基于ICA的工作模态参数辨识方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械结构模态参数的提取是机械结构动力学分析的基础。常用的模态参数提取方法有实验模态分析法和工作模态分析法,这两种方法在工程应用中都有各自的局限性。实验模态分析(EMA)法需要对结构施加激励,这对于大型复杂机械系统是非常困难的。工作模态分析(OMA)法无需外加激励,仅依靠机械结构工作状态下的振动响应信号提取结构模态参数。这种分析方法更接近实际工作状态,然而由于其理论分析计算中假设系统所受载荷为白噪声,与大多数实际情形有或多或少的距离,导致计算结果误差较大。
     近年来,盲信号处理中的独立分量分析(ICA)法在盲源分离的工程应用中获得广泛应用。本文在回顾了OMA分析理论与方法的基础上,详细研究了ICA的基本算法原理,发现此二者的密切联系。在解释了ICA基向量的模态含义的基础上,提出了将ICA算法应用于机械结构动力学分析中的模态参数识别。讨论了ICA计算模态与机械振动模态的一致性,为ICA在机械结构动力学中的应用提供了理论依据。
     通过计算机数字仿真和实验室物理模拟,详细研究了ICA技术在机械结构动力学分析中的理论基础、算法实现以及对不同激励和噪声背景的适应性。为衡量ICA分量的分离效果,提出了独立性指数的概念。借助于三自由度弹簧质量系统模型的响应数据,进行ICA数字仿真的研究结果表明,ICA分离的模态频率与结构进行动力学分析得到的固有频率是吻合的。
     在对集中质量系统研究的基础上,以悬臂梁为例研究了连续系统模型。通过实施在不同激励、不同比例的混合噪声及不同长度数据量的输出响应的ICA分解,系统研究了ICA的模态参数提取能力。在实验室用锤击法获取了悬臂梁的模态参数后,又用B&K的OMA软件与自主研发的ICA软件分别对实验装置的振动响应信号进行了模态参数识别。研究结果表明ICA中的JADE、MSNR、GOSA三种算法均可提取试验模型的结构模态参数,它与OMA提取的模态参数具有良好的一致性。其中MSNR算法优于GOSA和JADE算法。与OMA法相比较,ICA算法具有较好的结构模态分离性能,特别是对短响应数据具有更好的适应性。
     在理论和实验研究的基础上,将所提出的基于ICA技术的模态参数识别方法成功地应用于立体仓库堆垛机动态设计中。利用ICA方法获得了堆垛机的模态参数。通过对比OMA方法获取的模态参数,ICA方法剔除了虚假模态,提高了模态参数的可信度,为在此基础上完成的堆垛机的动态设计奠定了基础。
Modal parameters extraction of the mechanical structure is the basis for the mechanical structure dynamic analysis. The experimental modal method and the operational modal method are commonly used to extracting modal parameter. The structure need external excitation by using the experimental modal analysis, which is extremely difficult in operation of large and complex mechanical systems. Operational modal analysis (OMA) is without additional excitation. This is only relied on the state response signal to extract structure modal parameters of the mechanical structure and more close to actual situation. However, for assuming system suffered load of the white noise in OMA, which does not match with actual situation, the method leads to greater error results.
     Recently, independent component analysis (ICA) of the Blind signal processing was widely used in the project application in blind source separation (BSS).
     This article dissected the ICA basic algorithm principle after reviewing the OMA theory and method, discovering the close relation between them. On the basis of the explanation of the ICA base-vector mode meaning, this article proposed the mode parameter identification with the ICA algorithm in the mechanical structure dynamic analysis, discussed the consistency between the ICA computation mode and the mechanical vibration mode, which provided theoretical basis by using ICA in the mechanical structure dynamic analysis.
     Through computer numeral simulation and laboratory physical analogue, this article dissected analysis rationale, algorithm realization of ICA technology in mechanical dynamics, and the compatibility to different excitation and noise background. In order to weigh the separation effect, it put forward the concept of independent performance index. With the aid of the model response data of three degree of freedom spring quality system, the ICA numeral simulation results indicated that, the ICA separation mode frequency and the structure natural frequency coincidenced completely.
