胰岛素淀粉样纤维形成、抑制和解构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
病理学研究表明,至少20种淀粉样蛋白与神经变性疾病、糖尿病等顽疾密切相关,如阿尔茨海默氏病、II型糖尿病、帕金森综合症以及亨廷顿舞蹈症等。此外,因蛋白质变性而形成的聚集体,将给蛋白质药物的生产、贮藏与运输带来极大困难,同时对蛋白质药物的安全使用带来风险,是生物医药领域中亟待解决的技术问题。本文以模式药物蛋白胰岛素为研究对象,结合现代生物物理检测手段,对胰岛素聚集机理进行验证,建立新型淀粉样纤维体表征检测技术,提出氨水-过氧化氢两步法途径聚集淀粉样纤维和再生胰岛素二硫键,并开展了胰岛素低聚体和淀粉样纤维的相关抑制工作。具体研究内容和结论如下:
     第一,综合利用圆二色谱、荧光光谱、动态光散射、电子显微镜和太赫兹时域光谱多种现代检测技术,多尺度表征胰岛素淀粉样纤维化过程中二级、三级、四级结构的转变与状态密度的改变,验证了胰岛素聚集机理;首次利用太赫兹时域光谱仪研究和检测蛋白质淀粉样纤维化行为,获得0.2 THz~2.0 THz频率区的太赫兹吸收谱和折光系数变化曲线,建立了一种利用太赫兹时域光谱技术对淀粉样蛋白质进行快速、无损的检测方法。
     第二,尝试使用NH_3-H_2O_2两步法对胰岛素淀粉样纤维进行解聚与单体二硫键断裂和恢复,并对比NH_3-H_2O_2耦合法,确定了还原-氧化过程的关键因素;提出氨水对胰岛素淀粉样纤维解聚的机理模型,指出氨水作用机制为通过改变蛋白周围亲疏水环境以及破坏固有氢键作用,逐步释放单个胰岛素分子。
     第三,对比不同类型多羟基化合物对胰岛素聚集与淀粉样纤维化过程的影响,分别解释了原花青素、白藜芦醇和海藻糖加入20% HAc溶液和20% HAc-0.1 M NaCl溶液体系后,胰岛素聚集荧光动力学和原纤/纤维的结构形貌改变;指出抑制能力顺序:原花青素>白藜芦醇>海藻糖,分别起到抑制成核、阻碍生长和无明显抑制的作用。
     第四,采用532 nm波长的激光,通过抑制胰岛素成核机理,阻碍成熟纤维形成;特别指出在使用动态光散射仪和ThT荧光光谱仪对样品进行在线测量时,应注意所测样品是否易于发生光化学反应,如发生聚集和解聚。本实验亦证明了连续激光照射将为胰岛素提供一个相对稳定的溶液环境,有利于维持胰岛素低聚体状态,关于自由基作用机理方面具有一定的研究前景。
At least 20 amyloid proteins are implicted in the pathologies of various human diseases such as Alzheimer’s, type II diabetes, Parkinson’s and Huntingtons’s. The denatured proteins forms aggregates which cause problems to the production, storage and transport of protein drugs, are quite dangerous to drug intaken. Therefore, it is critical to develop related inhibitors as well as to improve detection techniques. Our studies have verified the mechanism of insulin aggregation, and we first established THz TDS method used for detecting insulin amyloid fibrillation. In addition, we destructed the fibrils and regenerated the disulfide bonds of insulin by NH_3-H_2O_2 two-step method, and investigated the inhibition effects on insulin aggregation by small polyphenolic molecules and laser irradiation. The main ideas and conclusions are summarized as follows.
     Firstly, to study the changes in secondary, tertiary, and quaternary structures and the alteration in the collective vibrational mode density of states during the amyloid fibrillation, bovine insulin in 20% acetic acid was incubated at 60 oC, and its multi-level structures were followed by various biophysical techniques including CD, ThT, DLS, EM and THz absorption spectroscopy. There is an apparent increase in both the absorbance and refractive index in THz spectra, thus THz technique is expected to provide a quick and non-invasive way of looking into amyloid fibrillation. Secondly, the NH_3-H_2O_2 two-step method was investigated to regenerate insulin monomers and recover the structure. The key parameters were identified via comparision with NH_3-H_2O_2 coupling methond, and the model of insulin fibrils disaggregation by adding aqueous ammonia was supposed to disrupting the hydrophobic environment and intrinsic hydrogen bonds.
