槟榔碱对2型糖尿病大鼠胰腺细胞的保护作用及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【研究背景与目的】
     糖尿病是威胁人类健康的重要疾病之一,全球的发病率呈上升趋势。2型糖尿病的病因及病理机制极为复杂,目前尚未完全清楚,但其发病的中心环节是胰岛素抵抗和胰岛素的分泌缺陷,胰岛素分泌缺陷在从NGT到IGT和IGT到糖尿病的过程,起了决定性的作用。长期高血糖、高血脂是胰岛素分泌缺陷发生的始动因素。因而如何保护胰腺,保护β细胞,阻止其功能衰退,增加胰岛素的分泌是2型糖尿病治疗中的关键问题。
     槟榔碱是从天然植物槟榔中的提取的生物碱。研究发现槟榔碱体外给药能抑制口腔角质细胞内白介素和肿瘤坏死因子的表达,下调氧化低密度脂蛋白和高糖致血管内皮细胞或巨噬细胞中炎症因子的表达,具有抗动脉粥样硬化的作用。我们前期的研究工作已经证明,槟榔碱具有降血糖的作用,由此推测槟榔碱可能通过某种机制保护胰腺,保护β细胞,促进胰岛素分泌,降低血糖浓度。
     本研究在高果糖诱发大鼠2型糖尿病模型上,给予不同浓度槟榔碱腹腔注射,寻找槟榔碱在大鼠整体水平有效的降糖剂量,通过检测血生化指标,观察胰腺形态特征,检测胰腺中重要的2型糖尿病相关因子的表达,探讨槟榔碱对2型糖尿病大鼠胰腺细胞的保护作用及其机制。
     【方法】
     1.建立高果糖诱导的2型糖尿病大鼠模型
     2.采用HI-TACH717全自动生化分析仪测定空腹血糖、血脂水平,放射免疫法测定空腹血清胰岛素及胰高血糖素含量。
     3.用HE染色检测不同浓度槟榔碱对糖尿病大鼠胰腺细胞形态的影响。
     4.TUNEL法检测不同浓度槟榔碱对糖尿病大鼠胰腺细胞凋亡的影响。
     5.逆转录多聚酶链反应( reverse transcription polymerase chain reaction, RT-PCR )检测槟榔碱对胰腺细胞内Bcl2,Bax,PDX-1,insulin,GLUT2,GK,IRS1,IRS2 mRNA表达的影响。
     6.Western blot检测不同浓度槟榔碱对胰腺细胞内FoxO1,AKT, p-AKT蛋白的影响。
     【结果】
     1.槟榔碱对高果糖诱导的2型糖尿病大鼠行为,体重,血生化及胰腺毒性的影响
     1)糖尿病模型大鼠分别以0.5, 1, 5, 10, 20, 50mg/kg槟榔碱腹腔注射4周,除0.5mg/kg组外,各处理组大鼠血糖、血脂、体重、胰岛素水平均明显下降,统计学差异具有显著性(p<0.01)。
     2) HE染色法检测胰岛形态学变化
     由胰腺HE染色图片可以观察到,糖尿病模型组及0.5mg/kg槟榔碱处理组大鼠胰岛边缘β细胞出现聚集,细胞核形状发生变化; 5,10mg/kg槟榔碱处理组,胰岛形态相对规则,边缘平整,β细胞分布均匀; 20, 50mg/kg槟榔碱处理组,胰岛界限模糊。
     3) TUNEL法检测胰腺细胞凋亡
     观察结果显示模型组及0.5mg/kg槟榔碱处理组凋亡细胞数量较对照组显著增加, 1,5mg/kg槟榔碱处理组胰腺细胞凋亡率下降, 10,20,50mg/kg槟榔碱处理组细胞凋亡率明显升高。
     以上结果显示, 1,5mg/kg槟榔碱为本实验有效降糖剂量。
     2.槟榔碱对2型糖尿病大鼠胰腺细胞凋亡相关因子Bcl2/Bax的影响
     1)与对照组相比,糖尿病模型组大鼠胰腺细胞内Bcl2/Bax比值降低。
     2) 1,5,10mg/kg槟榔碱处理对糖尿病模型组大鼠胰腺细胞内Bcl2/Bax比值的降低有逆转作用。
     3) 1,5mg/kg槟榔碱不影响正常大鼠Bcl2/Bax比值。
     3.槟榔碱对2型糖尿病大鼠胰腺胰岛素分泌及糖代谢相关因子基因表达的影响
     1)糖尿病模型组大鼠胰腺细胞内PDX-1,insulin,GLUT2,GK基因表达较对照组显著降低。
     2) 1,5mg/kg槟榔碱可以显著逆转PDX-1,insulin基因表达的降低, 5mg/kg槟榔碱处理明显逆转高糖引起的GLUT2,GK基因表达的降低。
     3) 1,5mg/kg槟榔碱不影响正常大鼠PDX-1,insulin, GLUT2,GK基因表达。?
