苯并咪唑类比率型荧光探针的合成及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光比率法是通过测量两个不同波长处的荧光强度,以其比值作为信号参量,从而来测定目标物的分析方法。荧光比值信号不受光源强度和仪器灵敏度的影响,因此与传统的荧光探针相比,比率型荧光探针可以提高方法的选择性、灵敏度和动态响应范围。比率型荧光探针的设计机理主要有荧光共振能量转移、激发态分子内质子转移、分子内电荷转移等。2-(2-羟基苯基)苯并咪唑(2-(2-hydroxyphenyl) benzimidazole, HPBI)由于存在激发态分子内质子转移(excited state intramolecular proton transfer, ESIPT)过程,发射双重荧光峰。如果我们对HPBI结构中的羟基进行修饰,则该分子的ESIPT过程不能有效发生,从而使HPBI的荧光光谱发生相应改变。本文以HPBI为母体,将其结构中的羟基作为比率型荧光探针的开关,构建了对F-,碱性磷酸酶(alkaline phosphatase, ALP)和P2O74-具有选择性响应的比率型荧光探针。同时本文以2-苯基苯并咪唑为母体,在苯并咪唑的对位引入醛基,生成2-(4-醛基苯基)苯并咪唑。该化合物结构中含有供电子基团苯并咪唑基和强吸电子基团醛基,受紫外光激发,可有效发生分子内电荷转移机理(intramolecular charge transfer, ICT),因此,2-(4-醛基苯基)苯并咪唑发射双重荧光峰。如果我们利用此化合物结构中的醛基与HSO3-反应,则分子的吸电性能力降低,导致ICT过程不能有效地发生,从而使体系的荧光特性发生变化。因此,我们以2-(4-醛基苯基)苯并咪唑实现了对HSO3-的比率型响应。本论文包括以下五部分内容:
     第一章绪论。主要介绍了比率型荧光探针的设计机理,在此基础上提出本论文的设想。
     第二章基于ESIPT机理测定F-的比率型荧光探针。本章通过HPBI分子结构中羟基的保护/去保护反应,设计合成了一种测定F-的比率型荧光探针1。化合物1由于不能发生ESIPT过程,仅仅在360 nm处发射单一荧光峰。在DMF水溶液中加入F-,化合物1结构中的TBS官能团被F-选择性的切割,从而恢复了母体荧光分子HPBI的ESIPT过程,导致反应体系在360 nm处的荧光发射减弱,同时454 nm处的荧光发射增强。利用反应前后体系在360 nm与454 nm处的荧光强度的比值变化(I454/I360)可对F-的含量进行定量。
     第三章荧光比率法测定ALP的性质研究。本章通过三氯氧磷与HPBI分子中的羟基反应,然后水解,生成荧光探针分子2。化合物2由于阻断了ESIPT过程的正常进行,于363 nm处发射单一荧光峰。在2的溶液中加入ALP,ALP可选择性地使2分子中的磷酸基团水解,恢复了原来的母体荧光分子结构HPBI,从而使体系的ESIPT过程有效发生,导致体系在430 nm处出现了一个新的荧光发射峰。随着ALP浓度的增加,反应体系在430nm处的荧光发射强度逐渐增强,同时363 nm的荧光发射逐渐减弱。利用反应前后体系的荧光强度比值I430/I363可对ALP进行定量分析。该方法测定ALP的线性上限至0.050 UmL-1,检出限为0.0013 U mL-1。
     第四章同步荧光法测定焦磷酸根的性质研究。本章以HPBI为母体,将其与Zn2+络合,反应生成金属配合物(化合物3)。由于HPBI分子中羟基上的氢被束缚住,因此化合物3不能有效发生ESIPT过程,其荧光发射波长为418 nm。当向体系中加入P2O74-后,P2O74-中的磷酸基可有效地与HPBI竞争Zn2+离子,从而使3离解,恢复了HPBI分子本身的ESIPT过程。然而化合物3和反应产物HPBI的最大发射波长(454 nm)相差较近,二者的荧光发射光谱容易重叠,因此实验考虑采用同步荧光法。HPBI在364 nm处存在另一荧光发射峰,其斯托克斯位移Δλ与3的发射峰的从很相近,实验中采用同步荧光法并且选用Δλ为40 nm,可以将HPBI在364 nm处的荧光发射峰和化合物3的荧光发射峰很好地区分开来。在3的溶液中加入P2O74-后,反应体系在364 nm处的荧光发射增强,同时在418 nm处的荧光发射减弱。基于此原理,本章建立了一种测定P2O74-的同步荧光比率法。
     第五章一种表征HSO3-的比率型荧光探针的合成及性质研究。本章设计合成了一种测定HSO3-的新型比率型荧光探针4。化合物4由于存在分子内电荷转移过程,分别于368 nm和498 nm发射荧光峰。当在化合物4中加入HSO3-后,4中的醛基与HSO3-发生亲核加成反应,从而阻断ICT过程的正常进行,使4在368 nm处的荧光发射增强,同时498 nm处的荧光强度减弱,并且这两个荧光峰的强度比值(I368/I498)与HSO3-浓度在2×10-6-2.0×10-4mol L-1范围内呈线性关系。该探针对HSO3-响应速度快,选择性好。
Ratiometric fluorescent probes allow the measurement of emission intensities at two different wavelengths, which can overcome the drawbacks of intensity-based measurements due to a built-in correction for environmental effects (i.e. canceling artifacts due to instrumental efficiency and light intensity) and increase the selectivity, sensitivity and dynamic ranges of the method. The design mechanisms for ratiometric fluorescent probes are based on fluorescence resonance energy transfer (FRET), excited-state intramolecular proton transfer (ESIPT), intramolecular charge transfer (ICT) and so on.2-(2-hydroxyphenyl) benzimidazole (HPBI) could undergo an ESIPT process upon light excitation and displayed fluorescence emission at 360 and 454 nm. If the hydroxyl group of HPBI was modified, ESIPT process of HPBI would be switched off and its spectral characteristics should change. Based on the consideration, three ratiometric fluorescent probes for F-, alkaline phosphatase (ALP) and P2O74- were designed based on modulation of ESIPT process via modification of the functional hydroxyl group of HPBI in the thesis. In addition, we developed 2-(4-aldehydephenyl)benzimidazole (4) as a novel ratiometric fluorescent probe for HSO3-. Compound 4 could undergo an intramolecular charge transfer (ICT) from electron rich benzimidazole moiety to electron deficient aldehyde group upon photoexcitation. Thus,4 could emit two emission bands. If the aldehyde group on 4 interacted with HSO3-, the electron deficient capability of compound 4 decreased and the ICT process would be switched off, which resulted fluorescent spectral characteristics of the system changed. Based on the mechanism,4 displayed a ratiometric response to HSO3-. The thesis composes of five chapters as follows:
     In chapter 1, several mechanisms for designing ratiometric fluorescent probes were introduced, and research content of the thesis was presented.
     In chapter 2, a ratiometric fluorescent probe for fluoride ion employing ESIPT process. The probe 1 was developed based on modulation of ESIPT process of HPBI through the hydroxyl group protection/deprotection reaction. Because the ESIPT process was switched off, the probe 1 showed only fluorescence emission maximum at 360 nm. Upon treatment with fluoride in aqueous DMF solution, the TBS protective group of probe 1 was removed readily and ESIPT of the probe was switched on. Accordingly, it was observed that the fluorescence emission at 360 nm showed "turn-off", while the fluorescence emission at 454 nm showed "turn on". The proposed probe showed excellent selectivity toward fluoride ion.
     In chapter 3, an ESIPT-based approach to ratiometric fluorescent detection of ALP. The probe 2 was readily prepared by the reaction of HPBI with phosphorus oxychloride (POCl3) and then hydrolyzed to give the desired product. In the absence of ALP, free 2 exhibited one typical emission peak at 363 nm. However, addition of ALP to the solution of 2 induced formation of a new emission peak at 430 nm because 2 was hydrolyze into HPBI by ALP and ESIPT of the probe was switched on. Moreover, with an increasing amount of ALP, the emission band of probe 2 at 360nm gradually decreased with the concomitant growth of emission band at 430 nm. The fluorescent intensity ratio at 430 and 363 nm (I430/I363) increased linearly with the activity of ALP up to 0.050 U mL-1 with a detection limit of 0.0013 UmL-1.
     In chapter 4, a new P2O74--selective ratiometric synchronous fluorescent probe was designed and synthesized. The probe 3 was prepared by the reaction of HPBI with Zn2+ Because its hydroxyl group was bound, the ESIPT process of HPBI was switched off and probe 3 showed fluorescence emission maximum at 418 nm. Upon introducing P2O74- to a solution of probe 3, P2O74- could compete effectively Zn2+ with HPBI, which resulted in the decomposition of 3 into HPBI and restoration of the ESIPT process. However, the emission wavelength of 3 (418 nm) was close to the maximum emission wavelength (454 nm) of HPBI and their fluorescence spectra were prone to overlap. Therefore, synchronous fluorescence technique was applied in this experiment. HPBI showed another fluorescence emission at 364 nm and its stockes shift (△λ) was very close to that of 3. Therefore, fluorescence emission spectra of 3 could distinguish from the emission band of HPBI at 364 nm by synchronous fluorescence technique with a△λof 40 nm. Addition of P2O74- to a solution of 3 induced a decrease of the emission band at 418 nm and an increase of a new fluorescence peak at 364 nm simultaneously. Based on above mechanism, a ratiometric synchronous fluorescent probe for P2O74- was developed. The proposed probe showed excellent selectivity toward P2O74-over other common anions.
     In chapter 5, a novel ratiometric fluorescent probe for HSO3- was developed based on ICT process. The probe 4 showed two fluorescence emission bands centered at 368 nm and 498 nm, respectively. Upon addition of HSO3-, the aldehyde of 4 reacted with bisulfite and produced an aldehyde-bisulfite adduct, which resulted in a decrease of the emission band at 498 nm and an increase of a fluorescence peak at 368 nm due to switching off ICT process of probe 4. The fluorescent intensity ratio at 368 and 498 nm (I368/I498) increased linearly with HSO3- concentration in the range 2×10-6-2.0×10-4mol L-1. The proposed method showed high sensitivity and excellent selectivity toward HSO3-.