     Thirdly, the polyphenol was studied to inhibit insulin amyloid fibrillation. The inhibition ability of procyanidine, resveratrol and trehalose decreased in turn. They may effect the process of insulin fibrillation by inhibiting insulin nucleation, preventing growth of protofilament and with no significant inhibition effects, respectively.
     Fourthly, a fibrillation inhibition experiment using laser beam irradiation is introduced. Laser can prevent insulin from forming mature fibrils via nucleation inhibition. Importantly, it should be noted that online laser measurements such as dynamic light scattering and ThT fluorescence should be carefully monitored when samples are prone to aggregate or disaggregate. As shown in our results, continuous irradiation of the laser beam induced a comparable steady state of the unaggregated insulin, thereby preventing further fibrillation and, consequently, potentially curing related amyloid diseases.
引文
[1] Anfinsen C B. The formation and stabilization of protein structure[J]. Biochem J, 1972, 128(4): 737-749.
    [2] Radford S E, Dobson C M. From computer simulations to human disease: emerging themes in protein folding[J]. Cell, 1999, 97(3): 291-298.
    [3] Dobson C M, Scaronali A, Karplus M. Protein folding: a perspective from theory and experiment[J]. Angewandte Chemie International Edition, 1998, 37(7): 868-893.
    [4] Wolynes P G, Onuchic J N, Thirumalai D. Navigating the folding routes[J]. Science, 1995, 267(5204): 1619-1620.
    [5] Dill K A, Chan H S. From levinthal to pathways to funnels[J]. Nat Struct Mol Biol, 1997, 4(1): 10-19.
    [6] Schuler B, Lipman E A, Eaton W A. Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy[J]. Nature, 2002, 419(6908): 743-747.
    [7] Westermark P. Aspects on human amyloid forms and their fibril polypeptides[J]. FEBS Journal, 2005, 272(23): 5942-5949.
    [8] Rochet J-C, Lansbury P T. Amyloid fibrillogenesis: themes and variations[J]. Current Opinion in Structural Biology, 2000, 10(1): 60-68.
    [9] Sipe J D, Cohen A S. Review: history of the amyloid fibril[J]. Journal of Structural Biology, 2000, 130(2-3): 88-98.
    [10] Eva D. Amyloid-fibril formation[J]. European Journal of Biochemistry, 2002, 269(14): 3362-3371.
    [11] Goldberg A L. Protein degradation and protection against misfolded or damaged proteins[J]. Nature, 2003, 426(6968): 895-899.
    [12] Guijarro J I, Sunde M, Jones J A et al. Amyloid fibril formation by an SH3 domain[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(8): 4224-4228.
    [13] Damaschun G, Damaschun H, Fabian H et al. Conversion of yeast phosphoglycerate kinase into amyloid-like structure[J]. Proteins: Structure, Function, and Genetics, 2000, 39(3): 204-211.
    [14] Kranenburg O, Kroon-Batenburg L M J, Reijerkerk A et al. Recombinant endostatin forms amyloid fibrils that bind and are cytotoxic to murine neuroblastoma cells in vitro[J]. FEBS Letters, 2003, 539(1-3): 149-155.
    [15] Stefani M, Dobson C. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution[J]. Journal of Molecular Medicine, 2003, 81(11): 678-699.
    [16] Lomakin A, Chung D S, Benedek G B et al. On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(3): 1125-1129.
    [17] Teplow D B. Structural and kinetic features of amyloid beta-protein fibrillogenesis[J]. Amyloid, 1998, 5(2): 121-142.
    [18] Lansbury P T. A reductionist view of alzheimer's disease[J]. Accounts of Chemical Research, 1996, 29(7): 317-321.
    [19] Lomakin A, Teplow D B, Kirschner D A et al. Kinetic theory of fibrillogenesis of amyloid beta-protein[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(15): 7942-7947.
    [20] Esler W P, Stimson E R, Jennings J M et al. Alzheimer's disease amyloid propagation by a template-dependent dock-lock mechanism[J]. Biochemistry, 2000, 39(21): 6288-6295.
