用户名: 密码: 验证码:
人工核酸切割分子与核酸相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工核酸切割分子,又称人工核酸酶,是用化学方法合成的一类能模拟天然核酸酶断裂核酸骨架的功能小分子。它可以发展成为有用的分子生物学工具和基因治疗药物。本论文设计合成了一系列人工核酸断裂分子,通过多种实验手段研究了它们与核酸间的结合,断裂及凝聚作用。
     本文选用对核酸碱基具有特异性识别能力的聚酰胺体系作为修饰分子,选用具有典型水解及自由基氧化断裂机理的双苯并咪唑(IDB),单双大环多胺(Cyclen or bis-Cyclen)和抗坏血酸(Vc)为模型化合物,通过不同结构柔性手臂连接构成一系列新型核酸切割分子。旨在利用聚酰胺对核酸的特异性识别能力,提高和增强切割分子对核酸断裂的选择性及位点专一性。利用化学合成的方法对上述新型切割分子进行合成及结构表征。
     在切割分子对核酸的相互作用研究中,首先利用琼脂糖凝胶电泳方法对比研究了三类切割小分子(IDB, Bis-Cyclen and Vc)与通过聚酰胺修饰后的新型断裂试剂(Polyamide-IDB, Polyamide-Bis-Cyclen and Polyamide-Vc)对核酸断裂作用的差异。实验结果显示,聚酰胺修饰后的切割分子,在相同条件下与原始切割分子相比对核酸的断裂能力明显增加,在较低的切割浓度下,可通过双链切割有效将核酸断裂为线形DNA。这种经聚酰胺修饰提高核酸断裂能力的结果不仅适用于水解型断裂分子IDB和Cyclen,也适用于自由基氧化型断裂分子Vc。此外,利用模型分析可知,Vc对核酸具有较明显的随机性双链断裂能力,通过聚酰胺对Vc分子的修饰,将其对核酸的作用过程转变为有选择性的非随机性双链断裂。
     在人工核酸断裂分子与核酸结合能力研究中,我们先后通过圆二色光谱,核酸熔点,荧光淬灭,紫外吸收光谱及Maldi-Tof等一系列光谱及质谱方法量化分析了小分子断裂试剂在通过聚酰胺体系修饰前后对核酸亲和能力的变化。通过对比淬灭常数C50,核酸熔点差△Tm及表观结合常数Kapp等结合常数可知,聚酰胺分子的引入,使小分子切割试剂与核酸间的相互作用增强,亲和力增加,作用模式由较弱的静电吸引作用转化为较强的沟槽式结合,并显示出聚吡咯单元的聚酰胺分子对核酸中富AT序列具有明显的特异性结合作用。
     在研究中我们意外发现,含酰胺结构的多胺类分子金属配合物在一定条件下对核酸具有凝聚作用。为此,我们以双苯并咪唑(IDB),三氮九员环多胺(TACN),四氮十二员环多胺(Cyclen)为模型化合物,分别连接正丁基,正丁酰基和乙酸乙酯构成九种不同结构不同侧链的多胺类小分子配体,讨论酰胺中羰基的存在及位置对核酸凝聚的影响。首先合成并表征了上述九种配体分子及其金属配合物。
     利用琼脂糖凝胶电泳对比了多胺分子中不含羰基,含邻位羰基及间位羰基与核酸的相互作用,结果显示,只有侧链中含邻位羰基的多胺分子(即具有酰亚胺结构)在一定条件下对核酸具有凝聚作用,具有间位羰基的分子作用较弱,而含烷基侧链的多胺分子对核酸无凝聚作用。其中,金属锌配合物在一定条件下可使pUC18质粒DNA凝聚成为1000bp左右的条带,而金属铜配合物在凝聚核酸同时,对核酸进行不同程度的切割,因而凝聚成大小不同的核酸颗粒,电泳中显示为弥散条带。此外,通过浓度、温度及时间梯度对比实验证实,含邻位羰基的多胺类金属配合物对核酸的凝聚作用只发生在50℃和较高配合物浓度下,即配合物浓度与反应温度是发生凝聚作用的必要条件。选用不同种类的核酸进行实验发现,这种在一定条件下发生的凝聚作用对不同种类的核酸具有一定普遍性。
     原子力显微镜结果显示,这种凝聚作用是以带正电的小分子配合物为中心,通过静电或氢键作用,使核酸分子向内收缩,形成形态及大小相近的颗粒。
Artificial nuclease can mimic the function of natural nuclease by breaking the backbone of DNA site-specifically. And these small molecules can also be used as molecular biology tools and gene therapy agents. The present dissertation reported the design and synthesis of a series of artificial nuclease, and their detailed DNA binding, DNA cleavage and DNA condensation behaviors were also studied by many different experimental methods.