     4.槟榔碱对2型糖尿病大鼠胰腺胰岛素信号通路的影响。
     1)与正常组相比,糖尿病模型组大鼠胰腺细胞中IRS1、IRS2 mRNA及p-AKT蛋白表达显著降低, FoxO1蛋白表达显著提高。
     2) 1,5mg/kg槟榔碱处理明显增强糖尿病模型组大鼠胰腺IRS1、IRS2 mRNA及AKT蛋白表达,降低FoxO1的表达。
     3) 1,5mg/kg槟榔碱处理不引起正常大鼠胰腺IRS1、IRS2 mRNA及AKT、FoxO1蛋白表达变化。
     【结论】
     1. 1,5mg/kg槟榔碱能以剂量依赖性方式降低2型糖尿病大鼠血糖、血脂,胰岛素, 0.5mg/kg槟榔碱为无效剂量; 10,20,50mg/kg槟榔碱具有毒性作用。
     2.槟榔碱降糖的机制可能是通过胰腺胰岛素信号转导通路中胰岛素受体底物,经PI3K/AKT通路,上调抑凋亡基因表达,保护胰腺,保护β细胞,抑制FoxO1的表达,上调胰岛素分泌及糖代谢相关的Insulin,GLUT2,GK基因的转录,促进胰岛素分泌,增强糖代谢。
[BACKGROUD AND OBJECTIVE]
     Although the development of type 2 diabetes is more complex and incompletely clear in etiology,it is usually associated with a combination of pancreaticβ-cell dysfunction and insulin resistance.Moreover,β-cell dysfunction has played a decisive role in the progress that diabetes come into being. Chronically elevated levels of glucose and lipids are known as the initiated factors and also the hallmark of diabetes.
     Arecoline is extracted from natural plant alkaloid. In vitro study, found that oral administration of arecoline in keratinocyte cells inhibits interleukin, and tumor necrosis factor expression, reduced ox- LDL and high glucose in vascular endothelial cells and macrophages in the expression of inflammatory factors, with anti-atherosclerosis The role of atherosclerosis;. Speculated that arecoline can protectβcells, thus improving diabetes.
     With regards to this, we will investigate the effect of different concentrations of arecoline on the levels of fasting blood glucose and the expression of insulin secretion factors, transcription factors, and key factors of insulin signal pathway in type 2 diabetes rats induced by high-glucose diet, and explore the underlying mechanisms.
     [METHODS]
     1) A type 2 diabetic rat model was established by fed with high fructose diet;
     2) The blood glucose, lipid level ,fasting plasma glucagon and fasting insulin were measured;
     3) Pathogenic changes of rats pancreatic tissue by Hematoxylin-eosin staining ;
     4) Apoptosis of rats pancreatic tissue by tunel staining ;
     5) The mRNA expression of pancreatic Bcl2 , Bax, PDX-1 , Insulin, GLUT2 , GK , IRS-1 , IRS-2 were detected by Reverse transcription polymerase chain reaction (RT-PCR);
     6) The protein expression of p-AKT and FoxO1 was detected by western blotting.
     [RESULTS]
     1. arecoline can safely decrease the level of fasting blood glucose and TG in type 2 diabetes rats.