    [21] Chien P, Weissman J S. Conformational diversity in a yeast prion dictates its seeding specificity[J]. Nature, 2001, 410(6825): 223-227.
    [22] Come J H, Fraser P E, Lansbury P T. A kinetic model for amyloid formation in the prion diseases: importance of seeding[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(13): 5959-5963.
    [23] O'Nuallain B, Williams A D, Westermark P et al. Seeding specificity in amyloid growth induced by heterologous Fibrils[J]. Journal of Biological Chemistry, 2004, 279(17): 17490-17499.
    [24] Massi F, Straub J E. Energy landscape theory for Alzheimer's amyloid beta-peptide fibril elongation[J]. Proteins: Structure, Function, and Genetics, 2001, 42(2): 217-229.
    [25] Ahmad A, Millett I S, Doniach S et al. Partially folded intermediates in insulin fibrillation[J]. Biochemistry, 2003, 42(39): 11404-11416.
    [26] Hua Q X, Weiss M A. Mechanism of insulin fibrillation - The structure of insulinunder amyloidogenic conditions resembles a protein-folding intermediate[J]. Journal of Biological Chemistry, 2004, 279(20): 21449-21460.
    [27] Ortiz C, Zhang D, Ribbe A E et al. Analysis of insulin amyloid fibrils by Raman spectroscopy[J]. Biophysical Chemistry, 2007, 128(2-3): 150-155.
    [28] Rajan R S, Illing M E, Bence N F et al. Specificity in intracellular protein aggregation and inclusion body formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(23): 13060-13065.
    [29] Djikaev Y S, Ruckenstein E. Effect of hydrogen bond networks on the nucleation mechanism of protein folding[J]. Physical Review E, 2009, 80(6): 061918.
    [30] Kwon Y M, Baudys M, Knutson K et al. In Situ study of insulin aggregation induced by water-organic solvent interface[J]. Pharmaceutical Research, 2001, 18(12): 1754-1759.
    [31] Smith M I, Sharp J S, Roberts C J. Nucleation and growth of insulin fibrils in bulk solution and at hydrophobic polystyrene surfaces[J]. Biophysical Journal, 2007, 93(6): 2143-2151.
    [32] Nielsen L, Khurana R, Coats A et al. Effect of environmental factors on the kinetics of insulin fibril formation: Elucidation of the molecular mechanism[J]. Biochemistry, 2001, 40(20): 6036-6046.
    [33] Laghaei R, Mousseau N, Wei G. Effect of the disulfide bond on the monomeric structure of human amylin studied by combined hamiltonian and temperature replica exchange molecular dynamics simulations[J]. The Journal of Physical Chemistry B, 114(20): 7071-7077.
    [34] Azriel R, Gazit E. Analysis of the minimal amyloid-forming fragment of the Islet amyloid polypeptide[J]. Journal of Biological Chemistry, 2001, 276(36): 34156-34161.
    [35] Burley S K, Petsko G A. Aromatic-aromatic interaction: a mechanism of protein structure stabilization[J]. Science, 1985, 229(4708): 23-28.
    [36] Makin O S, Atkins E, Sikorski P et al. Molecular basis for amyloid fibril formation and stability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(2): 315-320.
    [37] Gazit E. A possible role for ?-stacking in the self-assembly of amyloid fibrils[J]. The FASEB Journal, 2002, 16(1): 77-83.
    [38] Aggeli A, Bell M, Boden N et al. Responsive gels formed by the spontaneousself-assembly of peptides into polymeric beta-sheet tapes[J]. Nature, 1997, 386(6622): 259-262.
    [39] Tartaglia G G, Cavalli A, Pellarin R et al. The role of aromaticity, exposed surface, and dipole moment in determining protein aggregation rates[J]. Protein Science, 2004, 13(7): 1939-1941.
    [40] Linke R P. Therapy of amyloid diseases[J]. Ren Fail, 1993, 15(3): 395-400.
    [41] Mason J M, Kokkoni N, Stott K et al. Design strategies for anti-amyloid agents[J]. Curr Opin Struct Biol, 2003, 13(4): 526-532.
    [42] Evin G, Sharples R A, Weidemann A et al. Aspartyl protease inhibitor pepstatin binds to the presenilins of Alzheimer's disease[J]. Biochemistry, 2001, 40(28): 8359-8368.
