铝型材壁板挤压模具结构优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型整体铝合金壁板因其具有比强度高、耐蚀性和气密性好、造型美观等优点,在铁路、航空、船舶等交通运输业中的应用越来越广泛,其成形过程主要用扁挤压筒挤压方法来完成。挤压模具的型腔形状在成形过程中至关重要,其与工件的变形程度、变形速度、塑性变形区的应力状态等密切相关,对成形件质量、挤压能耗和模具寿命等有十分重要的影响。本文围绕大型复杂壁板挤压模具型腔优化,综合运用数学、流体力学、数值模拟和物理模拟等知识,对壁板挤压成形规律进行深入研究,完成壁板挤压模具型腔的优化设计,取得了一些有重要意义的结论和对实际应用有指导作用的成果。
     首先基于复变函数共形映射原理,把映射函——Schwarz-Christoffel积分,从物理学、电磁学应用领域,引入到塑性加工过程分析中,将挤压入口、出口多边形形状映射到一单位圆周上,提出复杂型材挤压模具型腔映射建模思路。完整推导了Schwarz-Christoffel积分的两步求解过程,针对映射精度问题,提出凸凹分级展开求解技术,借助MATLAB平台,开发许氏积分快速求解模块。在实现简单多边形与单位圆映射函数求解的基础上,利用该积分完成复杂多边形壁板(矩形、梯形、工字形)与单位圆之间映射函数的求解,将复杂多边形问题转化为单位圆问题。
     根据上限理论,建立铝合金圆棒料挤压成形的流动模型,推导坯料在五种不同形状型腔下变形时的动可容速度场、应变速率场及上限功率的表达式。以降低挤压能耗为优化目标,对成形过程进行优化,获得最低能耗下的型腔高度。在此基础上,结合流体力学理论,引入流函数方程,建立基于流曲线的壁板挤压过渡曲面边界条件,得到挤压模具型腔“流线型”数学模型,完成复杂截面壁板型材挤压的“流线型”过渡曲面建模。
     借助数值模拟软件,采用二维弹塑性和三维刚塑性有限元方法分别对铝合金棒料及复杂壁板挤压过程进行模拟,验证不同模具型腔对挤压过程的影响,获得材料成形时金属位移场、速度场、应力-应变场和温度场的分布情况。深入分析壁板成形时的金属流动规律。此外,选取挤压中心等与挤压过程密切关联的因素,讨论其对挤压过程的影响,获得了一些有用的结果。研究发现,相同断面缩减率下,流线型型腔在改善金属流动、降低成形载荷和提高制件质量上都存在较大优势。
     由于生产壁板的重要工具扁挤压筒要在高温、高压、高摩擦的恶劣条件下工作,其使用寿命较低,这里引入混合优化方法,对扁挤压筒进行结构优化设计,将有限元法(FEM)、人工神经网络(ANN)和多目标遗传算法(MOGA)运用到扁挤压筒结构优化中,综合考虑扁挤压简最佳工作性能和内腔的尺寸精度,建立变过盈量下三层组合式扁挤压筒结构的多目标优化模型,获得满足约束条件下的扁挤压筒各层结构参数。同时,以梯形铝合金壁板挤压成形为例,结合试验设计(DOE)、响应面设计(RSM)和遗传模拟退火算法(GSA),从降低成形载荷和提高壁板质量角度,对影响挤压过程的重要工艺参数——挤压速度v、定径带长度l、模具温度T_1等进行多目标优化设计,获得满足条件下的最佳成形工艺参数。
     最后采用光塑性试验方法分析了梯形壁板“流线型”挤压成形过程,实验获得光塑性模型材料最佳的成形温度及合理的材料热处理规范。通过对模型切片的分析,得到模型中应变分量的分布规律,试验结果与模拟结果相吻合,从而验证了“流线型”模具型腔在壁板挤压过程中的优越性。
     本文的研究成果,可以为复杂截面铝合金型材挤压生产提供技术支持,对于完善壁板挤压模具设计理论具有实际指导意义。
Large-sized aluminum alloy flat-plate, with some characteristics like high specific strength, corrosion resistance, unfailing performance and attractive appearance, has been widely used in railway transportation, air transportation, ship transportation and so on. It is usually formed through extruding by combined flat container. Thus the die cavity is very important for forming process, which is closely related to deformation degree, forming velocity, stress states in deforming area, and has a great influence on the products quality, extrusion energy and die life. In this dissertation, the optimization of die cavity structure is carried out by comprehensive application of mathematics, fluid mechanics, numerical simulation and physical simulation. Through the research, the extrusion forming discipline of flat-plate is got, and some useful conclusions and instructional achievements are obtained.
     According to conformal mapping theory of complex function, the mapping function of Schwarz-Christoffel integral is introduced from physics field, electromagnetics field to plastic forming process. By this function, the extrusion inlet and outlet are mapped to a unit circle, and then the mapping modeling approach is put forward. First, the forward and reverse solution procedure for Schwarz-Christoffel integral is analyzed. Handling the problem of mapping accuracy, the convex-concave expansion technology for Taylor series expansion is adopted. To improve the solution efficiency, the fast-solution mode is developed on the MATLAB platform. By this mode, the mapping function from a simple polygon to a unit circle can be acquired quickly, and other complicated mapping functions from rectangle, trapezoid, I-section polygon to unit circle can also be solved accurately.
