可变材质的交互级全局光照明绘制算法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了可变材质的交互级全局光照明绘制算法。可变材质指用户可以通过交互改变绘制场景中物体的材质。固定材质的实时全局光照明绘制可以采用预计算辐射传输(PRT)的方法来实现。然而,可变材质的交互级全局光照明绘制却是近年来刚刚涉及的课题。在本文中提出的可变材质交互级全局光照明绘制算法,能在用户改变物体材质的同时,交互级绘制全局光照明效果。
     本文提出的绘制算法针对两种绘制场景:第一种,物体几何不变,采用双向反射分布函数(BRDFs)来表示物体的反射材质,不包含散射、折射和透射等其它材质类型。第二种,物体几何可以被用户改变,并且只采用折射和散射这两种材质。
     针对第一种绘制场景,我们算法中的主要创新点,是根据不同的传播光路将辐射传输进行分离。用于固定材质的PRT方法,根据绘制效果和光照的线性关系实现了动态光照下的绘制效果的实时更新。但是绘制效果和材质之间不存在这样的线性关系,所以PRT不能支持可变材质的交互级全局光照明绘制。虽然最终到达视点的总的辐射亮度和材质不存在线性关系,但是每一条传播路径的辐射传输和经过的反射物体的材质的乘积成正比。所以,采用我们的方法将辐射传输根据不同的传播光路分离为多个部分,就能够将这个非线性的问题转化为一系列线性问题的加和。我们需要对每一部分的辐射传输分别进行预计算,而不是像PRT中将所有光路的辐射传输一起进行预计算,从而就第一次实现了基于像素的可变材质的实时全局光照明绘制。我们的算法不但支持空间静态可变材质的实时全局光照明绘制,而且支持空间动态可变材质的交互级全局光照明绘制。也就是说,用户不但可以对一个物体的材质作整体修改,而且还可以对一个物体不同部分的材质作不同的修改。
     我们还提出了基于顶点的空间静态可变材质的交互级全局光照明绘制算法。该算法第一次允许用户同时改变材质、环境光照和视点,并且在环境光照不变的时候达到实时的绘制性能。算法主要包含三个创新点:光路切分,预计算传输张量,针对BRDF的镜面项分离和张量分解。通过光路切分,我们有效减小了辐射传输的数据量。预计算传输张量用于辐射传输的表示、预计算、存储和绘制。针对BRDF的镜面项分离和张量分解实现了在动态局部入射辐射亮度、可变材质、动态视点条件下的物体表面的快速着色。
     针对第二种绘制场景,我们最主要的贡献是提出了一个完整的绘制算法流水线,第一次实现了可变折射和散射材质的交互级全局光照明绘制。目前大多数的相关的绘制算法都是离线算法,而实时和交互级的绘制算法,都不能兼顾折射和散射这两种材质所涉及的所有绘制效果。我们的绘制算法流水线的输入是场景中的物体几何、材质、光照条件和视点等参数,所以,用户可以在绘制过程中任意地交互修改这些参数。整个绘制算法流水线运行在图形处理单元(GPU)上,并且能够达到交互级的绘制性能。在我们的绘制算法流水线中,有两个环节非常重要,也是我们算法中最主要的两个创新点:几何物体的快速体素化和自适应的非线性光子贴图算法。前者能够允许用户交互改变物体的几何;后者是达到交互级的绘制性能的保证。
     本文中的绘制算法有很广泛的应用前景,比如游戏、辅助设计等。其中针对可变折射和散射材质的绘制算法流水线,还是几何变形、交互级几何建模或者进行流体的物理仿真时的交互级可视化算法。
This thesis is about interactive global illumination rendering with dynamic materials. The users can change the materials by interaction if dynamic materials are used. Global illumination rendering with fixed materials can be solved by precomputed radiance transfer(PRT). Researchers turn to global illumination rendering with dynamic materials these years. The algorithms proposed in this thesis allow the users to change the materials while global illumination results are rendered with interactive performance.
     The algorithms in this thesis are about two kinds of rendering scenes. In the first, the geometry remains unchanged, we use the bidirectional reflectance distribution functions(BRDFs) to represent the dynamic reflection materials, and the scattering, reflection and transparency are not included. In the second, the geometry can be changed by users, the objects are with refractive and scattering materials.