     This article had attempted to research continuous system model of the cantilever beam under various excitations, various niose levers and various data amounts of response. In the laboratory with the hammering , the reliable mode frequency and mode shape of cantilever beam was obtained. Using the OMA software of B & K and the self- developed ICA software, we had respectively carried on the mode parameter identification to acceleration response signal of the experimental facility. The results indicated that the ICA in three algorithms JADE, MSNR, GOSA can be extracted to structure mode, which had a good consistency with the modal parameters from the OMA. MSNR algorithm is superior to GOSA and JADE algorithm. Comparing with the OMA, the ICA algorithm is better in separation and adaptability, especially for short data.
     Based on the research of the theory and experimentation, we applied the method of identifying parameter on basis of the ICA to dynamic design of the stacking crane in automated warehouse. We also get the modal parameters of stacking crane along with the OMA software, and enhanced the reliability of the modal parameters by eliminating the false parameter. It' s the basis of dynamic design of the stacking crane.
引文
[1]傅志方,华宏星,模态分析理论与应用[M],上海:上海交通大学出版社,2002.
    [2]沃德·海伦等,模态分析理论与试验[M],北京:北京理工大学出版社,2001年6月.
    [3]梁君,赵登峰,工作模态分析理论研究现状与发展,电子机械工程,2006,22(6):7-9.
    [4]樊江玲,基于输出响应的模态参数辨识方法研究,[博士学位论文],上海,上海交通大学,2007年.
    [5]R.Pintelon,P.Guillaume,etc.Parametric identification of transfer functions in the frequency domain-a survey,IEEE Trans.Autom.Control,1994,(11):2245-2260.
    [6]续秀忠,基于时频滤波和自回归建模方法的时变模态参数辨识(博士学位论文),上海交通大学2003年.
    [7]禹丹江,土木工程结构模态参数识别--理论、实现与应用(博士学位论文),福州大学2005年12月.
    [8]马建仓,牛奕龙,陈海洋,盲信号处理,北京,国防工业出版社,2006年6月.
    [9]宋汉文,华宏星,傅志方,工况模态分析理论的概念、应用和发展,振动工程学报,2004,17(S):657-659.
    [10]Ren Wei-Xin,Peng Xue-Lin,Lin You-Qin,Experimental and analytical studies on dynamic characteristics of a large span cable-stayed bridge,Engineering Structures,2005,27(4):535-548.
    [11]Guid De Roeck,etc,Benchmark study on system identification through ambient vibration measurements,Proceedings of 18th IMAC,2000.
    [12]B.Peeters,G.De Roeck,Reference-based stochastic subspace identification for output-only modal analysis,Mechanical Systems and Signal Processing,1999,13:855-878.
    [13]Rune Brincker,etc,Modal parameter estimation from operating data,18thIMAC,2000.
    [14]Kevin Womack,Jeff Hodson,System identification of the Z24 Swiss bridge,Proceedings of 19th IMAC,2001.
    [15]Carlos E.Ventura, Jean-Franois Lord1 and Robert D.Simpson, Effective use of ambient vibration measurements for modal updating of a 48 storeybuilding in Vancouver Canada.
    [16]Heikki Haapaniemi, Pekka Luukkanen, Correlation analysis of modal analysis results from a pipeline.
    [17]H.A.Cole, Online failure detection and damping measurement of aerospace structures by random decrement signatures, NASA CR-2205,1973.
    [18]H. vander Auweraer, J. Leuridan, Multiple input orthogonal polynomial parameter estimation, Mechanical Systems and Signal Processing, 1987,1 259-272.
    [19]B. Schwarz, M. Richardson, Modal parameter estimation from ambient response data, Proceedings of IMAC 19,2001.
    [20]Peeters Frank, Pintelon. R, Schoukens. Johan, Identification of rotor-bearing systems in the frequency domain part I: estimation of frequency response functions, Mechanical Systems and Signal Processing, 2001,15 (4): 759-773.
    [21]Schoukens J, Pintelon R, Identification of linear systems: a practical guideline to accurate modeling, Pergamon Press, 1991.
    [22]P. Verboven, E. Parloo, P. Guillaume, M. Van Overmeire, Autonomous structural health monitoring part I: modal parameter estimation and tracking, Mechanical Systems and Signal Processing, 2002,16(4):637-657.
    [23]S. Vanlanduit, P. Guillaume, J.Schoukens, High spatial resolution modal parameter estimation using a parametric MLE-like algorithm, K. U. Leuven, Proceedings of ISMA 23,1998.
