helicopter rotor aeroelastic response and stability, Journal of the American Helicopter Society 47(3), 2002, 186–197.
    [69] Sj?berg, M. and Kari, Nonlinear Isolator Dynamics at Finite Deformations: An Effective Hyperelastic, Fractional Derivative, Generalized Friction Model. Nonlinear Dynamics 2003(33) 323-336
    [70] Rossikhin. Y. A. and Shitikova. M. V., Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Applied Mechanical Review 50(1), 1997, 15–67.
    [71] Shimizu. N. and Zhang, W., Fractional calculus approach to dynamic problems of viscoelastic materials, Japan Society of Mechanical Engineers C 42(4), 1999, 825–837.
    [72] Sj?berg, M., A non linear rubber spring model for rail vehicle dynamics analysis, Vehicle System Dynamics 30, 1998, 197–212.
    [73] Gent. A. N., Engineering with Rubber, Carl Hansen Verlag, Munich, 1992.
    [74] Kari. L., The non-linear temperature dependent stiffness of pre-compressed rubbercylinders, 55(3), 2002, 76–81.
    [75] Hill. J. M., A review of partial solutions of finite elasticity and their applications, International Journal of Non-Linear Mechanics 36, 2001, 447–463.
    [76] Lesieutre. G. A. and Govindswamy. K., Finite element modeling of frequency-dependent and temperature-dependent dynamic behavior of viscoelastic materials in simple shear, International Journal of Solids and Structures 33(3), 1996, 419–432.
    [77] Sj?berg, M. Rubber Isolators-Measurements and Modelling Using Fractional Derivatives and Friction. SAE paper No. 2000-01-3518, 2000.
    [78] Mallik. A. K.. Kher, V., Puri. M and Hatwal. H., On the modelling of non-linear elastomeric vibration isolators. Journal of Sound and Vibration 219(2), 1999, 239–253.
    [79] 宋汉文 王文亮 傅志方 橡胶减振器非线性动力参数辨识 复旦学报(自然科学版) 37(5) 1998 607-612
    [80] Richards. C. M. and Singh. R., Characterization of rubber isolator nonlinearities in the context of single- and multi-degree-of-freedom experimental systems, Journal of Sound and Vibration 247(5), 2001, 807–834.
    [81] C. M. Richards and R.Singh Feasibility of Identifying Non-Linear Vibratory Systems Consisting of Unknown Polynomial Forms. Journal of Sound and Vibration. 220 (3), 1999, 302-349
    [82] D.J.Thompson Developments of the Indirect Method for Measuring the High Frequency Dynamic Stiffness of Resilient Elements Journal of Sound and Vibration 213 (1), 1998, 169-188
    [83] V.I.Babitsky And A.M.Veprik. Universal Bumpered Vibration Isolator For Severe Environment Journal of Sound and Vibration 218 (2), 1998, 269-292
    [84] N.Chandra Shekhar, H.Hatwal And A. K.Mallik Response Of Non-Linear Dissipative Shock Isolators Journal of Sound and Vibration 214 (4), 1998, 589-603
    [85] Iwan WD. The dynamics response of bilinear hysteretic. System. California :California Institute of Technology ,1961