     For the first kind of rendering scenes, the main contribution of our algorithm is radiance transfer separation for different light paths. The algorithm of PRT used for fixed materials renders with dynamic illuminations in real-time according to the linear relationship between rendering results and illuminations. But the rendering results do not linearly depend on the materials, so PRT can not interactively render with dynamic materials. Even the total radiance to the viewpoint is not linearly dependent on the materials, the radiance transferring along a given light path is linearly dependent on the product of all the reflective materials on the way. So the radiance transfer separation converts the non-linear problem to the sum of a number of linear problems. We precompute the radiance transfers of different light paths independently, which is different from PRT whose precomputation is for the whole radiance transfer. This is the first algorithm of pixel based real-time global illumination rendering with dynamic materials. Our algorithm not only renders global illumination results in real-time with spatial static dynamic materials, which allows the users to change the material of a whole object, but also interactively renders global illumination results with spatial variant dynamic materials, which allows the users to apply different changes to the materials of different parts of an object.
     We also propose an algorithm of vertex-based interactive global illumination rendering with spatial static dynamic materials. This is the first algorithm allowing the users to change the material, environment lighting and viewpoint simultaneously, and the real-timer performance can be achieved when the environment lighting is fixed. The algorithm includes three contributions: light path separation, precomputed transfer tensors, mirror separation and tensor decomposition of BRDFs. The light path separation reduces the size of the data of the radiance transfer. The precomputed transfer tensor is used to represent, precompute, store and render the radiance transfer. The mirror separation and tensor decomposition of BRDFs are used to achieve fast shading on object surface under dynamic local incident radiance, dynamic material and dynamic viewpoint.
     For the second kind of rendering scenes, our main contribution is to propose a complete rendering pipeline, which is the first solution of interactive global illumination rendering with dynamic reflective and scattering materials. The inputs of the pipeline are geometry, materials, illumination and viewpoint, so the users can change all of these parameters while global illumination rendering interactively. The whole pipeline is implemented on graphics processing units(GPUs) to achieve interactive performance. There are two very important stages of the pipeline, which are also our contributions: fast voxelization makes the rendering which dynamic geometry possible, the adaptive non-linear photon-mapping is critical to the interactive performance of our pipeline.
     The algorithms in this thesis have many applications, such as games and computer aided design. Our rendering pipeline for refractive and scattering materials can be also used as interactive visualization algorithm for mesh deformation, interactive modeling and fluid physical simulation.
引文
[1] Jos Stam, Eric Languenou. Ray tracing in non-constant media. Proceedings of the eurograph-ics workshop on Rendering techniques '96. London, UK: Springer-Verlag, 1996, 225-234