     Based on the upper bound theory, the flowing model for aluminum alloy rod extrusion is constructed, and then the kinematically admissible velocity field, the strain rate field and the deformation power are deduced with five different die containers. In addition, aiming at reducing extrusion power, the forming process optimization is carried out, from which the best container length with the less extrusion load is got. According to this, the boundary condition of transitional surface between flat extrusion container cavity and die outlet is established based on the flow function method, then the streamlined mathematic model of die cavity is constructed, and the streamlined 3D model of transitional surface is obtained by using CAD software.
     In order to verify the influence of different die cavity on extrusion process, the forming process of aluminum rod and complicated flat-plate extrusion are simulated by 2D elastic-plastic FEM and 3D rigid-plastic FEM respectively. Through the simulation, the displacement field, velocity field, stress-strain field and temperature field distribution discipline in forming process are obtained. In addition, some important factors that connected to forming process, such as the extrusion center etc, are discussed. The simulation results show, with the same area reduction ratio, streamlined cavity has great advantages in improving metal flowing, reducing forming load and enhancing products quality.
     Furthermore, flat extrusion container is working with the environment of high temperature, high pressure and high friction, which leads to the poor operating life. The hybrid optimization method, combining finite element method (FEM), artificial neural network (ANN), multi-objective genetic algorithm (MOGA) together, is adopted to optimize the container structure. Considering the strength of flat extrusion container and dimensional accuracy of inner layer, the multi-objective structural optimization of three-layer combined flat extrusion container under the non-uniform shrinkage design is realized. With analyzing, comparing and demonstrating, a feasible method of structural optimum design for flat extrusion container is obtained. Meanwhile, in order to reduce extrusion power and improve flat-plate quality, the important forming parameters, including extrusion velocity, calibrating length, die temperature and so on, are optimized with the combination of orthogonal experimental design, response surface method (RSM) and genetic simulated annealing algorithm (GSA). From this multi-objective optimization, the best procedure parameters are obtained.
     In the last, the streamlined extrusion process of trapezoid flat-plate is analyzed by photo-plasticity method. Based on the experiments, the best forming temperature and the reasonable heat treatment regime for experimental material are acquired. By the analysis of product sections, the strain distribution discipline along different path in the parts is got. And there is little difference between experimental and simulation results, thus it can prove the advantage of streamlined die cavity in extrusion process.
     Our results will have significant reference to extruding die design for flat-plate, and it can provide technical supports for other complicated flat-plate forming.
引文
[1]叶尔曼诺克.铝合金壁板挤压.北京:国防工业出版社,1988.
    [2]王祝堂,董云天,王立波.提高挤压铝材产量措施.轻合金加工技术,1999,27(9):17-19.
    [3]Robert E.Sanders,Jr.Technology Innovation in Aluminum Products.Journal JOM,2001,53(2):21-25.
    [4]罗德先.2001年美国铝工业简况.世界有色金属,2003(4):70-72.
    [5]A.I.Nussbaum.Worldwide aluminum extrusion technology.Light Metal Age,1996,4:10-60.
    [6]刘静安.铝材在交通运输工业中的开发与应用.四川有色金属,2001,2:21-29.
    [7]刘静安,朱献文.世界铝加工的发展特点.铝加工,1996,19(2):1-2.
    [8]J.D.Edwards,F.C.Frary.The Aluminum Industry.New York:McGraw-Hill Press,1930.
    [9]D.C.Ko,B.M.Kim.Prediction of Surface Fracture Initiation in the Axisymmetric Extrusion and Simple Upsetting of an Aluminum Alloy.Journal of Materials Processing Technology,1996,62:166-174.
    [10]刘静安,杨璐.大中型铝合金挤压材生产现状及应用前景分析.铝加工,2005,1:1-5.
    [11]王祝堂.日本汽车工业与铝.轻合金加工技术,2000,28(10):1-4.
    [12]赵长喜,李继霞.航天器整体壁板结构制造技术.航天制造技术,2006,4:44-48.
    [13]王关峰,王俊彪,王淑侠.机翼整体壁板数字化制造技术.制造技术与机床,2006,5:87-90.
    [14]静安.铝合金整体壁板的生产工艺探讨.铝加工,1995,18(4):10-16.
    [15]赵云路,刘静安,陈卫民.圆挤压筒改装成扁挤压筒的试验研究.轻合金加工技术,2001,29(6):24-26.
    [16]Jian xin Xie,Yun lu Zhao,Jing an Liu.Stress Analysis of Multilayer Flat Container for Extruding Aluminum Sheet with Flange by FEM.Application,Development & Prospects for 21st Century.Beijing:Science Press,1998.1063-1068.
    [17]谢建新,毛倩,李静嫒等.80MN挤压机用扁挤压筒的初步设计.锻压技术,1999,24(3):48-51.
    [18]王匀,刘全坤.铝型材整体壁板挤压的进展和应力分析及举措.黑龙江科技学院学报,2002,15(1):36-38.
    [19]刘静安,萧今声.日本和德国的大断面铝合金型材生产技术与工艺.世界有色金属,1995,11:40-43.
    [20]刘静安,萧今声.德国铝型材生产技术和装备.世界有色金属,1996,4:40-44.
    [21]刘静安,蒋太富.现代铝合金管、棒、型、线材生产现状与发展.铝加工,1996,19(2):1-2.
    [22]刘静安,大型工业铝合金型材的挤压生产工艺与关键技术,铝加工,2007,3:9-11.
    [23]陈泽中,包忠诩,柳和生等.型材挤压研究进展.金属成形工艺,2000,18(5):1-5.
    [24]王祝堂.对我国动车组用铝量的预测.轻合金加工技术,2007,35(11):57.
    [25]王祝堂,王治国,卢载浩.中国铝型材挤压工业回眸与展望.轻合金加工技术,1999,27(1):5-10.