    [24]P. Guillaume, R. Pintelon, J. Schoukens, Parametric identification of multivariable systems in the frequency domain-a survey. In Proceedings of ISMA 21, the International Conference on Noise and Vibration Engineering. Leuven, Belgium, 1996, 9:1069 - 1082.
    [25]Bart Peeters, Geert Lowet, Auweraer, Herman Vander, Operational PolyMAX for estimating the dynamic properties of a stadiums structure during a football game Orlando,Florida,IMAC23,2005.
    [26]S.R.Ibrahim,E.C.Mikulcik,A method for the direct identification of vibration parameters from the free response,Shock and Vibration Bulletin,1977,47:183-198.
    [27]Qin.Q,Li H.B,Qian L.Z,Lau C.K,Modal identification of TSING MA bridge by using improved Eigen system Realization Algorithm,Journal of Sound and Vibration,2001,247(2):325-341.
    [28]张贤达,时间序列分析-高阶统计量方法[M],北京:清华大学出版社,1999年12月.
    [29]Jitendra K.Tugnait,Member,IEEE Identification of linear,stochastic systems via second- and fourth-order cumulant matching,IEEE Transaction on information therory,1987,33(3):393-407.
    [30]Yujiro lnouye,etc,Cumulant-based blind identification of linear multi-input-multi-output systems driven by colored inputs,IEEE Transactions on signal processing,June,1997,45(6):1543-1552.
    [31]M.Vasta,J.B.Roberts,Stochastic parameter estimation of nonlinear systems using only higher order spectra of the measured response,Journal of Sound and Vibration,1998,213(2):201-221.
    [32]J.B.Roberts,M.Vasta,Parametric identification of systems with non-Gaussian excitation using measured response spectra Probabilistic Engineering Mechanics,2000,15:59-71.
    [33]Chen Binning,Student Member,IEEE,etc,Frequency domain blind MIMO system identification based on second-and higher order statistics,IEEE Transactions on signal processing,2001,49(8):1677-1688.
    [34]H.James G,G.Carne T,P.Lauffer J,The natural excitation technique (NExT)for modal parameter extraction from operating wind turbines,Sandia National Laboratory,Albuquerque,NM,1993,SAND92-1666.
    [35]Gontier Camille,George Daniel,Raffy Michel,Energetic mode contributions in stochastic modal analysis:An application to mode classification, Journal of Sound and Vibration,2006,294(4-5):944-965.
    [36]Kim,J.T,Stubbs,N,Improved damage identification method based on modal information,Journal of Sound and Vibration,2002,252(2):223-238.
    [37]D.Jeroen,D.Benoit,etc,Industrial applicability of modal analysis on operating data,Society of Automotive Engineer,2001,1.
    [38]Juan Martin Caicedo,Shirley J.Dyke,Erik A.Johnson,Natural excitation technique and eigensystem realization algorithm for phase i of the IASC-ASCE benchmark problem:simulated data,Journal of Engineering Mechanics,2004,49-60.
    [39]周传荣,赵淳生,机械振动参数识别及其应用[M],北京:科学出版社,1989.
    [40]Ibrahim S.R,Mikulcik E.C,The experimental determination of vibration parameters from time response,The Shock and Vibration Bulletin,1976,46(5):537-546.
    [41]Cole H.A,AIAA,On the line analysis of random vibrations,1968,68:288-319.
    [42]J.K.Vandiver,A.B.Dunwoody,etc,A mathematical basis for the random decrement vibration signature analysis technique,Journal of Mechanical Design,1982,104:307-313.
    [43]Y.Jann N,L.Ying,etc,Identification of mathematical basis for the random decrement vibration signature analysis technique,Journal of Engineering Mechanics,2004:570-577.
    [44]L.Hermans,H.Vander Auweraer,Model testing and analysis of structures under operational conditions:industrial applications,Mechanical Systems and Signal Processing,1999,13(2):193-216.
    [45]R.Ibrahim S,Random decrement technique for modal identification of structures,AIAA Journal of Spacecraft and Rockets,1977,14(11):696-700.
    [46]张亚林,胡用生,随机减量法识别轮对系统模态参数,同济大学学报,2002,30(6):695-698.
    [47]黄方林,何旭辉等,随机减量法在斜拉桥拉索模态参数识别中的应用,机械强度,2002,24(3):331-334.
    [48]Huang N E, Shen Z, Long S R, etc, The empirical mode decomposition and Hilbert spectrum for nonlinear and non stationary time series analysis, London, Proceeding of Royal Society, 1998.