引文
[1]Lee K. S., Kim H. J., Kim G. H.. Fluorescent chemodosimeter for selective detection of cyanide in water[J]. Org. Lett.,2008,10(1):49-51
    [2]Lin W. Y., Yuan L., Cao Z. M., et al. A sensitive and selective fluorescent thiol probe in water based on the conjugate 1,4-addition of thiols to a, b-unsaturated ketones[J]. Chem. Eur. J.,2009,15:5096-5103
    [3]沈红芹,张有来,陈伟利,等.新型荧光探针化合物的合成与光谱性质研究[J].天津理工大学学报,2008,24(1):1-4
    [4]Nandhikonda P., Begaye M. P., Heagy M. D.. Highly water-soluble, off-on, dual fluorescent probes for sodium and potassium ions[J]. Tetrahedron Lett.,2009,50: 2459-2461
    [5]Lin W. Y., Lin Y., Feng J. B.. A dual-channel fluorescence-enhanced sensor for aluminum ions based on photoinduced electron transfer and excimer formation[J]. Eur. J. Org. Chem.,2008, (22):3821-3825
    [6]Yushchenko D. A., Shvadchak V. V., Klymchenko A. S.. Modulation of excited-state intramolecular proton transfer by viscosity in protic media[J]. J. Phys. Chem. A,2007, 111(42):10435-10438
    [7]Takakusa H., Kikuchi K., Urano Y., et al. Design and synthesis of an enzyme-cleavable sensor molecule for phosphodiesterase activity based on fluorescence resonance energy transfer[J]. J. Am. Chem. Soc.,2002,124(8): 1653-1657
    [8]Albers A. E., Okreglak V. S., Chang C. J.. A FRET-based approach to ratiometric fluorescence detection of hydrogen peroxide[J]. J. Am. Chem. Soc.,2006,128(30): 9640-9641
    [9]Jisha V. S., Thomas A. J., Ramaiah D.. Fluorescence ratiometric selective recognition of Cu2+ ions by dansyl-naphthalimide dyads[J]. J. Org. Chem.,2009,74(17): 6667-6673
    [10]Cicchetti G., Biernacki M., Farquharson J., et al. A ratiometric expressible FRET sensor for phosphoinositides displays a signal change in highly dynamic membrane
    structures in fibroblasts[J]. Biochem.,2004,43(7):1939-1949
    [11]Ying L. M., Wallace M. I., Balasubramanian S., et al. Ratiometric analysis of single-molecule fluorescence resonance energy transfer using logical combinations of threshold criteria:A Study of 12-mer DNA[J]. J. Phys. Chem. B,2000,104(21): 5171-5178
    [12]Evers T. H., Marieke A. M., Meijer E. W., et al. Ratiometric detection of Zn(II) using chelating fluorescent protein chimeras[J]. J. Mol. Biol.,2007,374:411-425
    [13]Kim H. J., Park S.Y., Yoon S., et al. FRET-derived ratiometric fluorescence sensor for Cu2+[J]. Tetrahedron,2008,64:1294-1300
    [14]Joshi B. P., Park J., Lee W. I., et al. Ratiometric and turn-on monitoring for heavy and transition metal ions in aqueous solution with a fluorescent peptide sensor[J]. Talanta,2009,78:903-909
    [15]Ma B., Wu S. Z., Zeng F.. Reusable polymer film chemosensor for ratiometric fluorescence sensing in aqueous media[J]. Sensor. Actuat. B,2010,145:451-456
    [16]Huang J., Peng A., Fu H. B., et al. Temperature-dependent ratiometric fluorescence from an organic aggregates system[J]. J. Phys. Chem. A,2006,110(29):9079-9083
    [17]Mosquera M., Ri'os Rodn'guez M. C., Prieto F. R.. Competition between protonation and deprotonation in the first excited singlet state of 2-(3-Hydroxy-2-pyridyl)benzimidazole in acidic solutions [J]. J. Phys. Chem. A,1997, 101(15):2766-2772
    [18]Wu Y. K., Peng X. J., Fan J. L., et al. Fluorescence sensing of anions based on Inhibition of excited-state intramolecular proton transfer [J]. J. Org. Chem.2007,72(1): 62-70
    [19]Singh N., Kaur N., Mulrooney R. C., et al. A ratiometric fluorescent probe for magnesium employing excited state intramolecular proton transfer [J]. Tetrahedron Lett.,2008,49:6690-6692
    [20]Svechkarev D. A., Bukatich Y. V., Doroshenko A. O.. New 1,3, 5-triphenyl-2-pyrazoline-containing 3-hydroxychromones as highly solvate fluorochromic ratiometric polarity probes[J]. J. Photochem. Photobio. A:Chem.,2008, 200:426-431
    [21]Ma Q. J., Zhang X. B., Zhao X. H., et al. A ratiometric fluorescent sensor for zinc ions based on covalently immobilized derivative of benzoxazole[J]. Spectrochim. Acta A, 2009,73:687-693
    [22]Helal A., Kim H. S.. Thiazole-based chemosensor:synthesis and ratiometric fluorescence sensing of zinc[J]. Tetrahedron Lett.,2009,50:5510-5515
    [23]Lin W. Y., Long L. L., Yuan L., et al. A ratiometric fluorescent probe for cysteine and homocysteine displaying a large emission Shift[J]. Org. Lett.,2008,10(24):5577-5580