     1) Type 2 diabetes rats were treated with 0.5, 1, 5, 10, 20, 50 mg/kg arecoline with abdominal injection for 4 weeks. The level of body weight, fasting blood glucose, lipid level, fasting plasma glucagon and fasting insulin were decreased, but not 0.5 mg/kg arecoline (p<0.05) .
     2) HE staining of pancreatic shows that 1, 5 mg/kg arecoline can improve pancreatic injury in type 2 diabetes rats induced by high-glucose diet, such as decreased the number of impairment cells. But 10, 20, 50 mg/kg arecoline have toxicants in pancreatic.
     3) The apoptotic index measured by TUNEL increased gradually with adding the concentrations of 10, 20, 50 mg/kg arecoline.
     2. arecoline can augmentation the rate of Bcl2/Bax in type 2 diabetes rats.
     1) The results showed that the mRNA levels of Bcl2 reduced in type 2 diabetes rat .
     2) 1, 5 mg/kg arecoline can increased the mRNA levels of Bcl2 in type 2 diabetes rat paccreatic.
     3) Control+arecoline groups was not significantly different compared to control group.
     3. arecoline can increase the mRNA PDX-1、Insulin、GLUT2 and GK level of in type 2 diabetes rats.
     1) The results showed that the mRNA levels of PDX-1、Insulin、GLUT2 and GK were reduced in type 2 diabetes rat .
     2) 1, 5 mg/kg arecoline can increased the mRNA levels of PDX-1、Insulin、GLUT2 and GK in type 2 diabetes rat pancreatic.
     3) Control+arecoline groups was not significantly different compared to control group.
     4. arecoline can improve the insulin sensitivity of pancreatic in type 2 diabetes rats .
     1) IRS-2, IRS-2 mRNA and the p-AKT protein were down-regulated in type 2 diabetes rats liver.
     2) 1, 5 mg/kg arecoline can up-regulated IRS-2,IRS-2 mRNA and the p-AKT protein in type 2 diabetes rats pancreatic.
     3) Control+arecoline groups was not significantly different compared to control group.
     [CONCLUSION]
     1. can be with adding the concentrations arecoline (1, 5 mg/kg) in type 2 diabetes rats
     2. The mechanism of improve about glucose metabolism may be through the insulin signal pathway in pancreas ,up-regulate the insulin receptor substrate, by the PI3K/AKT pathway, to influence antiapoptotic gene expression, protectβcells, or inhibit the expression of FoxO1, increases insulin secretion and glucose metabolism gene transcription, promote insulin secretion, enhance glucose metabolism
引文
[1] Kim S J, Nian C, Widenmarier S, et al. Glucose2dependent insulinotrop ic polypep tide2mediated up-regulation of beta cell antiapoptotic Bcl-2 gene expression is coordinated by cyclic AMP ( cAMP) response element binding p rotein (CREB) and cAMP responsive CREB coactivator [ J ]. Mol Cell B iol, 2008, 28 (5) : 1644 - 56.
    [2] Zakeri Z, Lockshin R A. Cell death: history and future [ J ]. Adv ExpM ed B iol, 2008, 615: 1 - 11.
    [3] YANG E, ZHA J, JOCKEL J, et al. Bad, a heterodimeric partner for Bcl-XL and B cl-2, displaces Bax and promotes cell death [ J ].Cell, 1995, 80 (2) : 285 - 291.
    [4] Lee S C, Pervaiz S. Apop tosis in the pathophysiology of diabetes mellitus[ J ]. Int J B iochem Cell B iol, 2007, 39 (3) : 497 - 504.
    [5] Molina CE, Garmey JC, Ketchum R, et al. Glucose regulation of insulin gene transcription and Pre mRNA processing in human islets [J ]. Diabetes, 2007, 56 (3) : 8272835.
    [6] Flock G, Cao XM,DruckerDJ. Pdx-1 is not sufficient for rep ression of p roglucagon gene transcrip tion in islet or enteroendocrine cells [ J ]. Endocrinology, 2005, 146 (1) : 4412449.