     In this paper, polyamides which have sequence-specificity to bases were chose as modificators and bis(2-benzimidazolylmethyl)amine (IDB), polyamines (Cyclen) with hydrolysis mechanism and ascorbic acid (Vc) with oxidative mechanism were chose as model compounds. Two parts above were linked by different flexible linker to form a series of new artificial nucleases. We expected that cleavage ability and sequence-specificity of small molecules were enhanced through the modification of polyamides. The cleavage agents mentioned above were synthesized and characterized.
     In the process of interaction research between cleavage agents and nucleic acid, gel electrophoresis experiences were performed to analysis the DNA cleavage discrepancy of three kinds of cleavage agents in the absence or presence of polyamide. The results showed that DNA cleavage ability of molecules modified by polyamide was stronger than that of original cleavage agents apparently in the same condition, and they can cleave duplex to form linear DNA through double strand cleavage in the lower concentration. Both hydrolytic (IDB& Cyclen) and oxidative (Vc) small cleavage agents are mediated efficiently by modification of polyamide moiety. In addition, statistic data suggested that the process of DNA cleavage resulted from Vc is completely random, but that of Vc modified by polyamide is selectivity and non-random.
     In the research of binding ability of cleavage agents and DNA, circular dichroism, DNA melting point, fluorescence quenching, UV spectrum and Maldi-Tof mass spectrometry were performed to quantify the affinity of cleavage agents in the absence and presence of polyamide to DNA. The data of binding constant, including C50,ΔTm and Kapp, showed that the interaction and affinity between cleavage agents and DNA increased apparently due to the introduction of polyamide. The binding mode has changed from electrostatic interaction to minor groove binding. The outstanding results further supported A-T rich sequences preference of cleavage agents in the presence of polyamide containing pyrrole units.
     An accident discovery happened in the research. Polyamine complexes containing imide can condense DNA to small particles under some condition. So, IDB, TACN and Cyclen were chose as model compounds and different side chains were linked, and nine polyamine ligands with different structures side chains were synthesized and characterized to discuss the effect of carbonyl to DNA condensation.
     The gel electrophoresis showed that polyamine with ortho-position carbonyl can condense DNA efficiently. However, the weak and none effect were obtained by the same ligand with meta-position carbonyl and without carbonyl, respectively. Zinc complex can condense pUC18 plasmid DNA to small particles which size is like about 1000bp band, but copper complex can cleave DNA while condense DNA to small particles with different sizes, showing smear band in the gel. Through the further experiments of concentration, temperature and time-dependence assay, we found that one of the necessary conditions is high temperature (50℃), and the other is higher concentration of reaction. The same assay was performed by choosing different kinds of DNA, and results demonstrated that the DNA condensation under some condition is general application.
     Atom force microscopy assay indicated that DNA condensation was centered on small molecules with positive charge, and DNA was condensed into the same or similar size particles with electrostatic interaction or hydrogen band.