    [24]Mei Y. J., Bentley P. A.. A ratiometric fluorescent sensor for Zn2+ based on internal charge transfer (ICT) [J]. Bioorg. Med. Chem. Lett.,2006,16:3131-3134
    [25]Wen Z. C., Jiang Y. B.. Ratiometric dual fluorescent receptors for anions under intramolecular charge transfer mechanism[J]. Tetrahedron,2004,60:11109-11115
    [26]Badugu R., Lakowicz J. R., Geddes C. D.. Enhanced fluorescence cyanide detection at physiologically levels:reduced ICT-based signal transduction[J]. J. Am. Chem. Soc., 2005,127(10):3635-3641
    [27]Xu Z. C., Xiao Y., Qian X. H., et al. Ratiometric and selective fluorescent sensor for Cu2+ based on internal charge transfer (ICT) [J]. Org. Lett.,2005,7(5):889-892
    [28]Wang J. B., Qian X. H., Cui J. N.. Detecting Hg2+ Ions with an ICT fluorescent sensor molecule:remarkable emission spectra shift and unique selectivity[J]. J. Org. Chem., 2006,71(11):4308-4311
    [29]Citterio D., Takeda J., Kosugi M., et al. pH-Independent fluorescent chemosensor for highly selective lithium ion sensing[J]. Anal. Chem.,2007,79(3):1237-1242
    [30]Peng X. J., Du J. J., Fan J. L., et al. A Selective Fluorescent Sensor for Imaging Cd2+ in Living Cells[J]. J. Am. Chem. Soc.,2007,129(6):1500-1501
    [31]Lu C. L., Xu Z. C., Cui J. N., et al. Ratiometric and highly selective fluorescent sensor for cadmium under physiological pH range:a new strategy to discriminate cadmium from zinc[J]. J. Org. Chem.,2007,72(9):3554-3557
    [32]Srikun D., Miller E. W., Domaille D. W., et al. An ICT-based approach to ratiometric fluorescence imaging of hydrogen peroxide produced in living cells [J]. J. Am. Chem. Soc.,2008,130(14):4596-4597
    [33]Shao J., Lin H., Lin H. K.. Rational design of a colorimetric and ratiometric
    fluorescent chemosensor based on intramolecular charge transfer (ICT) [J]. Talanta, 2008,77:273-277
    [34]Taki M., Watanabe Y., Yamamoto Y.. Development of ratiometric fluorescent probe for zinc ion based on indole fluorophore[J]. Tetrahedron Lett.,2009,50: 1345-1347
    [35]Goswami S., Sen D., Das N. K.. A new highly selective, ratiometric and colorimetric fluorescence sensor for Cu2+ with a remarkable red shift in absorption and emission spectra based on internal charge transfer[J]. Org. Lett.,2010,12(4):856-859
    [36]Du J. J., Fan J. L., Peng X. J., et al. The quinoline derivative of ratiometric and sensitive fluorescent zinc probe based on deprotonation[J]. Sensor. Actuat. B,2010, 144:337-341
    [37]Atilgan S., Kutuk K., Ozdemir T.. A near IR di-styrylBODIPY-based ratiometric fluorescent chemosensor for Hg(II) [J]. Tetrahedron Lett.,2010,51:892-894
    [38]Roussakis E., Voutsadaki S., Pinakoulaki E.. ICPBCZin:A red emitting ratiometric fluorescent indicator with nanomolar affinity for Zn2+ions[J]. Cell Calcium,2008,44: 270-275
    [39]Jung H. J., Singh N., Jang D. O.. Highly Fe3+ selective ratiometric fluorescent probe based on imine-linked benzimidazole[J]. Tetrahedron Lett.,2008,49:2960-2964
    [40]Roussakis E., Liepouri F., Nifli A. P., et al. ICPBC and C12-ICPBC:Two new red emitting, fluorescent Ca2+ indicators excited with visible light[J]. Cell Calcium,2006, 39:3-11
    [1]Beer P. D., Gale P. A.. Anion recognition and sensing:the state of the art and future perspectives[J]. Angew. Chem. Int. Ed.,2001,40(3):486-516
    [2]Caltagirone C., Gale P.. Anion receptor chemistry:highlights from 2007[J]. Chem. Soc. Rev.,2009,38(2):520-563
    [3]Martinez-Manez R., Sancenon F.. Fluorogenic and chromogenic chemosensors and reagents for anions[J]. Chem. Rev.,2003,103(11):4419-4476
    [4]Kirk K. L.. Biochemistry of the halogens and inorganic halides, Plenum Press:New York,1991,58
    [5]Wiseman A.. Handbook of experimental pharmacology XX/2, Springer-Verlag:Berlin, 1970,2:48
    [6]Cho E. J., Moon J. W., Ko S. W., et al. A new fluoride selective fluorescent as well as chromogenic chemosensor containing a naphthalene urea derivative [J]. J. Am, Chem. Soc.,2003,125(41):12376-12377
    [7]Kim S. K., Bok J. H., Bartsch R. A., et al. A fluoride-selective PCT chemosensor based on formation of a static pyrene excimer[J]. Org. Lett.,2005,7(22):4839-4842
    [8]Kim S. Y., Hong J. I.. Chromogenic and fluorescent chemodosimeter for detection of fluoride in aqueous solution[J]. Org. Lett.,2007,9(16):3109-3112