    [7] Lam NT, Kiefer TJ. The multifaceted potential of glucagon like peptide-1 as a therapeutic agent[ J ]. Minerva Endocrino1, 2002, 27(2) : 79-93.
    [8] Miyazaki S, Yamato E,Miyazaki J. Regulated Exp ression of pdx-1 promotes in vitro differentiation of insulin producing cells from embryonic stem cells[ J ]. Diabetes, 2004, 53 (4) : 1030-1037.
    [9] Zhao L,Guo M,Matsuoka TA,et al The islet beta cell-enriched MafA activator is a key regulator of insulin gene transcription.J Biol Chem, 2005 ,280 (12): 11887 ~ 11894
    [10] Harbeck MC, Louie DC, Howland J, et al.Expression of insulin receptor mRNA and insulin receptor substrate 1 in pancreatic islet beta cells[J].Diabetes, 1996, 45( 6) :711- 717.
    [11] Aspinwall CA, Qian WJ, Roper MG, et al.Roles of insulin receptor substrate - 1, phosphatidylinositol 3 - kinase, and release of intracellular Ca2 + stores in insulin stimulated insulin secretion inβcells [J].J Biol Chem, 2000, 275:22331-22338.
    [12] Kubota N, Tobe K, Terauchi Y, et al.Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatoryβ- cell hyperplasia[J].Diabetes, 2000, 49:1880- 1889.
    [13] Hennige AM, Burks DJ, Ozcan U, et al.Upregulation of insulin receptor substrate- 2 in pancreaticβcells prevents diabetes[J].J Clin Invest, 2003, 112:1521- 1532.
    [14] Garofalo RS, Orena SJ, Rafidi K, et al.Severe diabetes, age -dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB [J].J Clin Invest, 2003, 112:197- 208.
    [15] Cross DAE ,Alessi DR , Cohen P , et al. Inhibition of glycogen synthase kinase - 3 by insulin mediated by protein kinaseB[J] .Nature ,1995 , (378) :785 - 789.
    [16] Duan C ,Bauchat JR ,Hsieh T. Phosphatidylinositol 3 - kinase is required for insulin - like growth factor - I induced vascular smooth muscle cell proliferation and migration [J] . Circ Res ,2000 , (86) :15– 23.
    [17]魏动,崔巍,王惠芳,等. PI3K/ Akt/ PKB信号通路与胰岛β细胞功能[J].国际内分泌代谢杂志,2007 ,27 (2) :109- 111.
    [18] Sladek R,Rocheleau G,Rung J,et al.A genome-wide association study identifies novel risk loci for type 2 diabetes[J].Nature.2007,445:881-885
    [19]郑虎占等.中药现代研究与应用[M].北京:学苑出版社, 1999, 4565.
    [20]何昌浩,夏国瑾,李桂玲,等.槟榔碱与灭螺药物合用的增效作用研究[J].中国血吸虫病防治杂志, 1999, 11 (4) : 21.
    [21]陈冬梅,慕邵峰,汪海.激活血管内皮细胞乙酰胆碱作用靶标的抗血栓作用及其分子机制[J].中国药理学通报, 2002, 18 ( 5 ) : 527.
    [22]山丽梅,张锦超,赵艳玲,等.槟榔碱抗动脉粥样硬化分子机制的研究[J].中国药理学通报, 2004, 20 (2) : 146-51.
    [23]张伟,周寿红,凌红艳,等.槟榔碱抑制氧化型低密度脂蛋白诱导的小鼠巨噬细胞炎症因子表达及其机制[J].中国动脉硬化杂志, 2009, 17(4) :269-72.
    [24]石翠格,胡刚,汪海.天然药物槟榔碱对氧化低密度脂蛋白致血管内皮细胞损伤的保护作用研究[J].科学技术与工程, 2007, 7(12) :24-28.
    [25]段智变,汪海.高糖致内皮细胞粘附分子基因的过度表达以及槟榔碱的调节作用[J].中国临床药理学与治疗学. 2006 , 11 (1):27 - 32.