引文
[1]Chin J, Banaszczyk M, Jubian V, et al. Cobalt(Ⅲ) complex-promoted hydrolysis of phosphate diesters:comparison in reactivity of rigid cis-diaquo(tetraaza)cobalt(Ⅲ) complexes[J]. J. Am. Chem. Soc.,1989,111(1):186-189
    [2]Kim J H, Chin J. Dimethyl phosphate hydrolysis at neutral pH[J]. J. Am. Chem. Soc., 1992,114(25):9792-9795
    [3]Wolfenden R, Rdgway C, Young G Spontaneous Hydrolysis of Ionized Phosphate Monoesters and Diesters and the Proficiencies of Phosphatases and Phosphodiesterases as Catalysts[J]. J. Am. Chem. Soc.,1998,120(4):833-834
    [4]Breslow R. Bifunctional acid-base catalysis by imidazole group in enzyme mimics[J]. J. Molecular Catalysis,1994,91(2):161-174
    [5]Crooks S T. Antisense oligonucleotides[J]. Cancer Ther.,1997,299-336
    [6]Ausubel F M, Brent R. Current Protocols in Molecular Biology[M]. Vol 2. New York: Green Publishing Associates and Wiley-Interscience,1992
    [7]Tullius T D. DNA footprinting with hydroxyl radical[J]. Nature,1988,332(6165): 663-664
    [8]Muth G W, Thompson C M, Hill W E. Cleavage of a 23s rRNA pseudoknot by phenanthroline-Cu (Ⅱ) [J].Nucleic Acids Res.,1999,27(8):1906-1911
    [9]Pei D, Schultz P G Site-specific cleavage of duplex DNA with a λ repressor-staphylococcal nuclease hybrid[J]. J. Am. Chem. Soc.,1990,112:4579-4580
    [10]Zuckermann R N, Schultz P G Site-selective cleavage of structured RNA by a staphylococcal nuclease-DNA hybrid[J]. Proc. Natl. Acad. Sci. USA.,1989,86: 1766-1770
    [11]Zuckermann R N, Schultz P G.A hybrid sequence-selective ribonuclease S[J]. J. Am. Chem. Soc.,1988,110:6592-6594
    [12]Kanaya S, Nakai C, Konishi A, et al. A hybrid ribonuclease H-(A novel RNA cleavage enzyme with sequence-specific recognition)[J]. J. Biol. Chem.,1992,267:8492-8498
    [13]Uchiyama Y, Inoue H, Ohtsuka E, et al. DNA-linked Rnase-H for site-selective cleavage of RNA[J]. Bioconjugate Chem.,1994,5:327-332
    [14]Ebright R H, Ebright Y W, Pendergrast P S, et al. Conversion of a helix-turn-helix motif sequence-specific DNA binding protein into a site-specific DNA cleavage agent[J]. Proc. Natl. Acad. Sci. USA.,1990,87:2882-2886
    [15]Chen C-H B, Sigman D S. Chemical conversion of a DNA-binding protein into a site-specific nuclease[J]. Science,1987,237:1197-1201
    [16]Nagaoka M, Hagihara M, Kuwahara J, et al. A novel zinc finger-based DNA cutter: Biosynthetic design and highly selective DNA cleavage[J]. J. Am. Chem. Soc.,1994,116: 4085-4086
    [17]Mack D P, Dervan P B. Sequence-specific oxidation cleavage of DNA by a designed metalloprotein, Ni (Ⅱ)-GGH(Hin139-190) [J]. Biochem.,1992,31:9399-9405
    [18]Barbara C F C, Orgel L E. Nonenzymatic sequence-specific cleavage of single-stranded DNA[J]. Proc. Natl. Acad. Sci. USA.,1985,82:963-967
    [19]Groves J T, Kady I O. Sequence-specific cleavage of DNA by oligonucleotide-bound metal complexes[J]. Inorg. Chem.,1993,32:3868-3872
    [20]Bashkin J K, Frolova E I, Sampath U. Sequence-specific cleavage of HIV messenger-RNA by a ribozyme mimic[J]. J. Am. Chem. Soc.,1994,116:5981-5982
    [21]Bigey P, Pratviel G, Meunier B. Cleavage of double-stranded DNA by metalloporphyrin linker-oligonucleotide' molecules:influence of the linker[J]. Nucleic Acids Research, 1995,23:3894-3900