    [49]B. Peeters, G. De Roeck, T.Pollet, etc, Stochastic subspace techniques applied to parameter identification of civil engineering structures, Lyon, France, Proceedings of New Advances in Modal Synthesis of Large Structures: Noli near, Damped and Nondeterministic Cases, 1995.
    [50]Roeck, Bart Peeters, Guido De, Stochastic system identification for operational modal analysis: a review, Journal of Dynamic Systems, Measurement, and Control, 2001,123(12):659-667.
    [51]V. Piet, M. Marc, A stochastic subspace algorithm for blind channel identification in noise fields with unknown spatial covariance, Signal Processing, 2000, 80 357-364.
    [52]D. Bauer, M. Deistler, W. Scherrer, User choices in subspace algorithms, Proceeding of the 37th IEEE conference on Decision&Control, 1998.
    [53]Lardies J, Modal parameter estimation and model order selection of a randomly vibrating system, Mechanical Systems and Signal Processing, 1998, 12(6):825-838.
    [54]J. Lardies, State-space identification of vibrating systems from multi-output measurements, Mechanical Systems and Signal Processing, 1998,12 (4):432-447.
    [55]Dietmar B, Order estimation for subspace methods, Automatic, 2001, 37:1561-1573.
    [56]Athanasios P. Liavas, Jean-Pierre Delmas, etc, Blind channel approximation: effective channel order determination, IEEE Transactions on Signal Processing, 1999, 47(12): 3336-3344.
    [57]Xia Yong, Hao Hong, Measurement selection for vibration-based structural damage identification, Journal of Sound and Vibration, 2000, 236(1): 89-104.
    [58]Chandra Sekhar S, Sreenivas T. V, Adaptive spectrogram vs. adaptive pseudo-Wigner-Ville distribution for instantaneous frequency estimation, Signal Processing, 2003, 83(7):1529-1543.
    [59]Chikkerur Sharat, Cartwright Alexander N, Govindaraju Venu, Fingerprint enhancement using STFT analysis, Pattern Recognition, 2007, 40(1):198-211.
    [60]Ghosh, Prasanta Kumar, Sreenivas T. V, Time-varying filter interpretation of Fourier transform and its variants, Signal Processing, 2006, 86(11): 3258-3263.
    [61]B. F. Yan, A. Miyamoto, E. Bruhwiler, Wavelet transform-based modal parameter identification considering uncertainty, Journal of Sound and Vibration, 2006, 291:285-301.
    [62]Joseph Lardies, etc, Identification of modal parameters using the wavelet transform, International Journal of Mechanical Sciences,2002, 44:2263-2283.
    [63]M. Ruzzene, A. Fasana, L.Garibaldi, B. Piombo, Natural frequencies and dampings identification using wavelet transform: application to real data, Mechanical Systems and Signal Processing, 1997,11(2):207-218.
    [64]R. Klein, D. Ingman, Non stationary signals:phase - energy approach-theory and simulations, Mechanical Systems and Signal Processing, 2001, 15(6): 1061-1089.
    
    [65] 刘永本,非平稳信号分析导论[M], 北京:国防工业出版社, 2006 年 2 月.
    
    [66] B. A. D. Piombo, A. Fasana, S. Marchesiello, etc, Modeling and identification of the dynamic response of a supported bridge, Mechanical Systems and Signal Processing, 2000, 14(1):75-89.
    [67]Z. Y. Zhang, H. X. Hua, etc, Modal parameter identification through Gabor expansion of response signals, Journal of Sound and Vibration, 2003, 266: 943-955.
    [68]S. Bellizzi, P. Guillemain, R. Kronland-Martinet, Identification of coupled non-linear modes from free vibration using time-frequency representations, Journal of Sound and Vibration, 2001, 243(2):191-213.
    [69]B.Paolo,etc,The use of wind excitation in structural identification,Journal of Wind Engineering and Industrial Aerodynamics,1998,709-718.
    [70]L.Xu,J.J.Guo,J.J.Jiang,Time-frequency analysis of a suspension bridge based on GPS,Journal of Sound and Vibration,2002,254(1):105-116.
    [71]陈光化,马世伟等,基于分数阶傅立叶变换的自适应时频表示,系统工程与电子技术,2001,123(14):69-71.
    [72]王宏禹等,基于分数阶傅立叶变换的模糊函数的研究,信号处理,2003,19(6):499-502.