    [26]赫崇富,王祝堂.中国铝加工业现状及发展趋势.轻合金加工技术,2006,34(10):1-5.
    [27]殷建华.从近年铝材进口态势看国内大型铝加工企业的产品结构调整方向.世界有色金属,2001(10):37-42.
    [28]王祝堂.2005中国大铝挤压机年.中国金属通报,2006(2):3-4.
    [29]尚福山,吴南明,王祝堂等.中国建筑铝型材挤压工业(1).轻合金加工技术,2004,32(6):1-5.
    [30]尚福山,吴南明,王祝堂等.中国建筑铝型材挤压工业(2).轻合金加工技术。2004,32(9):1-6.
    [31]王祝堂.世纪之交的我国铝型材挤压技术发展目标.轻合金加工技术,1999.27(3):1-7.
    [32]王祝堂,江志邦,王岩等.对中国铝挤压工业若干问题的探讨.轻合金加工技术,2005,33(3):1-8.
    [33]叶尔曼诺克.铝合金型材挤压.北京:国防工业出版社,1982.
    [34]#12
    [35]R.Hil.塑性数学理论.北京:科学出版社,1966.142-177.
    [36]R.Hill.A general method of analysis of metal working processes.Mech Phys Solids,1963,11(4):305.
    [37]P.Dewhurst,I.F.Collins.A matrix technique for constructing sliplinc field solutions to a class of plane strain plasticity problems.Numerical Methods Engineering,1977,(7):357-378.
    [38]李铁生.矩阵算子法--建立滑移线法的一种新方法.锻压技术,1983,(5):23.
    [39]王祖唐等.金属塑性成形理论.北京:机械工业出版社,1989.181-241.
    [40]W.Johnson,R.Sowerby,R.D.Venter.A source book of plane strain slipline fields for metal deformation processes.Pergamon Press,1981.
    [41]赵志业,王国栋.现代塑性加工力学.沈阳:东北工学院出版社,1986.
    [42]L.Hanssen,M.Lefstad,S.Rystad,et al.Billet surface flow in aluminum extrusion using "Half-Moon" dies.Aluminum,2000,76(3):138-141.
    [43]N.Solomon,M.Teodorescu,I.Solomon.The effect of material flowing during deformation on the extrusion product quality.In.J.L.Chenot,J.F.Agassant,P.Montmitonnet,B.Vergnes,Proceedings of the 1st ESAFORM conference on Material Forming,1998.165-168.
    [44]S.Storen.Theory of extrusion-advances and challenges.International Journal of Mechanical Sciences,1993,35(11):1007-1020.
    [45]W.Johnson,H.Kudo.Use of upper bound solutions for axisymmetric extrusion process.International Journal of Mechanical and Sciences,1960,22(1):175.
    [46]A.R.Eivani,A.Karimi Taheri,An upper bound solution of ECAE process with outer curved corner.Journal of Materials Processing Technology.2007,182:555-563.
    [47]C.W.Wu,R.Q.Hsu.Theoretical analysis of extrusion of rectangular hexagonal and octagonal composite clad rods,International Journal of Mechanical Sciences,2000,42:473-486.
    [48]B.艾维超著.金属成形工艺与分析.北京:国防工业出版社,1988.9.
    [49]五弓勇雄编著.金属塑性加工技术.北京:冶金工业出版社,1987.
    [50]U.Stahlberg,J.Hou.UBET-simulation meant for basic understanding of the extrusion of aluminum profiles.Journal of Engineering for Industry,Transactions of the ASME,1995,117(4):485-493.
    [51]M.Z.Yermanok.Mechanisms of extrusion of aluminum alloy shapes.Advanced Performance Materials,1997,4(2):215-221.
    [52]YANG Yeon Shcng,YEH Wei-ching.Experimental verification of the VUB Method using plane strain extrusion tests for 6061 aluminum alloy.Journal of Materials Processing and Manufacturing Science,1997,5(4):267-282.
    [53]Santosh Kumar,Shashi Kant Prasad.Feature-based design of extrusion process using upper-bound and finite element techniques for extrudable shapes.Journal of Materials Processing Technology,2004,155:1365-1372.
    [54]徐亦公,王祖唐.铝管材连续铸挤过程的计算分析.轻合金加工技术,1994,22(4):23-29.
    [55]史翔.挤压中心假设及其应用.模具工业,1999,12:37-41.
    [56]史翔.异型材挤压设计理论及其应用.轻合金加工技术,2000,28(1):21-24.
    [57]闫洪,包忠诩,罗忠民等.型材挤压理论研究.机械工程学报,2000,36(7):27-30.
    [58]黄翔,周儒荣.型材挤压过程的上限法分析.应用科学学报.1999,17(1):77-82.
    [59]齐红元,朱衡君,杨江天等.精密金属异型挤压塑性成形共形上限解及模腔优化.固体力学学报,2003,24(2):163-168.
    [60]齐红元,朱衡君,邱成等.精密金属异型挤压塑性成形及模腔优化共形解析.机械工程学报,2002,38(10):75-78.
    [61]高锦张,贾俐俐.基于流函数法的铝型材挤压导流模合理设计.机械工程学报,2002,38(11):92-95.
    [62]贾俐俐,程慈龄.正挤多边形截面时凹模轮廓形状的合理设计,模具技术,1989,1:1-9.
    [63]林治平.论塑性加工时接触摩擦的应用与摩擦功率与计算.锻压技术,1995,3:41-45.
    [64]扈成才,罗子键.适用于分析锥形凹模内挤压/拉拔过程的新的上限模型.锻压技术,1997,2:6-9.