    [22]Matsumura K, Endo M, Komiyama M. Lanthanide complex-oligo-DNA hybrid for sequence-selective hydrolysis of RNA[J]. J. Chem. Soc, Chem. Commun.,1994: 2019-2020
    [23]Magda D, Miller R A, Sessler J L, et al. Site-specific hydrolysis of RNA by europium (Ⅲ) texaphyrin conjugated to a synthetic oligodeoxyribonucleotide[J]. J. Am. Chem. Soc., 1994,116:7439-7440
    [24]沈鹤柏,夏静芬,吴庆峰,等.铈离子及其配合物对寡聚脱氧核苷酸的水解断裂作用[J].中国稀土学报,2001,19:381-384
    [25]Hegg E L, Burstyn J N. Toward the development of metal-based synthetic nucleases and peptidases:a rationale and progress report in applying the principles of coordination chemistry[J]. Coord. Chem. Rev.,1998,173:133-165
    [26]Sigman D S, Mazumder A, Perrin D M. Chemical nucleases[J]. Chem. Rev.,1993,93: 2295-2316
    [27]沈鹤柏,夏静芬,杨海峰,等.铈离子水解断裂Oligomers DNA中磷酸二酯键[J].中国科学(B辑),2001,31:178-182
    [28]沈鹤柏,周文俊,杨永桃,等.ODN-离子铈配合物定位水解切断DNA的研究[J].中国科学(B辑),2003,33:268-272
    [29]Yamamoto Y, Uehara A, Tomita T, et al. Site-selective and hydrolytic two-strand scission of double-stranded DNA using Ce (Ⅳ)/EDTA and pseudo-complementary PNA[J]. Nucleic Acids Research,2004,32:e153
    [30]Long E C, Barton J K. On demonstrating DNA intercalation[J]. Ace. Chem. Res.,1990, 23:271-273
    [31]Wipf P. Synthetic Studies of Biologically Active Marine Cyclopeptides[J]. Chem. Rev., 1995,95:2115-2134
    [32]Humphrey J M, Chamberlin A R. Chemical Synthesis of Natural Product Peptides: Coupling Methods for the Incorporation of Noncoded Amino Acids into Peptides[J]. Chem. Rev.,1997,97:2243-2266
    [33]Kovacic R T, Welch J T, Franklin S J. Sequence-Selective DNA Cleavage by a Chimeric Metallopeptide[J]. J. Am. Chem. Soc.,2003,125:6656-6662
    [34]Nomura A, Sugiura Y. Sequence-selective and hydrolytic cleavage of DNA by zinc finger mutants[J]. J. Am. Chem. Soc.,2004,126:15374-15375
    [35]Schultz P G, Taylor J S, Dervan P B. Design and synthesis of a sequence-specific DNA cleaving molecule.(Distamycin-EDTA)iron(Ⅱ) [J]. J. Am. Chem. Soc.,1982,104: 6861-6863
    [36]Taylor J S, Schultz P G, Dervan P. B. Sequence specific cleavage of DNA by distamycin-EDTA.Fe(Ⅱ) and EDTA-distamycinFe(Ⅱ) [J]. Tetrahedron,1984,40:457-465
    [37]Freedman J H, Pickard L, Weinstein B, et al. Structure of the glycyl-L-histidyl-L-lysine copper (Ⅱ) complexes in solution[J]. Biochem,1982,21:4540-4544
    [38]Jin Y, Cowan J A. DNA cleavage by copper-ATCUN complexes. Factors influencing cleavage mechanism and linearization of dsDNA[J]. J. Am. Chem. Soc.,2005,127: 8408-8415
    [39]Bailly C, Sun J S, Colson P, et al. Footprinting studies on the sequence-selective binding of tilorone to DNA[J]. Bioconjugate Chem.,1992,3:100-103
    [40]Sigman D S, Graham D R, Aurora V, et al. Oxygen-dependent cleavage of DNA by the 1, 10-phenanthroline cuprous complex[J]. J. Biol. Chem.,1979,254:12269-12272
    [41]Kuwabara M, Yoon C, Goyne T, et al. Nuclease activity of 1,10-phenanthroline-copper ion:Reaction with CGCGAATTCGCG and its complexes with netropsin and EcoRI[J]. Biochem.,1986,25:7401-7408
    [42]a) Pitie M, Burrows C J, Meunier B. Mechanisms of DNA cleavage by copper complexes of 3-Clip-Phen and its conjugate with a distamycin analogue[J]. NucleicAcids Research, 2000,28:4856-4864; b) Pitie M, Van Horn J D, Brion D, et al. Targeting the DNA cleavage activity of copper phenanthroline and clip-phen to A.T tracts via linkage to a poly-N-methylpyrrole[J]. Bioconjugate Chem.,2000,11:892-900