    [73]王金婵,赵永安,分数傅立叶变换的进展与展望,应用光学,2003,24(5):5-7.
    [74]刘琚,何振亚.盲源分离和盲卷积.电子学报,2002.4:570-576.
    [75]Jutten C,Herault J,Blind separation of sources,Part Ⅰ:An adaptive algorithm based on neuro mimetic.Signal Processing,1991,24(1):1-10.
    [76]Tong L,Liu R,Soon V.C,Indeterminacy and Identifiablity of Blind Identification.IEEE Trans on Circuits and Systems.1991,38(5):499-506
    [77]Cardoso J.F,Blind Beam forming for Non-Gaussian Signals.IEE Proceedings,1993,140(6):224-230.
    [78]Comon P,Independent Component Analysis,A New Concept? Signal Processing,1994,36(3):287-314.
    [79]Bell A.J,Sejnowski T.J.An Information-Maximization Approach To Blind Separation and Deconvolution.Neural Computation,1995,7(6):1129-1159.
    [80]Amari S,Cichocki A,Yang H H,A New Learning Algorithm for Blind Signal Separation.Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,1996,8:657-663.
    [81Hyvarinen A,Oja E.A.A,Fast Fixed-Point Algorithm for Independent Component Analysis.Neural Computation,1997,9(7):1483-1492.
    [82]Girolami M,Fyfe C.An extended exploratory Projection Pursuit Network With Linear and Nonlinear Anti-Hebbian Lateral Connections Applied To The Cocktail Party Problem.Neural Networks,1998,10(9):1670-1618.
    [83]Burel G.Blind Separation of Sources:A Nonliner Neural Algorithm.Neural Networks, 1992, 5(6):937-947.
    [84]Pajunen P, Hyvarinen A, Karhunen J. Nonlinear Blind Source Separation By Self-Organization Maps. In Progress In Neural Information Processing. Berlin: Springer, 1996:1207-1210.
    [85]Taleb A, Jutten C. Source Separation In Post Nonlinear Mixtures: An Entropy-Based Algorithm. In Proc of ICASSP. Washinton:ICASSP, 1998:2089-2092
    [86]Moulines E, Cardoso J. F, Gassiat E. Maximum Likelihood for Blind Separation And Deconvolution Of Noisy Signals Using mixture Models. In Proc Of ICASSP. Washinton: ICASSP,1998:3617-3620.
    [87]Hyvarinen A. Noisy Independent Component Analysis. Maximum Likelihood Estimation, And Competitive Learning. In Proc Of IJCNN, Alaska: IJCNN, 1998:2282-2286.
    [88]Cardoso J. F, Source Separation Using Hgher Order Moments. In Proc Of ICASSP, Glasgow, UK, 1989:2109-2112.
    [89]Karhunen J, Wang L, Vigario R, Nonlinear PCA Type Approaches For Source Separation And Independent Component Analysis. In Proc. Of ICNN, Australia, ICNN, 1995:995-1000.
    [90]Cardoso J. F, Laheld B. H, Equivariant Adaptive Source Separation. IEEE Trans Signal Processing, 1996, 44(12):3017-3029.
    [91]Hyvarinen A, Oja E. Independent Component Analysis By General Nonlinear Hebbian-like Learning Rules. Signal Processing, 1998, 64(3):301-313.
    [92]Oja E, Hyvarinen A. Blind Signal Separation By Neural Networks. In Proc. Of ICONIP, HongKong, 1996, 7:7-14.
    [93]Karhunen J, Neural Approaches To Independent Component Analysis And Source Separation. In Proc. 4th European Symp, Artificial Neural Networks. Belgium, Bruges, 1996:249-266.
    [94]Girolami M. An Alternative Pewrspective On Adaptive Independent Component Analysis Algorithms. Neural Computation, 1998,10(8):2103-2114.
    [95]Amari S, Cichocki A, Adaptive Blind Signal Processing - Neural Network Approaches. Proc. Of The IEEE, 1998,86(10):2026-2048.
    [96]Lee T. W, Girolami M. Independent Component Analysis Using An Extended Infomax Algorithm For Mixed Subgaussian And Supergussian Sources. Neural Computation, 1999,11(12):417-441.
    [97]Hyvarinen A, Simple One-unit Neural Algorithms For Blind Source Separation And Blind Deconvolution. In Proc Of ICONIP, HongKong, ICONIP, 1996:1201-1206.