    [2] P. Sloan, J. Kautz, J. Snyder. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. Proc. of SIGGRAPH '02. 2002, 527-536
    [3] James T. Kajiya. The rendering equation. Proc. of SIGGRAPH '86. 1986, 143-150
    [4] J. Dorsey, F. Sillion, Greenberg D. P. Design and Simulation of Opera Lighting and Projection Effects. Proc. of SIGGRAPH '91. 1991, 41-50
    [5] J. Dorsey, J. Arvo, Greenberg D. Interactive Design of Complex Time Dependent Lighting. Proc. of SIGGRAPH '95. 1995, 26-36
    [6] Y. Dobashi, K. Kaneda, H. Nakatani, H. Yamashita. A Quick Rendering Method Using Basis Functions for Interactive Lighting Design. Computer Graphics Forum. 1995,14(3):229-240
    [7] Chris Wyman Charles. Interactive Raytraced Caustics. URL citeseer.ist.psu.edu/ 667388.html
    [8] Chris Wyman, Charles Hansen, Peter Shirley. Interactive Caustics Using Local Precomputed Irradiance. PG '04: Proceedings of the Computer Graphics and Applications, 12th Pacific Conference on (PG'04). Washington, DC, USA: IEEE Computer Society, 2004, 143-151
    [9] Manuel M. Oliveira, Maicon Brauwers. Real-time refraction through deformable objects. I3D '07: Proceedings of the 2007 symposium on Interactive 3D graphics and games. New York, NY, USA: ACM, 2007, 89-96
    [10] David Roger, Nicolas Holzschuch. Accurate Specular Reflections in Real-Time. Computer Graphics Forum (Proceedings of Eurographics 2006). sep 2006, 25(3). URL http://artis. imag.fr/Publications/2006/RH06
    [11] Voicu Popescu, Chunhui Mei, Jordan Dauble, Elisha Sacks. Reflected-Scene Impostors for Realistic Reflections at Interactive Rates. Computer Graphics Forum. Sep. 2006, 25(3):313- 322
    
    [12] Xianyou Hou, Li-Yi Wei, Heung-Yeung Shum, Baining Guo. Real-time multi-perspective rendering on graphics hardware. SIGGRAPH '06: ACM SIGGRAPH 2006 Sketches. New York, NY, USA: ACM, 2006, 79
    [13] Li-Yi Wei, Baoquan Liu, Xu Yang, Ying-Qing Xu, Baining Guo, Chongyang Ma. Nonlinear Beam Tracing on a GPU
    [14] Chris Wyman. An approximate image-space approach for interactive refraction. ACM Trans Graph. 2005, 24(3):1050-1053
    [15] Chris Wyman. Interactive image-space refraction of nearby geometry. GRAPHITE '05: Proceedings of the 3rd international conference on Computer graphics and interactive techniques in Australasia and South East Asia. New York, NY, USA: ACM, 2005, 205-211
    [16] Chris Wyman, Scott Davis. Interactive image-space techniques for approximating caustics. I3D '06: Proceedings of the 2006 symposium on Interactive 3D graphics and games. New York, NY, USA: ACM, 2006, 153-160
    [17] Henrik Wann Jensen, Per H. Christensen. Efficient Simulation of Light Transport in Scenes with Participating Media using Photon Maps. Proc. of SIGGRAPH '98. 1998, 311-320
    [18] Jens Kriiger, Kai Burger, Rudiger Westermann. Interactive Screen-Space Accurate Photon Tracing on GPUs. Rendering Techniques (Eurographics Symposium on Rendering - EGSR). 2006, 319-329
    [19] Ivo Ihrke, Gernot Ziegler, Art Tevs, Christian Theobalt, Marcus Magnor, Hans-Peter Seidel. Eikonal rendering: efficient light transport in refractive objects. ACM Trans Graph. 2007, 26(3):59
    [20] C. M. Goral, K. E. Torrance, Greenberg D. P., B. Battaile. Modeling the interaction of light between diffuse surfaces. Proc. of SIGGRAPH '84. 1984, 213-222
    [21] M. F. Cohen, D. P. Greenberg. The hemi-cube: a Radiosity solution for complex environment. Proc. of SIGGRAPH '85. 1985, 31-40