    [43]Helissey P, Giorgi-Renault S, Colson P, et al. Sequence-recognition and cleavage of DNA by a netrospin-phenazine-di-N-oxide conjugate[J]. Bioconjugate Chem.,2000,11: 219-227
    [44]Touami S M, Poon C C, Wender P A. Sequence Specific DNA Cleavage by Conjugates of Benzotriazoles and Minor Groove Binders[J]. J. Am. Chem. Soc.,1997,119:7611-7612
    [45]万荣.丝组二肽切割DNA机理研究[D].北京:清华大学化学系,2000
    [46]朱长进.DNA定点切割试剂设计合成研究[D].北京:清华大学化学系,2003
    [47]叶勇.聚酰胺-肽缀合物的合成及活性研究[D].北京:清华大学化学系,2005
    [48]胡锦霞.取代苯并咪唑的合成.南京理工大学硕士毕业论文,2005
    [49]Han F, Taulier N, Chalikian T V. Association of the Minor Groove Binding Drug Hoechst33258 with d(CGCGAATTCGCG)2:Volumetric, Calorimetric, and Spectroscopic Characterizations[J]. Biochemistry,2005,44:9785-9794
    [50]Praveen R, Murari S S, William L J. Synthetic DNA minor groove-binding drugs[J]. Pharmacology& Therapeutics,1999,84:1-111
    [51]Tawar U, Jain A K, Chandra R, et al. A Minor Groove Binding DNA Ligands with Expanded A/T Sequence Length Recognition, Selective Binding to Bent DNA Regions
    and Enhanced Fluorescent Properties[J]. Biochemistry,2003,42:13339-13346
    [52]Ji Y H, Bur D, Hasler W, et al. Tris-benzimidazole Derivatives:Design, Synthesis and DNA Sequence Recognition[J]. Bioorg. Med. Chem.,2001,9:2905-2919
    [53]Satz A L, Bruice T C. Recognition of Nine Base Pairs in the Minor Groove of DNA by a Tripyrrole Peptide-Hoechst Conjugate[J]. J. Am. Chem. Soc.,2001,123:2469-2477
    [54]Oehlers L, Mazzitelli C L, Brodbelt J S, et al. Evaluation of Complexes of DNA Duplexes and Novel Benzoxazoles or Benzimidazoles by Electrospray Ionization Mass Spectrometry[J]. J. Am. Soc. Mass Spectrom.,2004,15:1593-1603
    [55]Kamal A, Ramulu P, Srinivas O, et al. Synthesis of C8-linked pyrrolo[2,1-c] [1,4]benzodiazepine-benzimidazole conjugates with remarkable DNA-binding affinity[J]. Bioorg. Med. Chem. Lett.,2004,14:4791-4794
    [56]Sun X W, Neidleb S, Manna J. Synthesis of a novel dimeric bis-benzimidazole with site-selective DNA-binding properties[J]. Tetrahedron Lett.,2002,43:7239-7241
    [57]唐凌天,王毅,刘新起,等.光谱法研究2-(4-二甲氨基苯基-5-氟-6-吗啉-1-氢-苯并咪唑与小牛胸腺DNA的相互作用[J].光谱学与光谱分析.2005,25(10):1618-1621
    [58]Wang L, Kumar A, Boykin D W, et al. Comparative Thermodynamics for Monomer and Dimer Sequence-dependent Binding of a Heterocyclic Dication in the DNA Minor Groove[J]. J. Mot. Biol.,2002,317:361-374
    [59]Tanious F A, Hamelberg D, Bailly C, et al. DNA Sequence Dependent Monomer-Dimer Binding Modulation of Asymmetric Benzimidazole Derivatives[J]. J. Am. Chem. Soc., 2004,126:143-153
    [60]Miao Y, Lee M P H, Parkinson G N. et al. Out-of-Shape DNA Minor Groove Binders: Induced Fit Interactions of Heterocyclic Dications with the DNA Minor Groove[J]. Biochemistry,2005,44:14701-14708
    [61]Renneberg D, Dervan P B. Imidazopyridine/Pyrrole and Hydroxybenzimidazol/pyrrole Pairs for DNA Minor Groove Recognition[J]. J. Am. Chem. Soc.,2003,125:5707-5716
    [62]Lombardy R L, Tanious F A, Ramachandran K, et al. Synthesis and DNA Interactions of Benzimidazole Dications Which Have Activity against Opportunistic Infections[J]. J. Med. Chem.,1996,39:1452-1462