    [9]Liu Z. Q., Shi M., Li F. Y., et al. Highly selective two-photon chemosensors for fluoride derived from organic boranes[J]. Org. Lett.,2005,7(24):5481-5484
    [10]Zhu C. Q., Chen J. L., Zheng H., et al. A colorimetric method for fluoride determination in aqueous samples based on the hydroxyl deprotection reaction of a cyanine dye[J]. Anal. Chim. Acta.,2005,539(1-2):311-316
    [11]Yang X. F., Ye S. J., Bai Q., et al. A fluorescein-based fluorogenic probe for fluoride ion based on the fluoride-induced cleavage of tert-butyldimethylsilyl ether[J]. J. Fluoresc.,2007,17(1):81-87
    [12]Tremblay M. S., Halim M., Sames D.. Cocktails of Tb3+ and Eu3+ complexes:a general platform for the design of ratiometric optical probes[J]. J. Am, Chem. Soc.,2007, 129(24):7570-7577
    [13]Zhang X., Xiao Y., Qian X.. A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells[J]. Angew. Chem. Int. Ed.,2008,47(42):8025-8029
    [14]Lin W. L., Long L., Yuan L., et al. A ratiometric fluorescent probe for cysteine and homocysteine displaying a large emission shift[J]. Org. Lett.,2008,10(24):5577-5580
    [15]Dicesare N., Lakowicz J. R.. New sensitive and selective fluorescent probes for fluoride using boronic acids[J]. Anal. Biochem.,2002,301(1):111-116
    [16]Kumar S., Luxami V., Kumar A.. Chromofluorescent probes for selective detection of fluoride and acetate ions[J]. Org. Lett.,2008,10(24):5549-5552
    [17]Badugu R., Lakowicz J. R., Geddes C. D.. A wavelength-ratiometric fluoride-sensitive probe based on the quinolinium nucleus and boronic acid moiety [J]. Sensor. Actuat. B,2005,104(1):103-110
    [18]Mosquera M., Rodriguez M. C. R., Rodriguez-Prieto F.. Competition between protonation and deprotonation in the first excited singlet state of 2-(3'-Hydroxy-2'-pyridyl)benzimidazole in acidic solutions[J]. J. Phys. Chem. A,1997, 101(15):2766-2772
    [19]Mosquera M., Penedo J. C., Rios M. C., et al. Photoinduced inter-and intramolecular proton transfer in aqueous and ethanolic solutions of 2-(2'-Hydroxyphenyl) benzimidazole:evidence for tautomeric and conformational equilibria in the ground state[J]. J. Phys. Chem.,1996,100(13):5398-5407
    [20]Rodriguez P. F., Rodriguez M. C., Gonzalez M. M., et al. Ground-and excited-state tautomerism in 2-(3'-Hydroxy-2'-pyridyl) benzimidazole [J]. J. Phys. Chem.,1994, 98(35):8666-8672
    [21]Rodriguez-Prieto F., Penedo J. C., Mosquera M.. Solvent control of molecular structure and excited-state proton-transfer processes of 1-methyl-2-(2'-hydroxyphenyl)benzimidazole[J]. J. Chem. Soc. Faraday Trans.,1998,94(18): 2775-2782
    [22]Tavman A.. Synthesis, spectral characterization of 2-(5-methyl-1H-benzimidazol-2-yl)-4-bromo/nitro-phenols and their complexes with zinc(Ⅱ) ion, and solvent effect on complexation[J]. Spectrochim. Acta A,2006,63 (2):343-348
    [23]Burdette S. C., Frederickson C. J., Bu W., et al. ZP4, an improved neuronal Zn2+
    sensor of the zinpyr family[J]. J. Am. Chem. Soc.,2003,125(7):1778-1787
    [24]Ronald R. C., Lansinger J. M., Lillie T. S., et al. Total synthesis of frustulosin and aurocitrin[J]. J. Org. Chem.,1982,47(13):2541-2549
    [25]Liu A. J., Dillon K., Campbell R. M., et al. Synthesis of E-selectin inhibitors:use of an aryl-cyclohexyl ether as a disaccharide scaffold[J]. Tetrahedron Lett.,1996,37(22): 3785-3788
    [26]Corey E. J., Snider B. B.. Total synthesis of (+-)-fumagillin[J]. J. Am. Chem. Soc., 1972,94(7):2549-2550
    [27]Corey E. J., Venkateswarlu A.. Protection of hydroxyl groups as tert-butyldimethylsilyl derivatives[J]. J. Am. Chem. Soc.,1972,94(17):6190-6191
    [28]Urano Y., Kamiya M., Kanda K., et al. Evolution of fluorescein as a platform for finely tunable fluorescence probes[J]. J. Am. Chem. Soc.,2005,127(13):4888-4894
    [29]Descalzo A. B., Jimenez D., Haskouri J. E., et al. A new method for fluoride determination by using fluorophores and dyes anchored onto MCM-41[J]. Chem. Commun.,2002, (6):562-563
    [30]Kim T. H., Swager T. M.. A fluorescent self-amplifying wavelength-responsive sensory polymer for fluoride ions[J]. Angew. Chem. Int. Ed.,2003,42(39):4803-4806