    [65]高军,赵国群,李丽华.铝合金型材挤压技术现状与发展趋势.汽车工艺与材料,2002,6:21-24.
    [66]S.Z.Qamar,A.F.M.Arif,A.K.Sheikh,A new definition of shape complexity for metal extrusion.Journal of Materials Processing Technology,2004(155-156):1734-1739.
    [67]J.A.Schey.Introduction to manufacturing processes.3rd ed.,McGraw-Hill,New York,2000.
    [68]K.Laue,H.Stenger.Extrusion:processes,machinery,tooling,American Society for Metals,Metals Park,OH,1981.
    [69]T.Altan,S.I.Oh,H.L.Gegel.Metal forming:fundamentals and applications,American Society for Metals,Metals Park,OH,1983.
    [70]A.K.Sheikh,A.F.M.Arif,S.Z.Qamar.A probabilistic study of failures of solid and hollow dies.Journal of Materials Processing Technology,2004(155-156):1740-1748.
    [71]H.Johnson,H.Kudo.The use of upper-bound solutions for the determination of temperature distributions in fast hot rolling and axi-symmetric extrusion processes.International Journal of Mechanical Sciences 1960,1:175-191.
    [72]J.Hailing,L.A.Mitchell.An upper-bound solution for axisymmetric extrusion.International Journal of Mechanical Sciences,1965,7:277-295.
    [73]C.T.Chen,F.F.Ling.Upper-bound solution to axisymmetric extrusion problems.International Journal of Mechanical Sciences,1968,10:863-879.
    [74]K.Iwata,K.Osakada,S.Fujino.Analysis of hydrostatic extrusion by the finite element method.Transactions of the ASME,Journal of Engineering for Industry,1972,94:697-703.
    [75]C.C.Chen,S.I.Oh,S.Kobayashi.Ductile fracture in axisymmetric extrusion and drawing.Transactions of the ASME,Journal of Engineering for Industry 1979,101:23-35.
    [76]姚若浩.金属压力加工中的摩擦与润滑.北京:冶金工业出版社,1990.
    [77]M.Cieplak,E.D.Simth,M.Robbins.Molecular origin of friction the force on absorbed layers.Science,1994,265:1209-1212.
    [78]辛丽,李美栓,钱余海.氧化铝膜的破裂行为.中国有色金属学报,2000,10(3):326-329.
    [79]M.O.Robbins,J.Kim.Energy dissipation in interfacial friction.MRS Bulletin,1998,23(6):23-26.
    [80]邓小民,孙中建,李胜祗等.铝合金挤压时的摩擦与摩擦因数.中国有色金属学报,2003,13(3):599-605.
    [81]Thomas Bjüork,Jens Bergstrom,Sture Hogmark.Tribological simulation of aluminium hot extrusion.Wear,1999,224:216-225.
    [82]J.Zhou,L.Li,J.Duszczyk.Computer simulated and experimentally verified isothermal extrusion of 7075aluminum through continuous ram speed variation.Journal of Materials Processing Technology,2004,146:203-212.
    [83]L.Li,J.Zhou,J.Duszczyk.Prediction of temperature evolution during the extrusion of 7075 aluminum alloy at various ram speeds by means of 3D FEM simulation.Jounal of Material Processing Technology,2004,145(3):360-370.
    [84]吴向红 赵国群 孙胜等.挤压速度和摩擦状态对铝型材挤压过程的影响.塑性工程学报,2007,14(1):36-41.
    [85]张君,杨合,何养民等.铝型材等温挤压温度控制的研究.机械工程学报,2004,40(4):149-153.
    [86]M.Pandit,Kaiserslautern.Trends and perspectives concerning temperature measurement and control in aluminum extrusion,Aluminum,2000,76(7/8):564-573.
    [87]A.F.Castle.Temperature changes in extrusion of aluminum alloys process.Third International Aluminum Extrusion Technology Seminar,Voll,Aluminum Association and Aluminum Extruders Counal,1984: 101-106.
    [88]张君,杨合,何养民等.铝及铝合金型材等温挤压关键技术研究进展,重型机械,2003,6:1-5.
    [89]冷艳,景作军.铝型材等温挤压技术综述.北方工业大学学报,2004,16(1):56-61.
    [90]张新泉.型材挤压导流模设计技术得开发研究和数值分析.清华大学博士学位论文,1988.
    [91]蔡薇,柳瑞清,绕克.镁合金型材挤压模具研究.轻合金加工技术,2006,34(5):28-30.
    [92]张波.铝合金热挤压有限元法仿真及裂纹研究.清华大学博士学位论文,1992.
    [93]古勃金著,陈绍汀译.光塑性.北京:科学出版社,1962.
    [94]J.Javomicky.Photoplasticity.Elsevier Scientific Pubulishing Company,1974.
    [95]朱明海,范琳.现代光塑性,北京:国防工业出版社,1995.
    [96]储灿东.连续挤压过程的3D计算机仿真和光塑性仿真.上海交通大学博士学位论文,2001.
    [97]储灿东,彭颖红.光塑性在连续挤压成形研究中的若干关键技术.金属成形工艺,2000,18(6):4-6.
    [98]卢义强.用聚碳酸酯模拟中碳钢的镦粗过程.武汉工学院学报,1989,11(4):86-94.
    [99]顾学甫.模拟金属塑性加工的光塑性分析.锻压技术,1992,1:2-5.
    [100]黄朝晖,付沛福,张猛.花键轴冷挤压成形后的三维光塑性模拟研究.实验力学,1999,14(1):35-40.