    [26] Mannan N, Boucher B J, Evans S J. Increased waist size and weight in relation to consumption of Areca catechu (betel-nut); a risk factor for increased glycaemia in Asians in east London [J]. Br J Nutr 2000; 83(3):267-273.
    [27] Boucher B J, Ewen SEB, Stowers J M. Betel nut ( Areca catechu) consumption anf the induction of glucose intolerance in adult CDI mice and in their F1 and F2 off-spring [J] . Diabetologia 1994; 37:49-55.
    [28] Verspohl E J, Tacke R, Mutschler E, Lambrecht G. Muscarinic receptor subtypes in rat panvreatic islets: binding and functional studies [J]. Eur J Pharmacol 1990;1478:303-11.
    [29] Jeon S M, Kim H S and Lee T G eta1. Lowerabs orption of cholesteryl oleate in rats supplemented with areca catechu L . extract . Annals of nutrition &metabolism , 2000, 44: 170-176.
    [30] Richardson M D, Kilts J D, Kwatra M M. InCl'~sod expression of Gi—-coupled muscarinic acetylcholine receptor and Gi in atrium of eldedy diabetic subjects[J]. Diabetes, 2004, 53(9): 2392~2396.
    [31]刘艳,孙宏丽,吴红,等. M3受体对体外H2o2诱导大鼠心肌细胞凋亡的保护作用[J].药学学报, 2004, 39(11): 887~891.
    [32] Tong Y C, Cheng J T, Hsu C T. Alterations of M(2) muarinic receptor protein and mRNA expressionin the urothelium and muscle layer ofthe streptozotocin induced diabetic rat uIin8ry bladder[J]. Neuro~i Lett, 2006, 9; 406(3): 216~21. Epub 2006 Aug 28
    [33] C hu NS.Betal chewing increases the skin temperature :effects of atropine and propranolol.Neuroscience letters, 1995, 194: 130-132..
    [34] Reaven G M,Hwang I S,Ho H. Fructose induced insulin resistance and hypertension in rats[J]. Hypertension, 1987, 10:512-6.
    [35]张蕾,戴敏,陈礼明,等.高脂高糖诱导脂肪肝胰岛素抵抗大鼠模型的建立[J].中国药理学通报,2009,25(6): 825-8..
    [36]李光伟,潘孝仁, Stephen L,等.检测人群胰岛素敏感性的一项新指数[J].中华内科杂志, 1993,32(10):656-60.
    [37] Tiwari RL, Singh V, Barthwal MK. Macrophages: an elusive yet emerging therapeutic target of atherosclerosis [J]. Med Res Rev., 2008, 28 (4) :483-544.
    [38] Tilakaratne WM, Klinikowski MF, Saku T, Peters TJ, Warnakulasuriya S. (2006) Oral submucous fibrosis: review on aetiology and pathogenesis [J]. Oral Oncol.,2005, 42 (6) : 561-8.
    [39] Jeng JH, Lan WH, Hahn LJ, Hsieh CC, Kuo MY. Inhibition of the migration, attachment, spreading, growth and collagen synthesis of human gingival fibroblasts by arecoline, a major areca alkaloid, in vitro [J]. J Oral Pathol Med., 1996, 25 (7) : 371-5.
    [40] Chu NS. Effects of Betel chewing on the central and autonomic nervous systems [J]. J Biomed Sci., 2001, 8 (3) : 229-36.
    [41] Romi Dasgupta, Indraneel Saha , Suman Pal , Arindam Bhattacharyy. Immunosuppression, hepatotoxicity and depression of antioxidant status by arecoline in albino mice [J]. Toxicology, 2006, 227 : 94–104.
    [42] Kuo-Chu Lai a, Te-Chang Lee. Genetic damage in cultured human keratinocytes stressed by long-term exposure to areca nut extracts.[J] Mutation Research, 2006, 599 : 66–75.
    [43] Pradhan SN, Dutta SN. Behavioral effects of arecoline in rats [J]. Psychopharmacologia., 1970, 17 (1) : 49-58.