    [43] Golde T E. Alzheimer disease therapy: Can the amyloid cascade be halted?[J]. The Journal of Clinical Investigation, 2003, 111(1): 11-18.
    [44] Hock C, Konietzko U, Streffer J R et al. Antibodies against [beta]-Amyloid Slow Cognitive Decline in Alzheimer's Disease[J]. Neuron, 2003, 38(4): 547-554.
    [45] Lambert M P, Velasco P T, Viola K L et al. Targeting generation of antibodies specific to conformational epitopes of amyloid beta-derived neurotoxins[J]. CNS Neurol Disord Drug Targets, 2009, 8(1): 65-81.
    [46] Ma Q-L, Lim G P, Harris-White M E et al. Antibodies against ?-amyloid reduce A??oligomers, glycogen synthase kinase-3beta activation and tau phosphorylation in vivo and in vitro[J]. Journal of Neuroscience Research, 2006, 83(3): 374-384.
    [47] Porat Y, Mazor Y, Efrat S et al. Inhibition of Islet amyloid polypeptide fibril formation: a potential role for heteroaromatic interactions[J]. Biochemistry, 2004, 43(45): 14454-14462.
    [48] Westermark P, Engstrom U, Johnson K H et al. Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(13): 5036-5040.
    [49] Soto C. Unfolding the role of protein misfolding in neurodegenerative diseases[J]. Nat Rev Neurosci, 2003, 4(1): 49-60.
    [50] Pratim Bose P, Chatterjee U, Nerelius C et al. Poly-N-methylated amyloid ?-peptide (A?) C-Terminal fragments reduce A? toxicity in vitro and in drosophila melanogaster[J]. Journal of Medicinal Chemistry, 2009, 52(24): 8002-8009.
    [51] Lowe T L, Strzelec A, Kiessling L L et al. Structure-function relationships forinhibitors of ?-amyloid toxicity containing the recognition sequence KLVFF[J]. Biochemistry, 2001, 40(26): 7882-7889.
    [52] Adessi C, Frossard M-J, Boissard C et al. Pharmacological profiles of peptide drug candidates for the treatment of alzheimer's disease[J]. Journal of Biological Chemistry, 2003, 278(16): 13905-13911.
    [53] Hughes E, Burke R M, Doig A J. Inhibition of toxicity in the ?-amyloid peptide fragment ?-(25-35) using N-methylated derivatives[J]. Journal of Biological Chemistry, 2000, 275(33): 25109-25115.
    [54] Kokkoni N, Stott K, Amijee H et al. N-methylated peptide inhibitors of ?-amyloid aggregation and toxicity. optimization of the inhibitor structure[J]. Biochemistry, 2006, 45(32): 9906-9918.
    [55] Savaskan E, Olivieri G, Meier F et al. Red Wine ingredient resveratrol protects from??-amyloid neurotoxicity[J]. Gerontology, 2003, 49(6): 380-383.
    [56] Lancon A, Delma D, Osman H et al. Human hepatic cell uptake of resveratrol: involvement of both passive diffusion and carrier-mediated process[J]. Biochemical and Biophysical Research Communications, 2004, 316(4): 1132-1137.
    [57] Porat Y, Abramowitz A, Gazit E. Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism[J]. Chemical Biology & Drug Design, 2006, 67(1): 27-37.
    [58] Esteras-Chopo A, Pastor M T, Serrano L et al. New strategy for the generation of specific D-peptide amyloid inhibitors[J]. J Mol Biol, 2008, 377(5): 1372-1381.
    [59] De Felice F G, Houzel J-C, Garcia-Abreu J et al. Inhibition of alzheimer's disease ?-amyloid aggregation, neurotoxicity, and in vivo deposition by nitrophenols: implications for alzheimer's therapy[J]. FASEB J., 2001, 15(7): 1297-1299.
    [60] Mishra R, Bulic B, Sellin D et al. Small-molecule inhibitors of islet amyloid polypeptide fibril formation[J]. Angewandte Chemie-International Edition, 2008, 47(25): 4679-4682.
    [61] Baures P W, Peterson S A, Kelly J W. Discovering transthyretin amyloid fibril inhibitors by limited screening[J]. Bioorganic & Medicinal Chemistry, 1998, 6(8): 1389-1401.