    [101]Zhaohui Huang,Peifu Fu.Solution to the bulging problem in the open-die cold extrusion of a spline shaft and relevant photoplastic theoretical study.Journal of Materials Processing Technology,2001,114:185-188.
    [102]李仕华,刘国晖,王志松等.用光塑性法研究刚塑性力学模型拉应力理论.机械工程学报,2000,36(7):14-17.
    [103]程军,扶名福,林治平.三维全息光塑性法在金属塑性加工中应用的探索.南昌大学学报,2000,22(1):6-9.
    [104]蒋智,任广升,徐春国等,圆柱体热锻件内部单空洞闭合的模拟分析.塑性工程学报,2005,12(1):47-50.
    [105]侯珍秀,夏祥东,王仲仁.胀形法加工聚碳酸酯板材制品的工艺参数研究.哈尔滨工业大学学报,2004,36(2):202-204.
    [106]T.Tran-Cong,N.Phan Thien.Three-dimensional study of extrusion processes by Boundary Element Method Ⅰ.An implementation of high order elements and some Newtonian results.Rheologica Acta,1988,27:21-30.
    [107]T.Tran-Cong,N.Phan.Thien.Three dimensional study of extrusion processes by Boundary Element Method Ⅱ.Extrusion of a viscoelastic fluid.Rheologica Acta,1988,27:639-648.
    [108]I.Alfaro,D.Bel,E.Cueto etc.Three-dimensional simulation of aluminium extrusion by the a-shape based natural element method,computer methods in applied mechanics and engineering,2006,195:4269-4286.
    [109]吴向红,赵国群,赵新海等.铝型材挤压成形过程数值模拟的研究现状与进展.系统仿真学报,2007,19(5):945-949.
    [110]V.Legat,J.M.Marohal.Die design:an implicit formulation for the inverse problem.International Journal for Numerical Methods in Fluids,1993,16(1):29-42.
    [111]R.Shivpuri,S.Momin.Computer aided design of dies to control dimensional quality of extruded shapes.Annals of the CIRP,1992,41(1):275-279.
    [112]J.Lof,Y.Blokhuis.FEM simulation of the extrusion of complex thin-walled aluminum sections.Journal of Materials Processing Technology,2002,122(2-3):344-354.
    [113]H.G.Mooi.Finite Element Simulations of Aluminum Extrusion.University of Twente PhD thesis,1996:3-89.
    [114]Lishnij,N.Biba,A.Milenin.Three-dimensional simulation of extrusion process on PC.In.J.L.Chenot,J.F.Agassant,P.Montmitonnet.Proceedings of the 1st ESAFORM conference on Material Forming,Florida,1998:137-140.
    [115]R.J.Dashwood,H.B.McShane,A.Jackson.Computer prediction of extrusion limit diagrams.Proceedings of the Sixth International Aluminum Extrusion Technology Seminar,vol.Ⅱ,Aluminum Association and Aluminum Extruders Council, Chicago, 1996, 331-339.
    [116] G G Petzov. A comparison of a theoretical and a numerical solution for the heat produced during hot hydrodynamic ertrusion. Journal of Materials Processing Technology, 1994,47: 33-34.
    [117] M. S. Joun, S. M. Hwang. Die shape optimal design in three-dimensional shape metal extrusion by the finite element method. International Journal for Numerical Methods in Engineering, 1998, 41:311 -335.
    [118] T. Chanda, J. Zhou, J. Duszczyk. A comparative study on iso-speed extrusion and isothermal extrusion of 6061 AI alloy using 3D FEM simulation. Journal of Materials Processing Technology. 2001(114):145-153.
    [119] T. Chanda, J. Zhou, J. Duszczyk. FEM analysis of aluminium extrusion through square and round dies, materials and design, 2000,21:323-335.
    [120] T. Chanda, J. Zhou, L. Kowalski etc. 3D FEM Simulation of the thermal events during AA6061 Aluminum extrusion. Scripta Materialia, 1999,41(2): 195-202.
    [121] J. Zhou, L. Li. 3D FEM simulation of the whole cycle of aluminum extrusion throughout the transient state and the steady state using the updated Lagrangian approach. Journal of Materials Processing Technology. 2003, 134: 383-397.
    [122] J. Zhou, L. Li. Computer simulated and experimentally verified isothermal extrusion of 7075 aluminum through continuous ram speed variation. Journal of Materials Processing Technology, 2004,146:203-212.
    [123] B. J. E. van Rens, W. A. M. Brekelmans, F. P. T. Baaijens. Numerical simulation of the extrusion of complex (hollow) profiles. Proceedings of the Seventh International Aluminum Extrusion Technology Seminar, vol. I, Aluminum Association and Aluminum Extruders Council, Chicago, 2000,99-107.
    [124] C. G Kang, Y. J. Jung, H. C. Kwon. Finite element simulation of die design for hot extrusion process of Al/Cu clad composite and its experimental investigation. Journal of Materials Processing Technology, 2002, 124: 49-56.
    [125] A. A. Milenin, S. Berski, G Banaszek. Theoretical analysis and optimisation of parameters in extrusion process of explosive cladded bimetallic rods. Journal of Materials Processing Technology, 2004,157-158:208-212.
    [126] L. Donati, L. Tomesani. The effect of die design on the production and seam weld quality of extruded aluminum profiles. Journal of Materials Processing Technology, 2005,164-165: 1025-1031.
    [127] Jongman Kim, Jae Ryoun Youn, Jae Chun Hyun. Three dimensional flow analysis within a profile extrusion die by using control volume finite-element method. Korea-Australia Rheology Journal, 2001,13(2): 97-106.