    [44] Bratt AM, Kelly ME, Domeney AM, Naylor RJ, Costall B. Acute and chronic arecoline: effects on a scopolamine-induced deficit in complex maze learning [J]. Pharmacol Biochem Behav., 1996, 53 (3) : 713-21.
    [45] Byun S J, Kim H S and Jeon S M et a1. Supplementation of areca catechu L . extract alters triglyceride alasorption and cholesterol metabolism in rats. Annals of nutrition & metabolism , 2001, 45: 279-284.
    [46] Mona Ashiya and Richard E. T. Smith.Non-insulin therapies for type 2 diabetes[J]. Nature Reviews 2007, 10( 6) : 777-778.
    [47]胡茂清,罗玉,杨雪等.甘精胰岛素联合二甲双胍治疗2型糖尿病患者的有效性和安全性[J].华西医学,2009,24 (5) :1144-1146.
    [48]张茁,呆谊青,纪天辉等.中西药治疗对初发2型糖尿病胰岛B细胞功能改善的观察.中国中药杂志, 2005, 19(30):1552一1554.
    [49] Dupuy O, Mayaudon H, Palou M, et al.Optimized transient insulin infusion inunco- ntrolled type 2 diabetes:Evaluation of a pragmatic attitude. DiabetesMed 2000,26:371- 375.
    [50] Valensi P,Moura I,Magoarou M,et al.Short-term effects of continuous subcutaneous insulin infusion treatment on insulin secretion in non-insulin-dependent overweight patients with poor glycaemic control despitemaximal oral anti-diabetic treatment.Diabet Metab, 1997, 23:51一57.
    [51] Ldrmeau B,Aurousseau MH,Valensi P,et al.Hyperinsu-linemia andhyPofibrinolysis : effects of short-term optimized glycemic control with contineuous insulin Infusion in type 2 diabetic patients.Metabolism, 1997, 46:1074一1079.
    [1]. Wasserman DH. Four grams of glucose. Am J Physiol Endocrinol Metab. 2009; 296 : E 11–21.
    [2]. Scheen AJ, Lefebvre PJ. Insulin action in man. Diabetes Metab. 1996;22:105–10.
    [3]. Drucker DJ. The biology of incretin hormones. Cell Metab. 2006;3:153–65.
    [4]. Chaudhri O, Small C, Bloom S. Gastrointestinal hormones regulating appetite. Philos Trans R Soc Lond B Biol Sci. 2006;361:1187–209.
    [5]. Aronoff SL. Glucose metabolism and regulation: beyond insulin and glucagon. Diabetes Spectrum. 2004;17:183–9.
    [6]. G erich JE. Is insulin resistance the principal cause of type 2 diabetes? Diabetes Obes Metab. 1999;1:257–63.
    [7]. Holst JJ, Vilsboll T, Deacon CF. The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol. 2009;297:127–36.
    [8]. Holst JJ, Gromada J. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am J Physiol Endocrinol Metab. 2004;287:E199–206.
    [9]. Ford ES, Williamson DF, Liu S. Weight change and diabetes incidence: findings from a national cohort of US adults. Am J Epidemiol.1997;146:214–22.
    [10]. Prentice AM, Hennig BJ, Fulford AJ. Evolutionary origins of the obesity epidemic: natural selection of thrifty genes or genetic drift following predation release? Int J Obes (Lond). 2008;32:1607–10.
    [11]. Del PS, Marchetti P. Beta- and alpha-cell dysfunction in type 2 diabetes. Horm Metab Res. 2004;36:775–81.
    [12]. Bastian W. Genes with linkage or association with type 2 diabetes mellitus. J Pediatr Endocrinol Metab. 2002;15(suppl 1):471–84.
    [13]. DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. Med Clin North Am. 2004;88:787–835, ix.
    [14]. Donath MY, Halban PA. Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia. 2004;47:581–9.
    [15]. Balkau B, Charles MA, Drivsholm T, et al. Frequency of the WHO metabolic syndrome in European cohorts, and an alternative definition of an insulin resistance syndrome. Diabetes Metab. 2002;28:364–76.