    [1]Liu Y., Schanze K. S.. Conjugated polyelectrolyte-based real-time fluorescence assay for alkaline phosphatase with pyrophosphate as substrate[J]. Anal. Chem.,2008,80: 8605-8612
    [2]Handan A., Aysin A., Sina G.. A quantitative colorimetric method of measuring alkaline phosphatase activity in eukaryotic cell membranes[J]. Cell bio. international, 2007,31(2):186-90
    [3]Lewis W. H., Rutan S. C.. Guanidinium-induced differential kinetic denaturation of alkaline phosphatase isozymes[J]. Anal. Chem.,1991,63:627-629
    [4]Zhu X. J., Liu Q. K., Jiang C. Q..2-Carboxy-l-naphthyl phosphate as a substrate for the fluorimetric determination of alkaline phosphatase[J]. Anal. Chim. Acta,2006,570: 29-33
    [5]Negra M. R., Keating E., Faria A., et al. Acute effect of tea, wine, beer, and polyphenols on ecto-alkaline phosphatase activity in human vascular smooth muscle cells[J]. J. Agric. Food Chem.,2006,54(14):4982-4988
    [6]Zhu X. J., Jiang C. Q..8-Quinolyl phosphate as a substrate for the fluorimetric determination of alkaline phosphatase[J]. Clinica Chim. Acta,2007,377:150-153
    [7]Ioannou P. C., Christopoulos T. K.. Two-round enzymatic amplification combined with time-resolved fluorometry of Tb3+ chelates for enhanced sensitivity in DNA hybridization assays[J]. Anal. Chem.,1998,70:698-702
    [8]Massona M., Runarsson O. V., Johannson F., et al.4-Amino-l-naphthylphosphate as a substrate for the amperometric detection of alkaline phosphatase activity and its application for immunoassay[J]. Talanta,2004,64:174-180
    [9]Serra B., Morales M. D., Reviejo A. J., et al. Rapid and highly sensitive electrochemical determination of alkaline phosphatase using a composite tyrosinase biosensor[J]. Anal. Biochem.,2005,336:289-294
    [10]Roda A., Pasini P., Musiani M., et al. Chemiluminescent low-light imaging of biospecific reactions on macro-and microsamples using a videocamera-based luminograph[J]. Anal. Chem.,1996,68:1073-1080
    [11]Amane K., Hidetoshi A., Masako M.. Chemiluminescent assay of alkaline phosphatase using dihydroxyacetone phosphate as substrate detected with lucigenin[J]. Luminescence,2002,17(1):5-10
    [12]Ximenes V. F., Campa A., Baader W. J., et al. Facile chemiluminescent method for alkaline phosphatase determination[J]. Anal. Chim. Acta,1999,402(1-2):99-104
    [13]Lin J. M., Tsuji A., Maeda M.. Chemiluminescent flow injection determination of alkaline phosphatase and its applications to enzyme immunoassays[J]. Anal. Chim. Acta,1997,339(1-2):139-146
    [14]Sasamoto H., Maeda M., Tsuji A.. Chemiluminescent assay of alkaline phosphatase using phenacyl phosphate[J]. Anal. Chim. Acta,1995,306(1):161-166
    [15]Khan M. S., Li X. S., Gamier G.. Thermal stability of bioactive enzymatic papers[J]. Colloids and Surfaces, B:Biointerfaces,2010,75(1):239-246
    [16]Payne C., Wilbey R. A.. Alkaline phosphatase activity in pasteurized milk:a quantitative comparison of Fluorophos and colourimetric procedures[J]. International Journal of Dairy Technology,2009,62(3):308-314
    [17]Klotz V., Hill A., Warriner K., et al. Assesment of the colorimetric and fluorometric assays for alkaline phosphatase activity in cow's, goat's, sheep's milk[J]. J. Food Protection,2008,71(9):1884-1888
    [18]Wei Y., Huo X. L., Tao S.. Effects of extremely low-frequency-pulsed electromagnetic field on different-derived osteoblast-like[J]. Cells Electromagnetic Biol. and Medicine,2008,27(3):298-311
    [19]Zhou L., Ou L. J., Chu X., et al. Aptamer-based rolling circle amplification:a platform for electrochemical detection of protein[J]. Anal. Chem.,2007,79:7492-7500
    [20]Bauer C. G., Eremenko A. V., Bier F. F., et al. Zeptomole-detecting biosensor for alkaline phosphatase in an electrochemical immunoassay for 2,4-dichlorophenoxyacetic acid[J]. Anal. Chem.,1996,68:2453-2458
    [21]Fenoll J., Jourquin G., Kauffmann J.-M.. Fluorimetric determination of alkaline phosphatase in solid and fluid dairy products[J]. Talanta,2002,56:1021-1026
    [22]Vaughan G., Guilbault G., Hackney D.. Fluorometric methods for analysis of acid and alkaline phosphatase[J]. Anal. Chem.,1971,43(6):721-724
    [23]Ruan C. M., Wang W., Gu B. H.. Detection of alkaline phosphatase using surface-enhanced raman spectroscopy[J]. Anal. Chem.,2006,78(10):3379-3384