    [98]Linsker R. Local Synaptic Learning Rules Suffice To Maximize Mutual Information In a Linear Network. Neural Computation, 1992,4(3): 491-702.
    [99]Barlow H.B, Possible Principles Underlying The Transfomation Of Sensory Message, in Sensory Communication. Cambridge MA, MIT Press, 1961.
    [100]Pearlmutter B. A, Parra L. C. A Context-sensitive Geralization Of ICA. In Proc. Of ICONIP. HongKong, ICONIP, 1996:151-157.
    [101]Gaeta M, Lacoume J. L. Sources Separation Without A Priori Knowledge: The Maximum Likelihood Solution, Signal Processing V, Theories And Application, Elsevier, 1990.
    [102]Pham D.T, Blind Separation Of Instruments Mixture Of Sources Via An Independent Component Analysis. IEEE Trans Signal Processing 1996, 44(11) : 2768-2779.
    [103]Nadal J.P, Parga N, Nonlinear Neurous In The Low-noise Limit: A Factorial Code Maximizes Information Transfer. Network, 1994, 4:295-312.
    [104]Cardoso J. F, Infomax And Maximum Likelihood For Blind Source Separation. IEEE Signal Processing LETTERS, 1997,4(4):112-114.
    [105]Obradovic D, Deco G. Information Maximization And Independent Component Analysis: Is There A difference? Neural Computation, 1998,10(8):2085-2101.
    [106]Lee T. W, Girolami M, Bell A. J. A Unifying Information Theoretic Framework For Independent Component Analysis. Computers And Mathematics With Application. 2003, 31(11):1-21.
    [107]Nomua T, Eguchi M, An Extension Of The Herault-Jutten Network To Signal Including Delays For Blind Separation. In Proceedings Of IEEE workshop On Neural Networks For Signal Processing. Kyoto, 1996.
    [108]Lee W. T, Koehler B, Blind Separation Of Nonlinear Mixing Models. In Proc. Of IEEE nnsp. Florida, USA, 1997: 406-415.
    [109]Lin K, Grier D. G, Cowan J. D, Source Separation And Density Estimation By Faithful Equivariant SOM, Advances in Neuaral Information Processing Systems. Cambridge MA, MIT Press, 1997.
    [110]Hyvarinen A, Pajunen P, On Existence And Uniqueness Of Solutions In Non-linear Independent Component Analysis. In Proc Of IJCNN. Alaska, IJCNN, 1998:350-1355.
    [111]Platt C, Faggin F. Networks for the separation of Sources That Are Supermposed And Delayed. Advances In Neural Information Processing Systems. 1991:730-737.
    [112]Yellin D, Wensten E. Criteria for Multichannel Signal Separation. IEEE Trans Signal Process, 1994, 42(8):2158-2168.
    [113] Thi H. N, Jutten C. Blind Source Separation For Convolutive Mixtures. Signal Processing, 1995,45(2):209-229.
    [114]Tokkola K. Blind Separation of Delayed Sources Based On Information Maximization. In Proc of ICASSP. Atlanta: ICASSP, 1996:3509-3512.
    [115]Lee T W, Bell A J, Lambert R.H, Blind Separation Of delayed and Convoloved Source. Advances In Neural Information Processing Systems. Cambridge MA:Mit Press 1997:758-764.
    [116]Stato Y, A Mathod Of Self-recovering Equalization For Multilevel Amplitude-Modulation Systems. IEEE Trans On Commun, 1975, 23(6): 679-682.
    [117]Godard D. N, Self-recovering Equalization And Carrier Tracking In Two-Dimension Data Communication System. IEEE Trans On Commun, 1980, 28(11): 1867-1875.
    [118]Benveniste A, Goursat M. Blind Equalizers. IEEE Trans on Commun, 1984, 32 (8): 871-883.
    [119]Bellini S. Bussgang Techniques For Blind Deconvolution And Blind Equalization.Englewood Cliffs,Prentice-Hall,1994.
    [120]J.Karhunen,Neural approaches to independent component analysis and source separarion.In Proc.4th European Symp.Artificial Neural Networks,ESANN' 96,Bruges,Belgium,Apr.1996:249-266.
    [121]G.Deco,D.Obradovic,An Information-Theoretic Approach to Neural Computing.New Yourk:Springer-Verlag,1996.