    [86] 胡海岩,李岳峰. 具有记忆特性的非线性减振器参数识别. 振动工程学报,1989 ,2 (2) : 17-27
    [87] Kenneth N ,Morman ,Pan T Y1Application of Finite Element Analysis in the Design of Automotive Elastomeric Component1Rubber Chemistry and Technology ,1988 ,61
    [88] Nicholson David W,NelsonNorman W1Finite Element Analysis in Design with Rubber. Rubber Chemistry and Technolog ,1990 ,63
    [89] Morman Kenneth N ,Kao B G1Finite Element Analysis of Viscoelastic Elastometic Structures Vibrating About NonLinear Statically Stressed Configurations1SAE 811309
    [90] Kenneth N1Morman1Recent Applications of ABAQUS to the Analysis of Automotive Rubber Components 1998 ABAQUS Users’Conference
    [91] Charlton D J and Yang J . A Review of Methods to Characterize Rubber Elastic Behavior for Use in Finite Element Analysis1RubberChemistry and Technology ,1994 ,67
    [92] Jaehwan Choi1Development of Modeling and Analysis Technique for the Rubber Bushings in Automobile11998 ABAQUS Users’Conference
    [93] Smith G W, Thornhill J W1Analysis of Elastomeric Spring-Eye Bushing Using ABAQUS 1998 ABAQUS Users’Conference
    [94] Lee Nak Kyu , Lee Myung Sik , Kim Heon Young , Kim Joong Jae. Design of Engine Mount Using Finite Element Method and Optimization Technique SAE 980379
    [95] Y. Shen., K. Chandrashekhara,W.F. Breig., L.R. Oliver. Finite element analysis of V-ribbed belts using neural network based hyperelastic material model. International Journal of Non-Linear Mechanics 40 (2005) 875 – 890
    [96] Jun Yan, John S. Strenkowski A finite element analysis of orthogonal rubber cutting. Journal of Materials Processing Technology 174 (2006) 102–108
    [97] 张宝生等 有限元分析软件 Marc 及其在橡胶材料分析中的应用 橡胶工业 2003(4)
    [98] 黄友剑 城市地铁轨道减振器结构及性能研究 中南大学硕士学位论文 2005
    [99] 张振秀,沈梅,辛振祥 有限元软件 MSC. Marc/Mentat 在橡胶材料分析中的应用 世界橡胶工业 2005,12 32– 36
    [100] 张振秀等 ANSYS 中超弹性模型及其在橡胶工程中的应用 橡塑技术与装备 2005(31)1-5
    [101] 陆松 孟惠荣 超高分子量聚乙烯齿轮在超弹性条件下的有限元分析 机械工程材料 2004(10)32~34
    [102] 王利荣 吕振华 橡胶隔振器有限元建模技术及静态弹性特性分析 汽车工程 2002 (24) No. 6
    [103] 张 广 世 , 孔 军 , 宋 志 强 基 于 有 限 元 法 进 行 铁 道 车 辆 橡 胶 元 件 的 设 计 弹 性体,2001212225 ,11 (6) 51~54
    [104] 陈莲,周海亭 计静算橡胶隔振器态特性的数值分析方法 振动与冲击 2005(3) 120~123
    [105] 王益轩等 织机减振器的动态设计与仿真 纺织高校基础科学学报 2004(4) 375~379
    [106] 叶珍霞,叶利民,朱海潮 密封结构中超弹性接触问题的有限元分析 海军工程大学学报 2005(1) 109~112
    [107] Tan RY,Huang MC. System identification of a bridge with lead-rubber bearings. Computers and S t ructure ,2000 ,74 :267~280
    [108] 白鸿柏,黄协清. 三次非线性粘性阻尼双线性迟滞振动系统 IHB 分析方法. 西安交通大学学报,1998 ,32 (10) :35~38
    [109] 白 鸿 柏 , 郑 坚 , 张 培 林 , 等 . 粘 性 阻 尼 双 线 性 迟 滞 振 子 简 谐 激 励 响 应 的Krylov-Bogoliubov 计算方法. 机械工程学报,2000 ,36 (10) :27~29
    [110] Davidenkov NN. Hysteretic Property of the Ferrous Metal. J . Tech. Phys. ,1939 ,8 :483~489