    [22] T. Nishita, E. Nakamae. Continuous tone representation of three-dimensional objects taking account of shadows and interreflection. Proc. of SIGGRAPH '85. 1985, 23-30
    [23] D. S. Immel, M. F. Cohen, D. P. Greenberg. A radiosity method for nondiffuse environments. Proc. of SIGGRAPH '86. 1986, 133-142
    [24] Larry Aupperle, Pat Hanrahan. A Hierarchical Illumination Algorithm for Surfaces with Glossy Reflection. Computer Graphics. 1993, 27(Annual Conference Series):155-162
    [25] Chris Buchalew, Donald Fussell. Illumination networks: fast realistic rendering with general reflectance functions. SIGGRAPH Comput Graph. 1989, 23(3):89-98
    [26] John R. Wallace, Michael F. Cohen, Donald P. Greenberg. A two-pass solution to the rendering equation: A synthesis of ray tracing and radiosity methods. SIGGRAPH Comput Graph. 1987, 21(4):311-320
    [27] J. R. Wallace, K. A. Elmquist, E. A. Haines. A Ray tracing algorithm for progressive radiosity. SIGGRAPH Comput Graph. 1989, 23(3):315-324
    [28] M. Z. Shao, Q. S. Peng, Liang Y. D. A new radiosity approach by procedural refinement for realistic image synthesis. Proc. of SIGGRAPH '88. 1988, 93-101
    [29] F. Sillion, C. Puech. A general two-pass method integrating specular and diffuse reflection. SIGGRAPH '89: Proceedings of the 16th annual conference on Computer graphics and interactive techniques. New York, NY, USA: ACM, 1989, 335-344
    [30] Fran(?)ois Sillion, James Arvo, Stephen Westin, Donald P. Greenberg. A Global Illumination Solution for General Reflectance Distributions. SIGGRAPH'91 conference proceedings. ACM Press, 1991, 187-196. URL http://artis.imag.fr/Publications/1991/SAWG91
    [31] Michael F. Cohen, Shenchang Eric Chen, John R. Wallace, Donald P. Greenberg. A progressive refinement approach to fast radiosity image generation. SIGGRAPH Comput Graph. 1988, 22(4):75-84
    [32] Pat Hanrahan, David Salzman, Larry Aupperle. A rapid hierarchical radiosity algorithm. SIGGRAPH Comput Graph. 1991, 25(4):197-206
    [33] Roy Troutman, Nelson L. Max. Radiosity algorithms using higher order finite element methods. SIGGRAPH '93: Proceedings of the 20th annual conference on Computer graphics and interactive techniques. New York, NY, USA: ACM, 1993, 209-212
    [34] H. R. Zatz. Galerkin Radiosity: A Higher Order Solution Method for Global Illumination. Proc. of SIGGRAPH-93: Computer Graphics. Anaheim, CA, 1993, 213-220
    [35] S. J. Gortler, P. Schroder, M. F. Cohen, P. Hanrahan. Wavelet Radiosity. Proc. of SIGGRAPH-93: Computer Graphics. Anaheim, CA, 1993, 221-230
    [36] G. Drettakis, F. X. Sillion. Interactive update of global illumination using a line-space hierarchy. Proc. of SIGGRAPH '97. 1997, 57-64
    [37] Peter Shirley, R. Keith Morley. Realistic Ray Tracing. Natick, MA, USA: A. K. Peters, Ltd., 2003
    [38] A. APPEL. Some techniques for shading machine renderings of solids. Proc. of Spring Joint Computer Conference. 1968, 37-45
    [39]Turner Whitted.An improved illumination model for shaded display.Commun ACM.1980,23(6):343-349
    [40]R.L.Cook,T.Porter,L.Carpenter.Distributed ray tracing.Proc.of SIGGRAPH '84.1984,137-145
    [41]H.K.Jensen.Realistic image synthesis using photon mapping.Natick,MA,USA:A.K.Peters,Ltd.,2001
    [42]T.Saito,T Takahashi.Comprehensible rendering of 3-d shapes.Proc.of SIGGRAPH '90.1990,197-206
    [43]R.Gershbein,P.M.Hanrahan.A fast relighting engine for interactive cinematic lighting design.Proc.of SIGGRAPH '00.2000,353-358
    [44]F.Pellacini,K.Vidimce,A.Lefohn,A.Mohr,M.Leone,J.Warren.Lpics:a hybrid hardware-accelerated relighting engine for computer cinematography.Proc.of SIGGRAPH '05.2005,464-470