    [62] Convertino M, Pellarin R, Catto M et al. 9,10-Anthraquinone hinders beta-aggregation: How does a small molecule interfere with Abeta-peptide amyloid fibrillation?[J]. Protein Science, 2009, 18(4): 792-800.
    [63] Bulic B, Pickhardt M, Schmidt B et al. Development of tau aggregation inhibitors for alzheimer's disease[J]. Angewandte Chemie International Edition, 2009, 48(10): 1740-1752.
    [64] Ozawa D, Yagi H, Ban T et al. Destruction of amyloid fibrils of aβ2-microglobulin fragment by laser beam irradiation[J]. Journal of Biological Chemistry, 2009, 284(2): 1009-1017.
    [65] Ono K, Condron M M, Ho L et al. Effects of grape seed-derived polyphenols on amyloid ?-protein self-assembly and cytotoxicity[J]. Journal of Biological Chemistry, 2008, 283(47): 32176-32187.
    [66] Mishra R, Winter R. Cold- and pressure-induced dissociation of protein aggregates and amyloid fibrils[J]. Angewandte Chemie-International Edition, 2008, 47(35): 6518-6521.
    [67] Foguel D, Suarez M C, Ferrao-Gonzales A D et al. Dissociation of amyloid fibrils of ?-synuclein and transthyretin by pressure reveals their reversible nature and the formation of water-excluded cavities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(17): 9831-9836.
    [68] Gorovits B M, Horowitz P M. High hydrostatic pressure can reverse aggregation of protein folding intermediates and facilitate acquisition of native structure[J]. Biochemistry, 1998, 37(17): 6132-6135.
    [69] Smeller L, Rubens P, Heremans K. Pressure effect on the temperature-induced unfolding and tendency to aggregate of myoglobin[J]. Biochemistry, 1999, 38(12): 3816-3820.
    [70] Levy Y, Jortner J, Becker O M. Solvent effects on the energy landscapes and folding kinetics of polyalanine[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(5): 2188-2193.
    [71] Loksztejn A, Dzwolak W. Chiral bifurcation in aggregating insulin: An induced circular dichroism study[J]. Journal of Molecular Biology, 2008, 379(1): 9-16.
    [72] Loksztejn A, Dzwolak W. Vortex-induced formation of insulin amyloid superstructures probed by time-lapse atomic force microscopy and circular dichroism spectroscopy[J]. Journal of Molecular Biology, 395(3): 643-655.
    [73] Permyakov E A, Yarmolenko V V, Emelyanenko V I et al. Fluorescence studies of the calcium-binding to withing (Gadus-merlangus) parvalbum[J]. European Journal of Biochemistry, 1980, 109(1): 307-315.
    [74] Ahmad A, Millett I S, Doniach S et al. Stimulation of insulin fibrillation byurea-induced intermediates[J]. Journal of Biological Chemistry, 2004, 279(15): 14999-15013.
    [75] Bushmarina N A, Kuznetsova I M, Biktashev A G et al. Partially folded conformations in the folding pathway of bovine carbonic anhydrase II: A fluorescence spectroscopic analysis[J]. Chembiochem, 2001, 2(11): 813-821.
    [76] Kuznetsova I M, Stepanenko O V, Turoverov K K et al. Unraveling multistate unfolding of rabbit muscle creatine kinase[J]. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology, 2002, 1596(1): 138-155.
    [77] Kuznetsova I M, Turoverov K K, Uversky V N. Use of the phase diagram method to analyze the protein unfolding-refolding reactions: Fishing out the "invisible" intermediates[J]. Journal of Proteome Research, 2004, 3(3): 485-494.
    [78] Groenning M, Norrman M, Flink J M et al. Binding mode of thioflavin T in insulin amyloid fibrils[J]. Journal of Structural Biology, 2007, 159: 483-497.
    [79] Ahmad A, Uversky V N, Hong D et al. Early events in the fibrillation of monomeric insulin[J]. Journal of Biological Chemistry, 2005, 280(52): 42669-42675.
    [80] Hong D P, Ahmad A, Fink A L. Fibrillation of human insulin A and B chains[J]. Biochemistry, 2006, 45(30): 9342-9353.
    [81] Grudzielanek S, Velkova A, Shukla A et al. Cytotoxicity of insulin within its self-assembly and amyloidogenic pathways[J]. Journal of Molecular Biology, 2007, 370(2): 372-384.