    [111] Shaopu Yang , Yushu Chen , The Bifurcations and Singularities of the Parameterical Vibration in a system with Davidenkov’s hysteretic nonlinearity. Mechanics Research Communication ,1992 ,19 (4) :267~271
    [112] 金栋平,陈予恕. 迟滞非线性系统的分岔和奇异性. 天津大学学报,1997 ,30 (3) :299~304
    [113] 陈恩利,杨绍普. 两系非线性悬挂车辆的运行稳定性与分叉. 应用力学学报,1995 ,12 (3) : 92~95
    [114] Badrakhan F. Rational study of hysteretic systems under stationary random excitation. Int . J . Nonlinear Mechanics , 1987 , 22 (4) ∶312~315
    [115] Badrakhan F. Dynamic Analysis of Yielding and Hysteretic System by Polynomial Approximation. Journal of Sound and Vibration , 1988 , 125(1) :23~42
    [116] Tinker LM ,Cutchins MA. Damping Phenomena in a wire Rope Vibration Isolation System. Journal of Sound and Vibration ,1992 ,157 (1) :7~18
    [117] Ko J.M ,Ni YQ ,Tian QL. Hysteretic behavior and empirical modeling of a wire-cable vibration isolator. The international Journal of analytical and experimental model analysis ,1992 ,7 (2) :111~117
    [118] 潘东,赵玫,静波. 钢丝绳弹性组合元件中迟滞力的数学建模. 上海交通大学学报, 1996 , 30 (8) : 104 ~ 107
    [119] 王轲,李伟,朱德懋. 非线性迟滞阻尼减振器动力学模型参数识别. 华东交通大学学报, 1999 , 16 ( 4) : 1 ~ 5
    [120] 龚宪生,唐一科. 一类迟滞非线性振动系统建模新方法.机械工程学报, 1999 , 35 ( 4) : 11 ~ 14
    [121] 龚宪生,唐一科,景军平. 增强泡沫塑料隔振器动态性能的实验研究. 复合材料学报,2003 ,20 (5) : 135~141
    [122] 赵荣国,徐友钜,陈忠富. 一个新的非线性迟滞隔振系统动力学模型. 机械工程学报,2004 ,40 (2) : 185~188
    [123] 杨绍普,袁向荣,陈恩利. 多频激励迟滞非线性系统的组合共振分岔与奇异性. 非线性动力学学报, 1998 , 5 (3) :223~229
    [124] Chen Enli, Yang Shaopu, Yuan Xiangrong. The Subharmonic Resonance in a Multi-Degree–of -Freedom Hysteretic Nonlinear System With Multi-Frequency Excitations. Proceedings of International Conference on Vibration Engineering ,1998 ,8 :270~273
    [125] 李韶华,杨绍普. 具有迟滞非线性的汽车悬架中的混沌. 振动、测试与诊断,2003 ,23 (2) :86~89
    [126] Shaohua Li , Shaopu Yang , Wenwu Guo. Investigation on chaotic motion in hystereticnonlinear suspension system with multi-frequency excitations. Mechanics Research Communications ,2004 ,31 :229~236
    [127] Stanway R ,Sproston JL ,Stevens NG. Non-linear modeling of an electrorheological vibration damper. J . Elect rostatics ,1987 ,20 :67~184
    [128] Yang SP ,Li SH ,Wang X ,Gordaninejad F ,Hitchcock G.A Hysteresis Model for Magneto-rheological Damper. International Journal of Nonlinear Sciences and N umerical Simulation ,2005 ,6 (2) :139~144
    [129] Guo S , Yang S , Pan C , Guo J . Analysis of an Isolation System with Magnetorheological Damper. International Journal of Nonlinear Sciences and Numerical Simulation , 2005 ,6 (2) : 75~80
    [130] Pan C , Yang S ,Shen Y. An Electro-Mechanical Coupling Model of Magnetorheological Damper. International Journal of Nonlinear Sciences and Numerical Simulation , 2005 ,6 (2) :69~74
    [131] 冷小磊,李军强等,随机剪切柱在地震激励下的演变随机响应,应用力学学报,2002 20(3), 373-377
    [132] 黄建文,赵斌. 叠层橡胶支座基础隔震建筑的非线性时程分析[J].西安科技学院学报,2000,20(4):317-321.