    [45]Bruce Walter,Sebastian Fernandez,Adam Arbree,Kavita Bala,Michael Donikian,Donald P.Greenberg.Lightcuts:a scalable approach to illumination.SIGGRAPH '05:ACM SIG-GRAPH 2005 Papers.New York,NY,USA:ACM,2005,1098-1107
    [46]Milos Hasan,Fabio Pellacini,Kavita Bala.Matrix row-column sampling for the many-light problem.ACM Trans Graph.2007,26(3):26
    [47]Milos Hasan,Fabio Pellacini,Kavita Bala.Direct-to-indirect transfer for cinematic relighting.SIGGRAPH '06:ACM SIGGRAPH 2006 Papers.New York,NY,USA:ACM,2006,1089-1097
    [48]P.Sloan,J.Hall,J.Hart,J.Snyder.Clustered principal components for precomputed radiance transfer.Proc.of SIGGRAPH '03.2003,382-391
    [49]R.Ng,R.Ramamoorthi,P.Hanrahan.All-Frequency shadows using non-linear wavelet light-ing approximation.Proc.of SIGGRAPH '03.2003,376-381
    [50]R.Ng,R.Ramamoorthi,P.Hanrahan.Triple product integrals for all-frequency relighting.Proc.of SIGGRAPH '04.2004,477-487
    [51]X.Liu,P.Sloan,H.-Y.Shum,J.Snyder.All-frequency precomputed radiance transfer for glossy objects.Proc.of Eurographics Symposium on Rendering '04.2004,337-344
    [52]R.Wang,J.Tran,D.Luebke.All-frequency relighting of non-diffuse objects using separable BRDF approximation.Proc.of Eurographics Symposium on Rendering '04.2004,345-354
    [53]Yu-Ting Tsai,Zen-Chung Shih.All-frequency precomputed radiance transfer using spher-ical radial basis functions and clustered tensor approximation.ACM Trans Graph.2006,25(3):967-976
    [54]C.H.Mei,J.Y.Shi,F.L.Wu.Rendering with spherical radiance transport maps.Proc.of Eurographics '01.2004,281-290
    [55]K.Zhou,Y.Hu,S.Lin,B.Guo,H.Shum.Precomputed shadow fields for dynamic scenes.Proc.of SIGGRAPH'05.2005,1196-1201
    [56]Weifeng Sun,Amar Mukherjee.Generalized wavelet product integral for rendering dynamic glossy objects.SIGGRAPH'06:ACM SIGGRAPH 2006 Papers.New York,NY,USA:ACM,2006,955-966
    [57]Z.Ren,R.Wang,J.Snyder,K.Zhou,X.Liu,B.Sun,P.P.Sloan,H.J.Bao,Q.S.Peng,B.N.Guo.Real-time soft shadows in dynamic scenes using spherical harmonic exponentiation.Proc of SIGGRAPH '06.2006:977-986
    [58]M.Minnaert.The reciprocity principle in lunar photometry.Astrophysical Journal.May 1941,93:403-410
    [59]Jason Lawrence,Aner Ben-Artzi,Christopher DeCoro,Wojciech Matusik,Hanspeter Pfister,Ravi Ramamoorthi,Szymon Rusinkiewicz.Inverse shade trees for non-parametric material representation and editing.ACM Trans Graph.2006,25(3):735-745
    [60]Jinwei Gu,Chien-I Tu,Ravi Ramamoorthi,Peter Belhumeur,Wojciech Matusik,Shree Nayar.Time-varying surface appearance:acquisition,modeling and rendering.SIGGRAPH'06:ACM SIGGRAPH 2006 Papers.New York,NY,USA:ACM,2006,762-771
    [61]Fabio Pellacini,Jason Lawrence.AppWand:editing measured materials using appearance-driven optimization.ACM Trans Graph.2007,26(3):54
    [62]孙鑫,周昆,石教英.空间动态可变材质的交互式全局光照明绘制.软件学报录用.2007
    [63]Aner Ben-Artzi,Ryan Overbeck,Ravi Ramamoorthi.Real-time BRDF editing in complex lighting.SIGGRAPH'06:ACM SIGGRAPH 2006 Papers.New York,NY,USA:ACM,2006,945-954
    [64]A.Ben-Artzi,K.Egan,F Durand,R.Ramamoorthi.A Precomputed Polynomial Represen-tation for Interactive BRDF Editing with Global Illumination.To Appear In ACM Trans Graph.2007
    [65]Xin Sun,Kun Zhou,Yanyun Chen,Stephen Lin,Jiaoying Shi,Baining Guo.Interactive relighting with dynamic BRDFs.ACM Trans Graph.2007,26(3):27
    [66]孙鑫,周昆,石教英.可变材质的实时全局光照明绘制.软件学报.4 2008,19(4):1004-1015
    [67]B.T.Phong.Illumination for Computer Generated Pictures.Commun ACM.1975,18(6):311-317