    [24]Bieniarz C., Young D. F., Cornwell M. J.. Thermally stabilized immunoconjugates: conjugation of antibodies to alkaline phosphatase stabilized with polymeric cross-linkers[J]. Bioconjugate Chem.,1998,9:399-402
    [25]Bieniarz C., Cornwell M. J., Young D. F.. Alkaline phosphatase activatable polymeric cross-linkers and their use in the stabilization of proteins [J]. Bioconjugate Chem.,1998, 9:390-398
    [26]Masson M., Haruyama T., Kobatake E., et al.4-Hydroxynaphthyl-l-phosphate as a substrate for alkaline phosphatase and its use in sandwich immunoassay[J]. Anal. Chim. Acta,1999,402:29-35
    [27]Chaidee A., Wongchai C., Pfeiffer W.. Extracellular alkaline phosphatase is a sensitive marker for cellular stimulation and exocytosis in heterotroph cell cultures of Chenopodium rubrum[J]. J. Plant Phys.,2008,165:1655-1666
    [1]Sakamoto T., Ojida A., Hamachi I.. Molecular recognition, fluorescence sensing, and biological assay of phosphate anion derivatives using artificial Zn(II)-Dpa complexesw[J]. Chem. Commun.,2009,141-152
    [2]Chen X. Q., Jou M. J., Yoon J. Y. An "Off-On" type UTP/UDP selective fluorescent probe and its application to monitor glycosylation process[J]. Org. Lett.,2009,11 (10): 2181-2184
    [3]Huang X. M., Guo Z. Q., Zhu W. H., et al. A colorimetric and fluorescent turn-on sensor for pyrophosphate anion based on a dicyanomethylene-4H-chromene frameworkw[J]. Chem. Commun.,2008,5143-5145
    [4]Aldakov D., Anzenbacher P.. Sensing of aqueous phosphates by polymers with dual modes of signal transduction[J]. J. Am. Chem. Soc.,2004,126(15):4752-4753
    [5]Kim S. K., Singh N. J., Kwon J., et al. Fluorescent imidazolium receptors for the recognition of pyrophosphate[J]. Tetrahedron,2006,62:6065-6072
    [6]Dijkgraaf B. C., Liemt R. S. B., Debontl G. M., et al. Calcium pyrophosphate dihydrate crystal deposition disease:a review of the literature and a light and electron microscopic study of a case of the temporomandibular joint with numerous intracellular crystals in the chondrocytes[J]. Osteoarthritis and Cartilage,1995,3(1): 35-45
    [7]Lee H. N., Xu Z. C., Kim S. K., et al. Pyrophosphate-selective fluorescent chemosensor at physiological pH:Formation of a unique excimer upon addition of pyrophosphate[J]. J. Am. Chem. Soc.,2007,129(13):3828-3829
    [8]Marques S. M., Peralta F., Estevesda J. C. G.. Optimized chromatographic and bioluminescent methods for inorganic pyrophosphate based on its conversion to ATP by firefly luciferase[J]. Talanta,2009,77(4):1497-1503
    [9]Sun Y., Jacobson K. B., Golovlev V.. A multienzyme bioluminescent time-resolved pyrophosphate assay[J]. Anal. Biochem.,2007,367(2):201-209
    [10]Eriksson J., Karamohamed S., Nyren P.. Method for real-time detection of inorganic pyrophosphatase activity[J]. Anal. Biochem.,2001,293(1):67-70
    [11]姚群峰,徐顺清,周宜开.利用生物发光技术检测微量焦磷酸[J].分析科学学报,2003,19(1):45-47
    [12]涂华民,王继业.比色法测定微量焦磷酸根[J].光谱实验室,2000,17(3):313-315
    [13]Lee D. H., Im J. H., Son S. U., et al. An azophenol-based chromogenic pyrophosphate sensor in water[J]. J. Am. Chem. Soc.,2003,125(26):7752-7753
    [14]Tang L. J., Li Y., Zhang H., et al. A new chemosensing ensemble for fluorescent recognition of pyrophosphate in water at physiological pH[J]. Tetrahedron Lett.,2009, 50:6844-6847
    [15]Vance D. H., Czarnik A. W.. Real-time assay of inorganic pyrophosphatase using a high-affinity chelation-enhanced fluorescence chemosensor[J]. J. Am. Chem. Soc., 1994,116:9397-9398
    [16]Mizukami S., Nagano T., Urano Y., et al. Fluorescent anion sensor that works in neutral aqueous solution for bioanalytical application[J]. J. Am. Chem. Soc.,2002, 124(15):3920-3925
    [17]Singh N. J., Jun E. J., Chellappan K., et al. Quinoxaline-imidazolium receptors for unique sensing of pyrophosphate and acetate by charge transfer[J]. Org. Lett.,2007, 9(3):485-488
    [18]Vuokko J., Jansson K.. A continuous fluorometric assay for inorganic pyrophosphate and for detecting single-base changes with polymerase chain reaction[J]. Anal. Biochem.,2003,317(2):268-270
    [19]Lee H. N., Swamy K. M. K., Kim S. K., et al. Simple but effective way to sense pyrophosphate and inorganic phosphate by fluorescence changes[J]. Org. Lett.,2007, 9(2):243-246