    [133] 熊仲明,赵鸿铁. 高层建筑上部结构桩-土共同作用下随机地震响应分析[J]. 振动与冲击,2003.22(2):60-62
    [134] 徐赵东,沈亚鹏. 磁流变阻尼器的计算模型及仿真分析.建筑结构,2003,33(1):68~69.
    [135] 杨广强,Spencer BF,Carlson J D,et al. 足尺磁流变阻尼器的建模及动态特性[J].地震工程与工程振动,2001,21(4):8-23.
    [136] 关新春,欧进萍. 磁流变耗能器的阻尼力模型及其参数确定[J]. 振动与冲击,2001,20(1):5-8
    [137] Spencer BF ,Dyke SJ ,Sain MK. Phenomenological model magnet orheological dampers. Journal of Engineering Mechanics ,1997 ,123 (3) :230~238
    [1] Sevin, E., and Pilkey, W.D. (1971). Optimum Shock and Vibration Isolation, Shock and Vibration Information Analysis Center, Washington, D.C
    [2] 季文美,方同,陈松淇. 机械振动 科学出版社 1985
    [3] Fran?ois M. Hemez And Scott W. Doebling. Review And Assessment Of Model Updating For Non-Linear, Transient Dynamics. Mechanical Systems And Signal Processing, 15 (1), 2001:45-74
    [4] D.V.Balandin,N.N.Bolotnik W.D.Pilkey Optimal protection impact, shcok and vibration. Gordon and Breach Science Publishers,2001
    [1] Sj?berg. M. Three-dimensional air spring model with friction and orifice damping. Vehicle System Dynamics,2000,33 (suppl):528 -539.
    [2] 王文林. 油压减振器的油温敏度与散热参数设计研究 中国机械工程 2003 14(8) 637-640
    [3] MALIN P.Derivation of Air Spring Model Parameters for Train Simulation [D].Lulea: Lulea University of Technology, 2002.
    [4] Y.Q.Ni, J. M. Ko, C. W. Wong e.t. Modeling and identification of a wire-cable vibration isolator via a cyclic loading test part 1: experiments and model development. Journal of Systems and Control Engineering, IMechE, 1999. 213(3): 163-171
    [5] Y.Q.Ni, J. M. Ko, C. W. Wong e.t. Modeling and identification of a wire-cable vibration isolator via a cyclic loading test part 2: identification and response prediction. Journal of Systems and Control Engineering, IMechE, 1999. 213(3): 173-182
    [6] Gent A. N., Engineering with rubber: How to design rubber components. New York: Hans Publishers, 1992.
    [7] Julie Lambert-Diani, Christian Rey. New phenomenological behavior laws for rubbers and thermoplastic elastomers. Eur. J. Mech. 1999, 18: 1027-1043.
    [8] Treloar L. R. G. The physics of rubber elasticity. 3rd ed. Oxford University Press, 1975.
    [9] Mark J. E., Erman B. A Rubberlike Elasticity, a Molecular Primer. Wiley, London, 1986.
    [10] Kuhn W. The relation between molecular size, statistical molecular shape and elastic properties of highly polymerized substances. Kolloidzschr, 1936, 76: 258–271.
    [11] Treloar L. R. G. The elasticity of a network of long chain molecules. Rubber Chemistry and Technology, 1943, 16(4): 746-751.
    [12] Treloar L. R. G. The elasticity of a network of long chain molecules. Rubber Chemistry and Technology, 1943, 17(2): 296-302.
    [13] Kuhn W., Grün F. Relation between the elasticity constant and extension double diffraction of highly elastic substances. Kolloidzschr, 1942, 101: 248–271.
    [14] Wang M. C., Guth E. Statistical theory of networks of non-Gaussian flexible chains. J. Chem. Phys., 1952, 20: 1144–1157.
    [15] James H. M., Guth E. Theory of the elastic properties of rubber. J. Chem. Phys., 1943, 11(10): 455-481.