    [82] Nettleton E J, Tito P, Sunde M et al. Characterization of the oligomeric states of insulin in self-assembly and amyloid fibril formation by mass spectrometry[J]. Biophysical Journal, 2000, 79(2): 1053-1065.
    [83] Yoneyama H, Yamashita M, Kasai S et al. Terahertz spectroscopy of native-conformation and thermally denatured bovine serum albumin (BSA)[J]. Physics in Medicine and Biology, 2008, 53(13): 3543-3549.
    [84] Xu J, Plaxco K W, Allen S J. Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy[J]. Protein Science, 2006, 15(5): 1175-1181.
    [85] Chen J Y, Knab J R, Cerne J et al. Large oxidation dependence observed in terahertz dielectric response for cytochrome c[J]. Physical Review E, 2005, 72(4).
    [86] Xu J, Plaxco K W, Allen S J. Collective dynamics of lysozyme in water: Terahertz absorption spectroscopy and comparison with theory[J]. Journal of PhysicalChemistry B, 2006, 110(47): 24255-24259.
    [87] Jones I, Abbott D, Fischer B M. THz Spectroscopy of protein complexses[J]. 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves, Vols 1 and 2, 2008: 647-648.
    [88] Castro-Camus E, Johnston M B. Conformational changes of photoactive yellow protein monitored by terahertz spectroscopy[J]. Chemical Physics Letters, 2008, 455(4-6): 289-292.
    [89] Qu Y, Chen H, Qin X et al. Thermal denaturation of CP43 studied by fourier transform-infrared spectroscopy and terahertz time-domain spectroscopy[J]. Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics, 2007, 1774(12): 1614-1618.
    [90] Sluzky V, Klibanov A M, Langer R. Mechanism of insulin aggregation and stabilization in agitated aqueous solutions[J]. Biotechnology and Bioengineering, 1992, 40(8): 895-903.
    [91] Lund M, Jungwirth P, Woodward C E. Ion Specific protein assembly and hydrophobic surface forces[J]. Physical Review Letters, 2008, 100(25): 258105.
    [92] Das U, Hariprasad G, Ethayathulla A S et al. Inhibition of protein aggregation: supramolecular assemblies of arginine hold the key[J]. PLoS ONE, 2007, 2(11): e1176.
    [93] Sluzky V, Tamada J A, Klibanov A M et al. Kinetics of insulin aggregation in aqueous solutions upon agitation in the presence of hydrophobic surfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(21): 9377-9381.
    [94] Gaggelli E, Janicka-Klos A, Jankowska E et al. NMR studies of the Zn2+ interactions with rat and human beta-amyloid (1-28) peptides in water-micelle environment[J]. The Journal of Physical Chemistry B, 2008, 112(1): 100-109.
    [95] Liu R, He M X, Su R X et al. Insulin amyloid fibrillation studied by terahertz spectroscopy and other biophysical methods[J]. Biochemical and Biophysical Research Communications, 391(1): 862-867.
    [96] Bals B, Teachworth L, Dale B et al. Extraction of proteins from switchgrass using aqueous ammonia within an integrated biorefinery[J]. Applied Biochemistry and Biotechnology, 2007, 143: 187-198.
    [97] Abbasi T, Abbasi S A. Biomass energy and the environmental impacts associated with its production and utilization[J]. Renewable and Sustainable Energy Reviews,14(3): 919-937.
    [98] Whitmore L, Wallace B A. Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases[J]. Biopolymers, 2008, 89(5): 392-400.
    [99] Meienhofer J, Czombos J, Maeda H. Reduction of disulfide bonds in peptides and proteins by dithiothreitol in liquid ammonia[J]. J Am Chem Soc, 1971, 93(12): 3080-3081.
    [100] Tomlinson D J, Mulling C H, Fakler T M. Invited review: Formation of keratins in the bovine claw: Roles of hormones, minerals, and vitamins in functional claw integrity[J]. Journal of Dairy Science, 2004, 87(4): 797-809.
    [101] Jiang C T, Chang J Y. Unfolding and breakdown of insulin in the presence of endogenous thiols[J]. Febs Letters, 2005, 579(18): 3927-3931.