    [20]Kim M. J., Swamy K. M. K., Lee K. M., et al. Pyrophosphate selective fluorescent chemosensors based on coumarin-DPA-Cu(II) complexes. Chem. Commun.,2009, 7215-7217
    [21]Jang H. H., Yi S. J., Kim M. H., et al. A simple method for improving the optical properties of a dimetallic coordination fluorescent chemosensor for adenosine triphosphate[J]. Tetrahedron Lett.,2009,50:6241-6243
    [22]Ojida A., Takashima I., Kohira T., et al. Turn-On fluorescence sensing of nucleoside polyphosphates using a xanthene-based Zn(II) complex. chemosensor[J]. J. Am. Chem. Soc.,2008,130(36):12095-12101
    [23]Kikuchi K., Hashimoto S., Mizukami S., et al. Anion sensor-based ratiometric peptide probe for protein kinase activity[J]. Org. Lett.,2009,11(13):2732-2735
    [24]Jang Y. J., Jun E. J., Lee Y. J.. Highly effective fluorescent and colorimetric sensors for pyrophosphate over H2PO4- in 100% aqueous solution[J]. J. Org. Chem.,2005,70(23): 9603-9606
    [25]黄殿男,景逵,李建华,等.同步荧光光谱法测定石油中的晕苯[J].光谱实验室,2009,26(1): 85-89
    [26]Liang A. N., Wang L., Chen H. Q., et al. Synchronous fluorescence determination of mercury ion with glutathione-capped CdS nanoparticles as a fluorescence probe[J]. Talanta,2010,81:438-443
    [27]Liu X. Y, Wu X., Yang J. H.. Protein determination using methylene blue in a synchronous fluorescence technique[J]. Talanta,2010,81:760-765
    [28]许志峰.苯并咪唑功能化蓝光锌配合物的设计、合成、表征与性能研究.黑龙江大学硕士学位论文,2007.
    [1]Gimeno L., Marn E., Bourhim S., et al. How effective has been the reduction of SO2 emissions on the effect of acid rain on ecosystems? [J]. The Science of the Total Environment,2001,2759(1-3):63-70
    [2]He J.. Pollution haven hypothesis and environmental impacts of foreign direct investment:The case of industrial emission of sulfur dioxide (SO2) in Chinese provinces[J]. Ecological Economics,2006,60(1):228-245
    [3]Hou Q. X., Liu W., Liu Z. H., et al. Characteristics of wood cellulose fibers treated with periodate and bisulfite[J]. Ind. Eng. Chem. Res.,2007,46:7830-7837
    [4]Igawa M., Fukushi Y., Hayashita T., et al. Selective transport of aldehydes across an anion-exchange membrane via the formation of bisulfite adducts[J]. Ind. Eng. Chem. Res.,1990,29:857-861
    [5]Mohr G. J.. A chromoreactand for the selective detection of HSO3 based on the reversible bisulfite addition reaction in polymer membranes[J]. Chem. Commun.,2002, 22:2646-2647
    [6]Horiuchi J., Takahashi K., Itoh Y.. Alkylaldehyde-bisulfite adducts as cleavable surfactants [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2007,308: 118-122
    [7]Luciana C., Reis M. M., Motta L. F.. Evaluation of the formation and stability of hydroxyalkylsulfonic acids in wines[J]. Agric. Food Chem.,2007,55:8670-8680
    [8]Tsai A. G., Engelhart A. E., Hatmal M. M., et al. Conformational Variants of Duplex DNA Correlated with Cytosine-rich Chromosomal Fragile Sites[J]. J. Biol. Chem., 2009,284(11):7157-7164
    [9]Betterton E. A., Ylgal E., Mlchael R., et al. Aldehyde-bisulfite adducts:prediction of some of their thermodynamic and kinetic properties [J]. Sci. Technol.,1988,22:92-99
    [10]方海顺,徐志利.比色法测定复方氨基酸注射液中亚硫酸氢钠含量[J].中国药品标准,2007,8(4):40-42
    [11]Powe A. M., Fletcher K. A., Stluce N. N., et al. Molecular fluorescence, phosphorescence and chemiluminescence spectrometry[J]. Anal. Chem.,2004,76: 4614-4634
    [12]Singh Y., Gulyani A., Bhattacharya S.. A new ratiometric fluorescence probe as strong sensor of surface charge of lipid vesicles and micelles[J]. Febs Lett.,2003,541(2): 132-136
    [13]Mana H., Spohn U.. Sensitive and selective flow injection analysis of hydrogen sulfite/sulfur dioxide by fluorescence detection with and without membrane separation by gas diffusion[J]. Anal. Chem.,2001,73(13):3187-3192
    [14]Chen K. Y., Guo Y., Lu Z. H., et al. Novel coumarin-based fluorescent probe for selective detection of bisulfite anion in water[J]. Chinese J. Chem.,2010,28(1):55-60
    [15]Kjell D. P., Slattery B. J., Semo M. J.. A novel nonaqueous method for regeneration of aldehydes from bisulfite adducts[J]. J. Org. Chem.,1999,64:5722-5724
    [16]Kuzmanovic B., Kuipers N. J. M., De A. B., et al. Reactive extraction of carbonyl compounds from apolar hydrocarbons using aqueous salt solutions [J]. Ind. Eng. Chem. Res.,2003,42:2885-2896

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700