    [16]. Kahn SE. Clinical review 135: The importance of beta-cell failure in the development and progression of type 2 diabetes. J Clin Endocrinol Metab. 2001;86:4047–58.
    [17]. Porte D, Jr., Kahn SE. The key role of islet dysfunction in type II diabetes mellitus. Clin Invest Med. 1995;18:247–54.
    [18]. Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest. 1999;104:787–94.
    [19]. Bonora E, Kiechl S, Willeit J, et al. Prevalence of insulin resistance in metabolic disorders: the Bruneck Study. Diabetes. 1998;47:1643–9.
    [20]. Zavaroni I, Bonini L, Gasparini P, et al. Hyperinsulinemia in a normal population as a predictor of non–insulin-dependent diabetes mellitus, hypertension, and coronary heart disease: the Barilla factory revisited. Metabolism. 1999;48:989–94.
    [21]. Pimenta W, Korytkowski M, Mitrakou A, et al. Pancreatic beta-cell dysfunction as the primary genetic lesion in NIDDM: evidence from studies in normal glucose-tolerant individuals with a first-degree NIDDM relative. JAMA. 1995;273:1855–61.
    [22]. van Haeften TW, Dubbeldam S, Zonderland ML, Erkelens DW. Insulin secretion in normal glucose-tolerant relatives of type 2 diabetic subjects: assessments using hyperglycemic glucose clamps and oral glucose tolerance tests. Diabetes Care. 1998; 21: 278–82.
    [23]. Matthews DR, Naylor BA, Jones RG, et al. Pulsatile insulin has greater hypoglycemic effect than continuous delivery. Diabetes. 1983;32:617–21.
    [24]. Nesher R, Della CL, Litvin Y, et al. Insulin deficiency and insulin resistance in type 2 (non–insulin-dependent) diabetes: quantitative contributions of pancreatic and peripheral responses to glucose homeostasis. Eur J Clin Invest. 1987;17:266–74.
    [25]. Arner P, Pollare T, Lithell H. Different aetiologies of type 2 (non–insulin- dependent) diabetes mellitus in obese and non-obese subjects. Diabetologia. 1991;34:483–7.
    [26]. Byrne MM, Sturis J, Sobel RJ, Polonsky KS. Elevated plasma glucose 2 h postchallenge predicts defects in beta-cell function. Am J Physiol. 1996;270:E572–9.
    [27]. Abbasi F, Chen YD, Farin HM, et al. Comparison of three treatment approaches to decreasing cardiovascular disease risk in nondiabetic insulin-resistant dyslipidemic subjects. Am J Cardiol. 2008;102:64–9.
    [28]. Bertoni AG, Wong ND, Shea S, et al. Insulin resistance, metabolic syndrome, and subclinical atherosclerosis: the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care. 2007;30:2951–6.
    [29]. Buchanan TA, Xiang AH, Peters RK, et al. Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high- risk Hispanic women. Diabetes. 2002;51:2796–803.
    [30]. Lencioni C, Lupi R, Del PS. Beta-cell failure in type 2 diabetes mellitus. Curr Diab Rep. 2008;8:179–84.
    [31]. Bonora E. Protection of pancreatic beta-cells: is it feasible? Nutr Metab Cardiovasc Dis. 2008;18:74–83.
    [32]. Del Prato S, Bianchi C, Marchetti P. beta-cell function and anti-diabetic pharmacotherapy. Diabetes Metab Res Rev. 2007;23:518–27.
    [33]. U.K. Prospective Diabetes Study Group (UKPDS). U.K. prospective diabetes study 16. Overview of 6 years’therapy of type II diabetes: a progressive disease. UKPDS. Diabetes. 1995;44:1249–58.
    [34]. Kahn SE, Haffner SM, Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355:2427–43.
    [35]. Butler AE, Janson J, Bonner-Weir S, et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52:102–10.
    [36]. Weir GC, Bonner-Weir S. Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes. 2004;53(suppl3):S16–21.
    [37]. Standl E. The importance of beta-cell management in type 2 diabetes. Int J Clin Pract Suppl. 2007;10–9.
    [38]. Poitout V, Robertson RP. Glucolipotoxicity: fuel excess and betacell dysfunction. Endocr Rev. 2008;29:351–66.