    [16] Flory P. J. Network structure and the elastic properties of vulcanized rubber. Chem. Rev., 1944, 35: 51-75.
    [17] Arruda E., Boyce M. C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of The Mechanics and Physics of Solids, 1993, 41(2): 389-412.
    [18] Treloar L. R. G. The mechanics of rubber elasticity. Proc. R. Soc. Lond. Ser. A., 1976, 351:301-330.
    [19] Treloar L. R. G., Riding G. A non-gaussian network models for rubber in biaxial strain. I. Mechanics properties. Pro. R. Soc. Lond. Ser. A., 1979, 369: 261-280.
    [20] Marckman G., Verron E., Gornet L., Chagnon G., Charrier P., Fort P. A theory of network alteration for the Mullins effect. Journal of The Mechanics and Physics of Solids, 2002, 50: 2011-2028.
    [21] Wu P. D., Van der Giessen E. On improved 3-D non-gaussian network models for rubber elasticity and their applications to orientation hardening in glassy polymers. Journal of The Mechanics and Physics of Solids, 1993, 41(3): 427-456.
    [22] Rivlin R. S. Large elastic deformation of isotropic materials: I. Fundamental concepts. II. Some uniqueness trhorems for pure homogeneous deformation. Phil. Trans. R. Soc. 1948, A240: 459-505.
    [23] Hart Smith L. J. Elasticity parameters for finite deformations of rubber-like materials. J. Appl. Math. Phys. 1966, 17: 608-625.
    [24] Alexander H. A constitutive relation for rubber-like materials. Int. J. Engeen. Sci. 1968, 6: 549-563.
    [25] Ogden R. W. Large deformation isotropic elasticity on the correlation of theory and experiment for incompressible rubber-like solids. Proc. R. Soc. London, 1972. A326: 565-584.
    [26] Mooney M. A theory of large elastic deformation. J. appl. Phys., 1940, 11: 582-592.
    [27] O. H. Yeoh, Characterization of elastic properties of carbon black-filled rubber vulcanizates, Rubber Chemistry Technol., 1990, 33: 792-805.
    [28] 徐秉业等译,接触力学,高等教育出版社.
    [29] 王勖成, 有限单元法, 清华大学出版社,2000
    [30] Belytschko 等著,庄苗 译,连续体和结构的有限元, 清华大学出版社,2002 年
    [1] Bouc R. Forced vibration of mechanical system with hysteresis. Abstract, Proceedings of 4th Conference on Nonlinear Oscillation. Prague, Czechoslovakia, 1967
    [2] Wen. Y. K. Method for random vibration of hysteretic systems. Journal of the Engineering Mechanics Division. ASCE, 1976, 102, 249–263.
    [3] Ni Y Q, Ko J M, Wong C W. Identification of non-linear hysteretic isolators from periodic vibration tests [J]. Journal of Sound and Vibration, 1998, 217:737-756.
    [4] Ni Y Q, Ko J M, Wong C W, Zhan S. Modeling and identification of a wire-cable vibration isolator via a cyclic loading test. Part 1: Experiments and Model Development [J]. Journal of Systems and Control Engineering, 1999, 213:163-171.
    [5] 赵俊生,樊文欣,张宝成. 金属丝网减振器非线性特性研究. 华北工学院学报.2004 25(1): 29-30.
    [6] Lo H. R. Hammond, J K and Sainsbury, M G. Non- linear system identification and modelling with application to an isolator with hysteresis. In Proceedings of the Sixth International Modal Analysis Conference, Kissimmee, Florida, USA, 1988, 1453– 1459.
    [7] Wong C W, Ni Y Q, Lau S L. Steady-state oscillation of hysteretic differential model, Ⅰ: response analysis [J]. ASCE Journal of Engineering Mechanics, 1994,120(2): 2271-2298.
    [8] Wong C W, Ni Y Q, Lau S L. Steady-state oscillation of hysteretic differential model, II: performance analysis [J]. ASCE Journal of Engineering Mechanics, 1994,120(2): 2299-2325.