    [63]Reddy P M, Jindra P T, Satz A L, et al. Sequence Selective Recognition in the Minor Groove of dsDNA by Pyrrole, Imidazole-Substituted Bis-benzimidazole Conjugates[J]. J. Am. Chem. Soc.,2003,125:7843-7848
    [64]Scheffer U, Strick A, Ludwig V, et al. Metal-Free Catalysts for the Hydrolysis of RNA Derived from Guanidines,2-Amino pyridines, and 2-Aminobenzimidazoles[J]. J. Am. Chem. Soc.,2005,127:2211-2217
    [65]Stevenson C, Davies R J H. Photosensitization of Guanine-Specific DNA Damage by 2-Phenylbenzimidazole and the Sunscreen Agent 2-Phenylbenzimidazole-5-sulfonic Acid[J]. Chem. Res. Toxicol.,1999,12:38-45
    [66]Sundberg R J, Martin R B. Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological systems[J]. Chem. Rev.,1974,74: 471-517
    [67]陈万东,朱守荣,林华宽,等.三(2-苯并咪唑)胺-锌(Ⅱ)[J].高学学校化学学报.1997,18(8):1321-1324
    [68]李庆祥,罗勤慧,王志林.双功能的MnSOD和MnCAT的模拟物-1,4-二亚甲基苯并咪唑-1,4,7-三氮环壬烷合锰配合物的研究[J].复旦大学学报(自然科学版),2003,42(6):880-886潘群慧,蒋伟,汪明,等.一种可作为蛋白质水解型结构探针的四核铁配合物[J].科学通报.2005,50(13):1314-1317
    [69]Pan Q, Jiang W, Liao Z, et al. Recognition of Secondary Structures in Proteins by a Diiron(III) Complex via a Hydrolytic Pathway[J]. Inorg. Chem.,2006,45:490-492
    [70]Reisner E, Arion V B, Eichinger A, et al. Tuning of Redox Properties for the Design of Ruthenium Anticancer Drugs:Part 2. Syntheses, Crystal Structures, and Electrochemistry of Potentially Anti-tumor [Rum/nCl6-n(Azole)n]2(n=3,4,6) Complexes[J]. Inorg. Chem., 2005,44:6704-6716
    [71]Arjmand F, Mohani B, Ahmad S. Synthesis, antibacterial, antifungal activity and interaction of CT-DNA with a new benzimidazole derived Cu (Ⅱ) complex[J]. Eur. J. Med. Chem.,2005,40:1103-1110
    [72]Wang J, Shuai L, Xiao X, et al. Synthesis, characterization and DNA binding studies of a zinc complex with 2,6-bis(benzimidazol-2-yl) pyridine[J]. J. Inorg. Biochem.,2005,99: 883-885
    [73]Jiang C W. Homoleptic ruthenium (II) complexes containing asymmetric tridentate 2-(benzimidazole-2-yl)-1,10-phenanthroline likes ligands:syntheses, characterization and DNA binding[J]. J. Inorg. Biochem.,2004,98:1399-1404
    [74]Jiang C W, Chao H, Li H, Ji L N. Syntheses, characterization and DNA-binding studies of ruthenium(Ⅱ) terpyridine complexes:[Ru(tpy)(PHBI)]2+ and [Ru(tpy)(PHNI)]2+[J]. J. Inorg.Biochem.,2003,93:247-255
    [75]Gumu F, Algiil T. DNA Binding Studies with cis-Dichlorobis (5(6)-nonlchloro substituted-2-hydroxymethyl-benzimidazole)Platinurn(Ⅱ) Complexes[J]. J. Inorg. Biochem.,1997,68:71-74
    [76]Vaidyanathan V G, Nair B U. Synthesis, characterization and DNA binding studies of a ruthenium(Ⅱ) complex[J]. J. Inorg. Biochem.,2002,91(2):405-412
    [77]Gonzalez-Alvarez M, Alzuet G, Borras J, et al. Nuclease activity of [Cu(sulfathiazolato)2 (benzimidazole)2]2MeOH:Synthesis, properties and crystal structure[J]. J. Inorg. Biochem.,2002,89:29-35
    [78]余四旺,刘长林,李东风,等.双锌配合Zn2(DPTB)Cl4水解DNA[J].无机化学学报.2002,18(11):1112-1118
    [79]Liu C L, Yu S W, Li D F, et al. DNA Hydrolytic Cleavage by the Diiron(III) Complex Fe2(DTPB)(μ-O)(μ-Ac)Cl(BF4)2:Comparison with Other Binuclear Transition Metal Complexes[J]. Inorg. Chem.,2002,41:913-922
    [80]Schnaith L M T, Hanson R S, Que L J. Double-Stranded Cleavage of pBR322 by a Diiron Complex via a "Hydrolytic" Mechanism[J]. Proc. Natl. Acad. Sci. U.S.A.,1994,91 (1):569-573