    [122]Sahlin H,Broman H.Separation Of Real-World Signals.Signal Processing,1998,64(2):103-113.
    [123]吴小培,冯焕清,周荷琴.基于独立分量分析的图像分离技术及应用.中国图象图形学报,2001,2(6):133-137.
    [124]李煊,庄镇泉.独立分量分析及其在图像降噪中的应用:[硕士学位论文].合肥:中国科学技术大学图书馆,2001.5.
    [125]G.J.Erickson,J.T.Rychert,C.R.Smith,Difficults applying recent blind source separation techniques to EEG and MEG.Maximum Entropy and Bayesian Methods,Boise,Idaho,1997:209-222.
    [126]Karhumen J,Hyvarinen A.Application Of Neural Blind Separation To Signal And Image Processing.In Proc ICASSP.Germany,Munich,1997:131-134.
    [127]Makeig S,Jung T.P,Bell A.J.Blind Separation Of auditory Event-related Brain Reponses Into Independent Components.In Proc Natl Acad Sci,1997,94:10979-10984.
    [128]Mckeown M.J,Jung T.P,Makeig S,Spatially Independent Activity Patterns In Functional MRI Data Duing The Stroop Cordor-Naming Task.In Proc Natl Acad Sci,1998,95:803-810.
    [129]倪晋平,马远良,张忠兵.一种强干扰下超弱水声信号自适应盲分离的快速算法.声学技术,2002,3(21):141-144.
    [130]Lee T.W,Bell A.J,Orglmeister R,Blind Source Separation Of Real World Signals.In Proc Of ICNN.Houston:ICNN,1997:2129-2134.
    [131]凌燮亭.近场宽带信号源的盲分离.电子学报,1996,24(7):87-92.
    [132]何振亚,刘琚,杨绿溪等.盲均衡和信道参数估计的一种ICA和进化计算方法.中国 科学(E辑),2000,30(1):1-7.
    [133]刘琚,聂开宝,何振亚.线性混迭信号中独立源的盲提取.应用科学学报,2001,19(3):24-29.
    [134]He Zhenya,Liu Ju,Yang Luxi,Blind Separation Of Mages Using Edge-worth expansion based ICA Algorithm.Chinese Journal Of Electronics,1999,8(3):278-282.
    [135]焦卫东,基于独立分量分析的旋转机械故障诊断方法研究,[博士学位论文],杭州,浙江大学,2003年.
    [136]王峻峰,基于主分量、独立分量分析的盲信处理及应用研究,[博士学位论文],武汉,华中科技大学,2005年.
    [137]杨福生,洪波,独立分量分析的原理与应用,北京,清华大学出版社,2006年1月.
    [138]Yiu-ming Cheung,Hailin Liu,A New Approach to Blind Source Separation with Global Optimal Property,2004.
    [139]张小兵,马建仓等,基于最大信噪比的盲分离算法,计算机仿真,2006,23(10):72-75.
    [140]M Borge,Learning multidimensional signal processing,[M],Unpublished doctoral dissertation Linkoping University,Linkoping,Sweden,1998.
    [140]G.Kerschen_,F.Poncelet,J.C.Golinval,Physical interpretation of independent component analysis in structural dynamics,Mechanical Systems and Signal Processing,21(2007):1561-1575.
    [142]马维金,熊诗波,自动化立体仓库巷道堆垛机的振动测试与工作模态分析,中国机械工程,2004,15(4):287-290.
    [143]马维金,轧机自激振动诊断与结构动力学修改,[博士学位论文],太原,太原理工大学,2006年.
    [144]James,J.Smith,Torque monitoring for failure prevention on mill spindles and coupling.Iron and Steel Engineering.November 1986:26-30.
    [145]闫晓强,袁晓江.大型轧机工况在线监测系统.冶金工业自动化,2002,2,59-61.
    [146]杨行峻,郑君里,人工神经网络与盲信号处理,北京,清华大学出版社,2003年1月.
    [147]钟秉林,黄仁,机械故障诊断学,第3版,北京,机械工业出版社,2006年12月.
    [148]程正兴,小波分析算法与应用,西安,西安交通大学出版社,1998年5月.
    [149]王然风,基于支持向量回归技术的大型复杂机电设备故障诊断研究与应用,[博士学位论文],太原,太原理工大学,2005年.
    [150]曾志强,复杂机械传动系统故障诊断,[硕士学位论文],太原,中北大学,2007年.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700