    [102] Waugh D F. Regeneration of insulin from insulin fibrils by the action of alkali[J]. Journal of the American Chemical Society, 1948, 70(5): 1850-1857.
    [103] Nilsson M R, Dobson C M. Chemical modification of insulin in amyloid fibrils[J]. Protein Science, 2003, 12(11): 2637-2641.
    [104] Luchsinger J A, Tang M-X, Siddiqui M et al. Alcohol intake and risk of dementia[J]. Journal of the American Geriatrics Society, 2004, 52(4): 540-546.
    [105] Wang J, Ho L, Zhao Z et al. Moderate consumption of cabernet sauvignon attenuates A? neuropathology in a mouse model of alzheimer's disease[J]. FASEB J., 2006, 20(13): 2313-2320.
    [106] Hamaguchi T, Ono K, Murase A et al. Phenolic compounds prevent alzheimer's pathology through different effects on the amyloid-? aggregation pathway[J]. Am J Pathol, 2009, 175(6): 2557-2565.
    [107] Feng Y, Wang X-p, Yang S-g et al. Resveratrol inhibits beta-amyloid oligomeric cytotoxicity but does not prevent oligomer formation[J]. NeuroToxicology, 2009, 30(6): 986-995.
    [108] Jimenez J L, Nettleton E J, Bouchard M et al. The protofilament structure of insulin amyloid fibrils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(14): 9196-9201.
    [109] Krebs M R H, Bromley E H C, Donald A M. The binding of thioflavin-T to amyloid fibrils: localisation and implications[J]. Journal of Structural Biology, 2005, 149(1): 30-37.
    [110] Vestergaard B, Groenning M, Roessle M et al. A helical structural nucleus is theprimary elongating unit of insulin amyloid fibrils[J]. PLoS Biol, 2007, 5(5): e134.
    [111] Pedersen J S, Dikov D, Flink J L et al. The changing face of glucagon fibrillation: structural polymorphism and conformational imprinting[J]. Journal of Molecular Biology, 2006, 355(3): 501-523.
    [112] Evans K C, Berger E P, Cho C G et al. Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer disease[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(3): 763-767.
    [113] Lins R D, Pereira C S, Hunenberger P H. Trehalose-protein interaction in aqueous solution[J]. Proteins: Structure, Function, and Bioinformatics, 2004, 55(1): 177-186.
    [114] Silvia V, Iannuzzi C, Portaccio M, Irace G et al. Effect of trehalose on W7FW14F apomyoglobin and insulin fibrillization: new insight into inhibition activity [J]. Biochemistry, 2008, 47(6): 1789-1796.
    [115] Fasman G D. Circular dichroism and the conformational analysis of biomolecules[M]. New York: Plenum Publishing Corporation, 1996. 71-72.
    [116] Arora A, Ha C, Park C B. Inhibition of insulin amyloid formation by small stress molecules[J]. FEBS Letters, 2004, 564(1-2): 121-125.
    [117] Murray M M, Bernstein S L, Nyugen V et al. Amyloidβprotein: Aβ40 inhibits Aβ42 oligomerization[J]. Journal of the American Chemical Society, 2009, 131(18): 6316-6317.
    [118] Bernstein S L, Wyttenbach T, Baumketner A et al. Amyloid protein: monomer structure and early aggregation states of Aβ42 and its Pro19 alloform[J]. Journal of the American Chemical Society, 2005, 127(7): 2075-2084.
    [119] Steiner R. New laser technology and future applications[J]. Medical Laser Application, 2006, 21(2): 131-140.
    [120] Drezek R A, Collier T, Brookner C K et al. Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid[J]. American Journal of Obstetrics and Gynecology, 2000, 182(5): 1135-1139.
    [121] Metreveli N, Namicheishvili L, Jariashvili K et al. Mechanisms of the influence of UV irradiation on collagen and collagen-ascorbic acid solutions[J]. International Journal of Photoenergy, 2006.
    [122] Gal M, Hromadov M, Pospisil L et al. Voltammetry of hypoxic cells radiosensitizer etanidazole radical anion in water[J]. Bioelectrochemistry, 2010,78(2): 118-123.
    [123] Stadler I, Evans R, Kolb B et al. In vitro effects of low-level laser irradiation at 660 nm on peripheral blood lymphocytes[J]. Lasers in Surgery and Medicine, 2000, 27(3): 255-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700