    [81]乔仁忠.聚酰胺与大环多胺缀合物的合成及活性[D].北京:清华大学化学系,2005
    [82]向清祥.新型大环多胺金属配合物的设计合成、超分子识别与仿酶催化作用[D].四川:四川大学化学学院,2002
    [83]Peng W, Liu P Y, Jiang N, et al. Dinuclear macrocyclic polyamine zinc(II) complexes
    linked with flexible spacers:Synthesis, characterization, and DNA cleavage[J]. Bioorg. Chem.,2005,33:374-385
    [84]Xiang Q X, Zhang J, Liu P Y, et al. Dinuclear macrocyclic polyamine zinc(II) complexes: Syntheses, characterization and their interaction with plasmid DNA[J]. J. Inorg. Biochem., 2005,99:1661-1669
    [85]Fang Y G, Zhang J, Chen S Y, et al. Chiral multinuclear macrocyclic polyamine complexes:Synthesis, characterization and their interaction with plasmid DNA[J]. Bioorg. Med. Chem.,2007,15:696-701
    [86]Wilcox D E. Binuclear Metallohydrolases[J]. Chem. Rev.,1996,96:2435-2440
    [87]张寿春,邵颖,涂超,等.新型双核铜配合物的结构及DNA切割活性[J].无机化学学报,2004,20(10):1159-1164
    [88]Kikuta E, Aoki S, Kimura E. A New Type of Potent Inhibitors of HIV-1 TAR RNA-Tat Peptide Binding by Zinc(II)-Macrocyclic Tetraamine Complexes[J]. J. Am. Chem. Soc., 2001,123:7911-7912
    [89]Zou G L, Zhou H, Hu W Y. A Novel View of Vitamin C[J]. Amino Acids& Biotic Resources.,1998,20 (2):54-55
    [90]徐梁华,童元建,武冠英.抗坏血酸—过氧化物新型氧化还原引发体系[J].北京化工学院学报(自然科学版),1994,21,3
    [91]Kitanoa K, Fukukawab T, Ohtsujib Y, et al. Mutagenicity and DNA-damaging activity caused by decomposed products of potassium sorbate reacting with ascorbic acid in the presence of Fe salt[J]. Food Chem. Toxicol.,2002,40:1589-1594
    [92]Santra B K, Reddy P A N, Neelakanta G, et al. Oxidative cleavage of DNA by a dipyridoquinoxaline copper(Ⅱ) complex in the presence of ascorbic acid[J]. J. Inorg. Biochem.2002,89:191-196
    [93]Lu C, Koropatnick J, Cherian M G Roles of vitamin C in radiation-induced DNA damage in presence and absence of copper[J]. Chem.-Biol. Interact.2001,137:75-88
    [94]Yamamoto I, Tai A, Fujinami Y, et al. Synthesis and Characterization of a Series of Novel Monoacylated Ascorbic Acid Derivatives,6-O-Acyl-2-O-a-D glucopyranosyl-L-ascorbic Acids, as Skin Antioxidants[J]. J. Med. Chem.,2002,45:462-468
    [95]Tai A, Goto S, Ishiguro Y, et al. Permeation and metabolism of a series of novel lipophilic ascorbic acid derivatives,6-O-acyl-2-O-α-d-glucopyranosyl 1-ascorbic acids with a branched acyl chain, in a human living skin equivalent model[J]. Bioorg. Med. Chem. Lett.,2004,14:623-627
    [96]Frimee A A, Gilinskysharon P. Reaction of Superoxide with Ascorbic Acid Derivatives: Insight into the Superoxide-Mediated Oxidation of Dehydroascorbic Acid[J]. J. Org. Chem.,1995,60:2796
    [97]Schmid E, Figala V, Roth D, et al. Antioxidant and neutrophil-inhibiting properties of new 2-O-methyl-6-(alkylthio)ascorbic acid derivatives[J]. J. Med. Chem.,1993,36:4021
    [98]Nihro Y, Sogawa S, Izumi A, et al.3-O-alkylascorbic acids as free radical quenchers.3. Protective effect on coronary occlusion-reperfusion induced arrhythmias in anesthetized rats[J]. J. Med. Chem.,1992,35(9),1618-1623
    [99]PeiY L, Ning J, Ji Z G, et al. The Oxidative Damage of Plasmid DNA by Ascorbic Acid Derivativesin vitro:The First Research on the Relationship between the Structure of Ascorbic Acid and the Oxidative Damage of Plasmid DNA[J]. Chemistry& Biodiversity,