    [39]. Janson J, Ashley RH, Harrison D, et al. The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate- sized toxic amyloid particles. Diabetes. 1999;48:491–8.
    [40]. Finegood DT, Topp BG. Beta-cell deterioration—prospects for reversal or prevention. Diabetes Obes Metab. 2001;3(suppl 1):S20–7.
    [41]. Hoppener JW, Lips CJ. Role of islet amyloid in type 2 diabetes mellitus. Int J Biochem Cell Biol. 2006;38:726–36.
    [42]. Lorenzo A, Razzaboni B, Weir GC, Yankner BA. Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature. 1994;368:756–60.
    [43]. Hayden MR, Tyagi SC. Islet redox stress: the manifold toxicities of insulin resistance, metabolic syndrome and amylin derived islet amyloid in type 2 diabetes mellitus. JOP. 2002;3:86–108.
    [44]. Holst JJ, Orskov C. The incretin approach for diabetes treatment: modulation of islet hormone release by GLP-1 agonism. Diabetes. 2004;53(suppl 3):S197–204.
    [45]. Nauck M, Stockmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2 (non–insulin-dependent) diabetes. Diabetologia. 1986;29:46–52.
    [46]. Knop FK, Vilsboll T, Hojberg PV, et al. Reduced incretin effect in type 2 diabetes: cause or consequence of the diabetic state? Diabetes. 2007;56:1951–9.
    [47]. Holst JJ, Orskov C. The incretin approach for diabetes treatment: modulation of islet hormone release by GLP-1 agonism. Diabetes. 2004;53(suppl 3):S197–204.
    [48]. Nauck MA, Heimesaat MM, Orskov C, et al. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest. 1993;91:301–7.
    [49]. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132:2131–57.
    [50]. Stoffers DA, Kieffer TJ, Hussain MA, et al. Insulinotropic glucagonlike peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes. 2000;49:741–8.
    [51]. Kim JG, Baggio LL, Bridon DP, et al. Development and characterization of a glucagon-like peptide 1-albumin conjugate: the ability to activate the glucagon-like peptide 1 receptor in vivo. Diabetes. 2003;52:751–9.
    [52]. Zhou J, Wang X, Pineyro MA, Egan JM. Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon- and insulinproducing cells. Diabetes. 1999;48:2358– 66.
    [53]. Wang Q, Brubaker PL. Glucagon-like peptide-1 treatment delays the onset of diabetes in 8 week-old db/db mice. Diabetologia. 2002;45:1263–73.
    [54]. Bulotta A, Hui H, Anastasi E, et al. Cultured pancreatic ductal cells undergo cell cycle re-distribution and beta-cell-like differentiation in response to glucagon-like peptide-1. J Mol Endocrinol. 2002;29:347–60.
    [55]. Wang H, Iezzi M, Theander S, et al. Suppression of Pdx-1 perturbs proinsulin processing, insulin secretion and GLP-1 signalling in INS-1 cells. Diabetologia. 2005;48:720–31.
    [56]. Drucker DJ, Philippe J, Mojsov S, et al. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci U S A. 1987;84:3434–8.
    [57]. Farilla L, Bulotta A, Hirshberg B, et al. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology. 2003;144:5149–58.
    [58]. Buteau J, El-Assaad W, Rhodes CJ, et al. Glucagon-like peptide-1 prevents beta cell glucolipotoxicity. Diabetologia. 2004;47:806–15.
    [59]. Meier JJ, Nauck MA. Incretins and the development of type 2 diabetes. Curr Diab Rep. 2006;6:194–201.
    [60]. Holz GG , Kuhtreiber WM, Habener JF. Pancreatic beta-cells are rendered glucose- competent by the insulinotropic hormone glucagon- like peptide-1(7-37). Nature. 1993;361: 362– 5.
    [61]. G reen J, Feinglos M. Update on type 2 diabetes mellitus: understanding changes in the diabetes treatment paradigm. Int J Clin Pract Suppl. 2007;3–11. ?

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700