    [128] T. Altan, J. S. Gunasekera, H. L. Gegel. Computer aided process modeling of hot forging and extrusion of aluminum alloys. Annals of CIRP, 1982,31:131-135.
    [129] C. M. Lee, D. Y. Yang, M. U. Kim. Numerical analysis of three-dimensional extrusion of arbitrarily shaped sections by the method of weighted residuals. International Journal of Mechanical Sciences, 1990,32: 65-82.
    [130] M, Kiuchi. S. I. Jima. Computer-aided simulation of extrusion and/or drawing of fin-tubes and fin-bars. Manufacturing technology, 1993,42(11): 261-264.
    [131] P. A. Balaji, T. Sundararajan, G K. Lal. Viscoplastic deformation analysis and extrusion die design by FEM. Transactions of the ASME, Journal of Applied Mechanics, 1991,58: 644-650.
    [132] K. Mori, K. Osakada, H. Yamaguchi. Prediction of curvature of an extruded bar with noncircular cross-section by a 3D rigid-plastic finite element method. International Journal of Mechanical Sciences, 1993,35:879-887.
    [133] H. C. Kim, Y. Choi, B. M. Kim. Three-dimensional rigid-plastic finite element analysis of non-steady-state shaped drawing process. International Journal of Machine Tools & Manufacture, 1999, 39: 1135-1155.
    
    [134] 刘汉武,顾迎新等.基于有限元模拟的型材挤压专家系统.模具工业,2000,1:16-18.
    
    [135] 闫洪.角铝型材挤压过程的数值模拟.中国有色金属学报,2001,11(2):202-205.
    
    [136] G A. Lee, D. Y. Kwak, S. Y. Kim. Analysis and design of flat-die hot extrusion process 1. Three-dimensional finite element analysis.International Journal of Mechanical Sciences,2002,44(5):915-934.
    [137]A.J.Williams,T.N.Croft,M.Cross.Computational modelling of metal extrusion and forging process.Journal of Materials ProcessingTechnology,2002,125-126(2):573-582.
    [138]B.V.Mehta,Ibrahim Al-Zkeri,et al.3D flow analysis inside shear and streamlined extrusion dies for feeder plate design.Journal of Materials Processing Technology,2001,113(1-3):93-97.
    [139]周飞.铝型材挤压有限元/有限体积复合数值模拟技术研究.上海交通大学博士学位论文,2002.
    [140]罗超,李大永,尹纪龙等.薄壁铝型材挤压成形的一种有效模拟方法.上海交通大学学报,2004,38(7):1134-1137.
    [141]李大永,罗超,周飞等.薄壁门窗型材挤压的有限体积分步模拟.中国有色金属学报,2004,14(8):1360-1365.
    [142]黄光法,林高用,蒋杰等.大挤压比铝型材挤压过程的数值模拟.中国有色金属学报,2006,16(5):887-893.
    [143]陈泽中.铝型材挤压CAD/CAE/CAO技术研究.南昌大学博士学位论文,2002.
    [144]黄克坚,包忠诩,陈泽中等.有限体积法在挤压模具设计中的运用.稀有金属材料与工程,2004,33(8):855-857.
    [145]刘静安.铝型材挤压模具设计、制造、使用及维修.北京:冶金工业出版社,1999.
    [146]J.C.Benedyk.Automotive aluminum casting trends and developments.Light Metal Age,2000,58(10):36-39.
    [147]S.I.Oh,G.D.Lahoti,T.Altan.A general purpose FEM program for metal forming.Annals of the NAMRC,1981.
    [148]Wang yun,Liu Quankun.Structural optimization for prestressed fiat receptacle with augmented multiplier method,ISPMM2002,Hefei,Auhui,2002.
    [149]刘全坤,王匀.用保角映射法求解多层套扁挤压筒内的应力.机械工程学报,2005,41(10):80-83.
    [150]李燕,刘全坤,王匀.三层预紧扁挤压简变形与应力分布的数值模拟.中国机械工程,2003,14(12):1074-1076.
    [151]刘全坤,王匀.基于Lagrange插值的变过盈量对扁挤压筒变形和强度分析.中国机械工程,2004,15(2):168-170.
    [152]冯秋红,刘全坤,胡龙飞.基于多目标优化的扁挤压筒结构设计.中国机械工程,2006,17(17):1850-1853.
    [153]赵云路,薛荣敬,刘静安.扁挤压筒设计.锻压技术,2005,3:87-94.
    [154]赵云路,刘静安.扁挤压筒优化设计.轻合金加工技术,1998,26(7):21-28.
    [155]赵云路,刘静安.挤压筒强度优化设计.铝加工,1998,21(4):26-32.
    [156]A.F.M.Arif,A.K.Sheikh,S.Z.Qamar.A Study of die failure mechanisms in aluminum extrusion.Journal of Materials Processing Technology,2003,134(3):318-328.
    [157]A.Mihelic,B.Stok.Tool design optimization in extrusion processes.Computers & Structures,1998,68(7):283-293.
    [158]N.Venkata Reddy,P.M.Dixit,G.K.Lal.Die design for axisymmetric extrusion.Journal of Materials Processing Technology,1995,55:331-339.
    [159]N.Venkata Reddy,P.M.Dixit,G.K.Lal.Die design for axisymmetric hot extrusion.International Journal Mechanical tools Manufacture,1997,37(11):1635-1650.
    [160]A.S.Wifi,M.N.Shatla.An optimum-curved die profile for the hot forward rod extrusion process.Journal of Materials Processing Technology,1998,73:97-107.