    [9] Sjoberg M, Kari L. Non-linear behavior of a rubber isolator system using fractional derivatives [J]. Vehicle System Dynamics, 2002, 37(3):217-236.
    [10] 宋汉文 王文亮 傅志方 橡胶减振器非线性动力参数辨识 复旦学报(自然科学版) 37(5) 1998 607-612
    [11] 潘东,赵玫,静波. 钢丝绳弹性组合元件中迟滞力的数学建模. 上海交通大学学报, 1996 , 30 (8) : 104 ~ 107
    [12] 龚宪生,唐一科. 一类迟滞非线性振动系统建模新方法.机械工程学报. 1999,35 ( 4):11-14
    [13] Mallik. A. K.. Kher, V., Puri. M and Hatwal. H., On the modelling of non-linear elastomeric vibration isolators. Journal of Sound and Vibration 219(2), 1999, 239–253.
    [14] 刘延柱,陈立群编著. 非线性振动[M]. 高等教育出版社. 2001. 北京.
    [1] M Yar and J K HAMMOND Parameter estimation for hysteretic systems. Journal of Sound and Vibration. 1987, 117,161-172
    [2] R H SUES , S T MAU and Y K WEN Systems identification of degrading hysteretic restoring forces 1988 ASCE Journal of Engineering Mechanics,114,833-846
    [3] M. HOSHIYA and O MARUYAMA Kalman filtering of versatile restoring systems Stochastic Approaches in Earthquake Engineering Lecture Notes in Engineering 1987,32,68-86
    [4] J.S LIN and Y ZHANG Nonlinear structural identification using extended Kalman filter Computers and Structures. 1994,2,757-764
    [5] J B ROBERTS and A H SADEGHI Sequential parametric identification and response of hysteretic oscillators with random excitation Structural Safety 1990 8.45-68.
    [6] A G CHASSIAKOS, S F MASR, A SMYTH and J C ANDERSON Adaptive methods for identification of hysteretic structures 1995 Proceedings of the American Control Conference, Seattle, III, 2349-2353
    [7] S BELLIZZI and R BOUC Identification of the hysteresis parameters of a nonlinear vehicle suspension under random excitation 1988 Nonlinear Stochastic Dynamic Engineering Systems. Proceedings of IUTAM Symposium, 467-476
    [1] 汪玉,华宏星著, 舰船现代冲击理论及应用. 科学出版社 北京 2005.12
    [2] Snowdon.J.C , Vibration and Shock in Damped Mechanical System, The Shock and Vibration Bulletin,1970,12
    [3] Ruzicka.J.E,Passive Shock Isolation,The Shock and Vibration Bulletin,Part 1, 1970,8,Part 2, 1970,9
    [4] Vinogradov.O & Pivovarov.I,Vibration of A System with Nonlinear Damping,Journal of Sound and Vibration,Vol.111, 1986
    [5] Joshua Gordis, Optimal Design of Nonlinear Shock Isolation for Large Structural Systems, Naval Postgraduate School, Proceeding of 69th Shock and Vibration Symposium, St. Paul, Minnesota,October 12-16, 1998
    [6] Edward, J. A., Structural Analysis of a Nonlinear System Given a Shock Response Spectum Input, Proceeding of 69th Shock and Vibration Symposium,October 12-16, 1998
    [7] Welch. W. P, Mechanical shock on naval vessels as related to equipment design. Journal ASME, 1946 Vol 58
    [8] 单树军. 何 琳 , 束 立 红 . 冲击理想化为速度阶跃的适用范围及其误差. 振动与冲击. 2005,24(5):49-52
    [9] Bort.R.L, Assessment of shock design methods and shock specifications. Transaction SNAME, 1962 Vol 70
    [10] Sal Giannoccolo,The west coast shock facility. Marine Technology,1966,July

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700