    [68]J.F.Blinn.Models of light reflection for computer synthesized pictures.Proc.of SIGGRAPH '77.1977,192-198
    [69]R.L.Cook,K.E.Torrance.A reflectance model for computer graphics.SIGGRAPH'81.1981,307-316
    [70]G.J.Ward.Measuring and modeling anisotropic reflection.Proc.of SIGGRAPH '92.1992,265-272
    [71]A.Ngan,F.Durand,W Matnsik.Experimental Analysis of BRDF Models.Proceedings of the Eurographics Symposium on Rendering.2005,117-226
    [72]W.Matusik,J.Pfister,M.Brand,L.McMillan.A data-driven reflectance model.Proc.of SIGGRAPH '03.2003,759-769
    [73]S.Ershov,K.Kolchin,K.Myszkowski.Rendering pearlescent appearance based on paint-composition modelling.Proc.of Eurographics '01.2001,227-238
    [74]M.D.McCool,J.Ang,A.Ahmad.Homomorphic factorizations of BRDFs for high-performance rendering.Proc.of SIGGRAPH'01.2001,227-238
    [75]A.Ngan,F.Durand,W Matusik.Image-driven Navigation of Analytical BRDF Models.Proceedings of the Eurographics Symposium on Rendering.2006,399-408
    [76]M.A.O.Vasilescu,D.Terzopoulos.TensorTextures:multilinear image-based rendering.Proc.of SIGGRAPH '04.2004,336-342
    [77]H.C.Wang,Q.Wu,L.Shi,Y.Z.Yu,N.Ahuja.Out-of-core tensor approximation of multi-dimensional matrices of visual data.Proc.of SIGGRAPH '05.2005,527-535
    [78]Francisco J.Ser6n,Diego Gutierrez,Guillermo Gutierrez,Eva Cerezo.Implementation of a method of curved ray tracing for inhomogeneous atmospheres.Computers & Graphics.2005,29(1):95-108
    [79]Daniel Weiskopf.Four-Dimensional Non-Linear Ray Tracing as a Visualization Tool for Grav-itational Physics.VISUALIZATION '00:Proceedings of the llth IEEE Visualization 2000Conference(VIS 2000).Washington,DC,USA:IEEE Computer Society,2000
    [80]J.Semancik.Ray Tracing Non-Linear Spacewarps,2002
    [81]Eduard GrSller.Nonlinear ray tracing:visualizing strange worlds.The Visual Computer.1995,11(5):263-274
    [82]D.Weiskopf,T.Schafhitzel,T.Ertl.GPU-Based Nonlinear Ray Tracing.Computer Graphics Forum(Eurographics 2004).2004,23(3):625-633
    [83]Ziyad S.Hakura,John M.Snyder.Realistic Reflections and Refractions on Graphics Hardware with Hybrid Rendering and Layered Environment Maps.Proceedings of the 12th Eurographics Workshop on Rendering Techniques.London,UK:Springer-Verlag,2001,289-300
    [84]Michael Wand,Wolfgang Strait.Real-Time Caustics.Comput Graph Forum.2003,22(3):611-620
    [85]Stephane Guy,Cyril Soler.Graphics gems revisited:fast and physically-based rendering of gemstones.ACM Trans Graph.2004,23(3):231-238
    [86]Wei Hu,Kaihuai Qin.Interactive Approximate Rendering of Reflections,Refractions,and Caustics.IEEE Transactions on Visualization and Computer Graphics.2007,13(1):46-57
    [87]Diego Gutierrez,Adolfo Munoz,Oscar Anson,Francisco J.Seron.Non-linear Volume Photon Mapping.Oliver Deussen,Alexander Keller,Kavita Bala,Philip Dutre,Dieter W.Fellner,Stephen N.Spencer,(Editors)Rendering Techniques.Eurographics Association,2005,291-300
    [88]Fredo Durand,Nicolas Holzschuch,Cyril Soler,Eric Chan,Francois X.Sillion.A frequency analysis of light transport.SIGGRAPH '05:ACM SIGGRAPH 2005 Papers.New York,NY,USA:ACM,2005,1115-1126
    [89]Mark Meyer,John Anderson.Statistical acceleration for animated global illumination.SIG-GRAPH '06:ACM SIGGRAPH 2006 Papers.New York,NY,USA:ACM,2006,1075-1080
    [90] Petrik Clarberg, Wojciech Jarosz, Tomas Akenine-Moller, Henrik Wann Jensen. Wavelet importance sampling: efficiently evaluating products of complex functions. New York, NY, USA: ACM, 2005, vol. 24, 1166-1175