    [161]赵德文,王国栋.曲面积分法求解双曲线模轴对称拔制.应用科学学报,1996,14(2):223-228.
    [162]赵德文,刘相华.余弦模拔制上界速度场的曲线积分问题.应用数学学报,1995,18(2):313-316.
    [163]赵德文.双曲线模平面变形拉拔挤压的曲线积分法.应用科学学报,1994,12(3):367-272.
    [164]高锦张,贾俐俐.扁挤压简内铝型材挤压的上限研究.锻压技术,2002,(4):17-20.
    [165]贾俐俐,高锦张,刘伟.长轴类零件开式挤压工艺应用及成形极限研究.塑性工程学报,2007,14(1):53-57.
    [166]N.H.Kim,C.G.Kang,B.M.Kim.Die design optimization for axisymmetric hot extrusion of metal matrix composites.International Journal of Mechanical Science,2001(43):1507-1520.
    [167]H.H.Jo,S.K.Lee,D.C.Ko,B.M.Kim.A study on the optimal tool shape design in a hot forming process.Journal of Materials Processing Technology,2001,111:127-131.
    [168]S.K.Lee,D.C.Ko,B.M.Kim.Optimal die profile design for uniform microstructure in hot extruded product.International Journal of Machine Tools & Manufacture,2000,40:1457-1478.
    [169]S.M.Byon,S.M.Hwang.Die shape optimal design in cold and hot extrusion.Journal of Materials Processing Technology,2003,135:316-324.
    [170]C.Y.Wu,Y.C.Hsu.Optimal shape design of an extrusion die using polynomial networks and genetic algorithms.The international Journal of Advanced Manufacturing Technology,2002,19:79-87.
    [171]M.Noorani-Azad.M.Bakhshi-Jooybari.Experimental and numerical study of optimal die profile in cold forward rod extrusion of aluminum.Journal of Materials Processing Technology,2005,164:1572-1577.
    [172]W.Z.Misiolek,R.M.Kelly.Metal flow and dead metal zones in extrusion of complex shapes.Fifth International Aluminum Extrusion Technology Seminar ET'92 Prec.,Vol.1,The Aluminum Association and Aluminum Extruders Council,1992.
    [173]W.Z.Misioiek,K.T Winther,A.E.Prats,etc.Rapid prototyping of extrusion dies using layer-based techniques.Journal of Materials Engineering and Performance,1999,8(1):23-30.
    [174]A.Prats,W.Z.Misiolek.Analysis of metal flow in weld pocket dies.Sixth International Aluminum Extrusion Technology Seminar ET'96 Prec.,Vol 2,The Aluminum Association and Aluminum Extruders Council,1996.
    [175]M.Kiuchi,M.shikawam.Upper-bound analysis of extrusion and/or drawing of L-,T-and H-section:Study on non-axisymmetric extrusion and drawing.Journal of the JSTP,1983,270:722-729.
    [176]N.R.Chitrara,etal.A generalized upper bound solution for three-dimensional extrusion of shaped section using CAD-CAM bilinear surface dies.Proc of the 28nd Mach.Tool Design and Research,417-454.
    [177]R.Kavalauskas,J.S.Gunasekera.Use of CAD-CAM to manufacture streamlined dies for extrusion of complex materials.11th NAMRC,1983,252-258.
    [178]#12
    [179]H.C.Sortal,S.Kobayashi.An optimum die profile for axisymmetric extrusion.International Journal of Machine Tool Design and Research,1968,8:61-72.
    [180]J.J.Sheu,R.S.Lee.Optimum die surface design of general three dimension section extrusion by using a surface model with tension parameter.International Journal of Machine Tools and Manufacture,1991,31(4):521-537.
    [181]J.S.Chung,S.M.Hwang.Application of a genetic algorithm to the optimal design of the die shape in extrusion.Journal of Materials Processing Technology,1997,72:69-77.
    [182]李双义,张连洪,刘永泽.流函数的上限模式在挤压工艺中的应用.材料科学与工艺,1999,7(2):27-33.
    [183]倪正顺,帅词俊,钟掘.基于热力耦合的热挤压模具结构参数优化设计.中国机械工程,2004,15(9):757-760.
    [184]倪正顺,帅词俊.热挤压模具失效工程分析.轻金属,2003,40(4):52-54.
    [185]秦永法,柏甫荣,赵明扬.基于模拟退火算法的挤出模参数优化.模具工业,2003,7:3-7.
    [186]Hong Yan,Juchen Xia.An approach to the optimal design of technological parameters in the profile extrusion process.Science and Technology of Advanced Materials,2006(7):127-131.
    [187]周飞,李爱平等.基于多重优化设计的铝型材挤压工作带模型.同济大学学报(自然科学版),2005,33(7):937-941.
    [188]刘汉武,张志萍.基于遗传算法的铝型材挤压模具优化设计.哈尔滨工业大学学报,2000,32(4):86-88.
    [189]贾俐俐,高锦张.基于流函数法的铝型材挤压导流模合理设计.机械工程学报,2002,38(11):92-95.
    [190]孙克豪,黄翔等.流线型挤压模曲面的构造及其CAD/CAM.锻压技术,1996,5:46-49.
    [191]刘斌.塑料挤出流动数值分析及其模具结构设计优化研究.大连理工大学博士学位论文,2003.
    [192]伊.伊.普里瓦洛夫等,闵嗣鹊等译.复变函数引论.北京:人民教育出版社,1950.
    [193]曹伟杰.保形变换理论及其应用.上海:上海科学技术文献出版社,1988.