    [91] M. E. Lee, R. A. Redner. Filtering: A note on the Use of Nonlinear Filtering in Computer Graphics. IEEE Computer Graphics and Applications. 1990. 10(3):23-29
    [92] Lieven De Lathauwer, Bart De Moor, Joos Vandewalle. On the Best Rank-1 and Rank-(R1,R2,. . .,RN) Approximation of Higher-Order Tensors. SIAM J Matrix Anal Appl. 2000, 21(4):1324-1342
    [93] Jan Kautz, Michael D. McCool. Interactive rendering with arbitrary BRDFs using separable approximations. SIGGRAPH '99: ACM SIGGRAPH 99 Conference abstracts and applications. New York, NY, USA: ACM, 1999, 253
    [94] A. P. Dempster, N. M. Laird, D. B. Rubin. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society Series B (Methodological). 1977, 39(1):1-38
    [95] Paul Green, Jan Kautz, Wojciech Matusik, Fredo Durand. View-dependent precomputed light transport using nonlinear Gaussian function approximations. I3D '06: Proceedings of the 2006 symposium on Interactive 3D graphics and games. New York, NY, USA: ACM, 2006, 7-14
    [96] Eric Tabellion, Arnauld Lamorlette. An approximate global illumination system for computer generated films. SIGGRAPH '04: ACM SIGGRAPH 2004 Papers. New York, NY, USA: ACM, 2004, 469-476
    [97] Anders Wang Kristensen, Tomas Akenine-Moller, Henrik Wann Jensen. Precomputed local radiance transfer for real-time lighting design. SIGGRAPH '05: ACM SIGGRAPH 2005 Papers. New York, NY, USA: ACM, 2005, 1208-1215
    [98] Timothy J. Purcell, Craig Donner, Mike Cammarano, Henrik Wann Jensen, Pat Hanrahan. Photon mapping on programmable graphics hardware. SIGGRAPH '05: ACM SIGGRAPH 2005 Courses. New York, NY, USA: ACM, 2005, 258
    [99] Scott T Davis, Chris Wyman. Interactive refractions with total internal reflection. GI '07: Proceedings of Graphics Interface 2007. New York, NY, USA: ACM, 2007, 185-190
    [100] Manfred Ernst, Tomas Akenine-Moller, Henrik Wann Jensen. Interactive rendering of caustics using interpolated warped volumes. GI '05: Proceedings of Graphics Interface 2005. School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada: Canadian Human-Computer Communications Society, 2005, 87-96
    [101]Max Born,Emil Wolf.Principles of Optics(Tth edition).Cambridge University Press,1999
    [102]Keenan Crane,Ignacio Llamas,Sarah Tariq.Real-Time Simulation and Rendering of 3D Fluids.Hubert Nguyen,(Editor)GPU Gems 3,Addison-Wesley Professional,2007.633-675
    [103]Gernot Ziegler,Rouslan Dimitrov,Christian Theobalt,Hans-Peter Seidel.Real-Time Quadtree Analysis Using HistoPyramids.Real-Time Image Processing 2007.2007,64960L
    [104]Siddhartha Chatterjee,Guy E.Blelloch,Marco Zagha.Scan Primitives for Vector Computers.Supercomputing 1990.1990,666-675
    [105]Nvidia Corporation.CUDA Programming Guide,2007.Http://developer.nvidia.com/object/cuda.html
    [106]Mark Pauly,Richard Keiser,Leif P.Kobbelt,Markus Gross.Shape modeling with point-sampled geometry.ACM Trans Graph.2003,22(3):641-650
    [107]Takeo Igarashi,Satoshi Matsuoka,Hidehiko Tanaka.Teddy:a sketching interface for 3D freeform design.SIGGRAPH'06:ACM SIGGRAPH 2006 Courses.New York,NY,USA:ACM,2006,11
    [108]Patrick Mullen,Alexander McKenzie,Yiying Tong,Mathieu Desbrun.A variational approach to Eulerian geometry processing.ACM Trans Graph.2007,26(3):66
    [109]Ronald Fedkiw,Jos Stam,Henrik Warm Jensen.Visual Simulation of Smoke.Eugene Fiume,(Editor)SIGGRAPH 2001,Computer Graphics Proceedings.ACM Press/ACM SIGGRAPH,2001,15-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700