    [194]D.Y.Yang,C.H.Lee.Analysis of three-dimensional extrusion of sections through curved dies by conformal transformation.International Journal of Mechanical Science,1978,20:541-552.
    [195]D.Y.Yang.A new approach for generalized three-dimensional extrusion of sections from round billets by conformal transformation.IUTANSymp.Metal Forming Plasticity,1979,204-221.
    [196]齐红元.三维拔制(挤压)异型材塑性成形理论及模具CAD/CAM研究.燕山大学博士学位论文,1999.
    [197]L.N.Trefethen.Numerical computation of the Schwarz-Christoffel transformation.SIAM J.Sci.Stat.Comput.1980,1:82-102.
    [198]L.N.Trefethen.Analysis and design of polygonal resistors by conformal mapping.Z.Angew.Math.Phys.1984,35:692-704.
    [199]T.A.Driscoll.A MATLAB toolbox for schwarz-christoffel mapping.ACM Transactions on Mathematical Software,1996,22(2):168-186.
    [200]Chenglie Hu.A software package for computing schwarz-christoffel conformal transformation for doubly connected polygonal regions.ACM Transactions on Mathematical Software,1998,24(3):317-333.
    [201]H.Daeppen.Die schwarz-christoffel-Abbildung für zweifach zusammenhangende Gebiete mit Anwendungen.Ph.D.thesis,ETH,Zurich,1988.
    [202]郑志强.单位圆到任意曲线保角变换的近似计算方法.应用数学和力学,1992,13(5):449-457.
    [203]王刚,许汉珍,顾王明等.数值许瓦尔兹-克力斯托夫变换与数值高斯-雅可比型积分.海军工程学院学报,1994,2:25-33.
    [204]C.Pumell.D.Males.Extrusion die design by computer.Light Metal Age,1980,38(33):12-15.
    [205]T.Altan,C.F.Billhardt.Application of CAD/CAM in Extrusion-a Management Overview.Light Metal Age,1983,41(9-10):24,26 28.
    [206]T.Altan.Automated design of extrusion dies by computer.Light Metal Age,1977,35(11-12):16,18.
    [207]A.P.Roger.Computer-aided design and manufacture &extrusion dies.Light Metal Age,1979,2.
    [208]R.Kavalauskas,J.S.Gunasekera,H.L.Gegel,et al.Use of CAD/CAM to manufacture steamlined dies for extrusion of complex materials,11th NAMRO,SME,1983.
    [209]R.Shivpuri,S.Momin.Computer-aided design of dies to control dimensional quality of extruded shapes.Annals of the CIRP,1992,41(11):275-279.
    [210]V.Nagpal,C.F.Billhardt,R.Gagne.Automated design of extrusion dies by computer.Light Metal Age,1977,2.
    [211]龙旭杰,石力开,王祖唐.铝型材挤压平模计算机辅助设计和制造(CAD/CAM)系统.轻金属加工技术,1988,(9):36-41.
    [212]陈文亮,黄翔,翟建军.铝型材挤压模CAD/CAM系统的研究.南京航空航天大学学报,1995,27(4):533-538.
    [213]谢建新,李静媛,冷智勇.型材挤压模具综合管理信息系统.中国有色金属学报,1998,8(4):643-646.
    [214]闫洪,包忠诩,柳和生等.型材挤压模CAD/CAE/CAM系统结构框架的建立.锻压技术,2000,6:48-50.
    [215]傅立军,包忠诩,陈泽中等.基于UG平台构建三维铝型材挤压模具CAD系统.金属成形工艺,2003,21(3):52-55.
    [216]于利伟,吴向红,宫晓峰等.铝型材挤压模具CAD中型材截面的实体信息处理.自动化与控制,2006,1:65-67.
    [217]叶南海,刘子建.铝型材挤压模具的CAD技术.机械科学与技术,2004,23(5):621-624.
    [218]王匀,刘全坤.基于特征矩阵和神经网络的铝型材整体壁板外形识别.中国机械工程,2003,14(15):1326-1328.
    [219]刘汉武.铝合金型材挤压模具智能设计理论研究.东北大学博士学位论文,2000.
    [220]罗超,李大永,周飞等.基于知识的铝型材挤压模具集成设计系统.上海交通大学学报,2003,37(12):1866-1869.
    [221]李燕.扁挤压筒受力与变形分析及结构优化设计研究.合肥工业大学博士学位论文,2005.
    [222]冯秋红.组合式扁挤压筒的结构优化设计.合肥工业大学硕士学位论文,2006.
    [223]上海交通大学应用数学系编.复变函数.上海:上海交通大学出版社,1988.
    [224]闻国椿.共形映射与边值问题.北京:高等教育出版社,1985.
    [225]格.列.伦兹,列.埃.艾尔斯哥尔兹.复变函数与运算微积分初步.北京:人民教育出版社,1960.
    [226]E.Costamagna.Integration formulas for the numerical calculation of Schwarz-Christoffel conformal transformation.Microwave and Optical Technology Letters,1997,15(4):219-224.
    [227]日本数学会.数学百科辞典.北京:科学出版社,1984.
    [228]萨文.卢鼎霍译.孔附近的应力集中.北京:科学出版社,1958.
    [229]施晓红,周佳.精通GUI图形界面编程.北京:北京大学出版社,2003,
    [230]汪大年.金属塑性成形原理.北京:机械工程出版社,1986.
    [231]陈文义,张伟.流体力学.天津:天津大学出版社,2004.
    [232]郭荣良.流体力学及应用.北京:机械工业出版社,1996.
    [233]#12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700