    2006,3:958
    [100]Wan R, Zhao G, Chen J, et al. Research progresses of artificial nucleic acid cleavage agents[J]. Chinese Science Bulletin,2000,45(22):2017-2028
    [101]万荣,麻远,赵玉芬.人工核酸切割试剂研究进展[J].科学通报.2000,45(8):785-795
    [102]Pogozelski W K, Tullius T D. Oxidative strand scission of nucleic acids:Routes initiated by hydrogen abstraction from the sugar moiety[J]. Chem. Rev.,1998,1089-1108
    [103]Tullius T D, Dombroski B A. Hydroxyl radical"footprinting":High-resolution information about DNA-protein contacts and application to repressor and Cro protein[J]. Proc. Natl. Acad. Sci. USA.,1986,53:5469-5473
    [104]Sigman D S, Graham D R, et al. Oxygen-dependent cleavage of DNA by the 1,10-phenanthroline cuprous complex[J]. J. Biol. Chem.,1979,254:12269-12272
    [105]Neyhart G A, Cheng C C, Thorp H H. Kinetics and mechanism of the oxidation of sugars and nucleotides by oxoruthenium(Ⅳ):Model studies for predicting cleavage patterns in polymeric DNA and RNA[J]. J. Am. Chem. Soc.,1995,117:1463-1471
    [106]Rosenkranz H S, Rosenkraz S. Degradation of DNA by cystein. Arch. Biochem. Biophys., 1971,146:483-487
    [107]Ward B, Skorobogaty A. DNA cleavage specificity of a group of cationic metalloporphyrins[J]. Biochemistry,1986,25:6875-6883
    [108]Nielsen P E, Jeppesen C, Buchardt O. Uranyl salts as photochemical agents for cleavage of DNA and probing of protein-DNA contacts[J]. FEBS Lett,1988,235:122-124
    [109]Huang X, Pieczko M E, Long E C. Combinatorial optimization of the DNA cleaving Ni2+Xaa-Xaa-His metallotripeptide domain[J]. Biochemistry,1999,38:2160-2166
    [110]Sitlani A, Barton J K. DNA photocleavage by phenanthrenequinone diimine complexes of rhodium(Ⅲ):Shape-selective recognition and reaction[J]. J. Am. Chem. Soc.,1992,114: 2303-2312
    [111]Burger R M. Cleavage of nucleic acids by bleomycin[J]. Chem. Rev.,1998,3:1153-1171
    [112]Sheng X, Lu X M, Chen Y T, et al. Synthesis, DNA-binding, cleavage, and cytotoxic activity of new 1,7-dioxa-4,10 diazacyclododecane artificial receptors containing bisguanidinoethyl or diaminoethyl double side arms[J]. Chem. Eur. J,2007,13(34): 9703-9712
    [113]Sheng X, Guo X, Lu X M, et al. DNA binding, cleavage, and cytotoxic activity of the preorganized dinuclear Zinc(Ⅱ) complex of triazacyclononane derivatives[J]. Bioconjugate Chem.,2008,19(2):490-498
    [114]Sheng X, Lu X M, Zhang J J, et al. Synthesis and DNA cleavage activity of artificial receptor 1,4,7-triazacyclononane containing guanidinoethyl and hydroxyethyl side arms[J]. J. Org. Chem.,2007,72(5):1799-1802
    [115]Behmoaras T, Toulme J J, Helene C. Tryptopha-containing peptide recognized and cleaves DNA at apurinic sites[J]. Nuture,1981,292(5826):858-859
    [116]Pierre J, Laval J. Release of 7-methylguanine residules from alkylated DNA by extracts of micrococcus luteus and escherichia Coli[J]. J. Biol. Chem.,1981,256:10217-10220
    [1]尹强.大环多胺缀合物核酸水解试剂的合成及生物活性研究[D].北京:清华大学化学系,2006
    [2]乔仁忠.聚酰胺与大环多胺缀合物的合成及活性[D].北京:清华大学化学系,2005
    [3]Li C, Qiao R Z, Wang Y Q, et al. Synthesis and biological evaluation of the Zn (II)-IDB complexes appended with oligopolyamide as potent artificial nuclease[J]. Bioorg. Med. Chem. Lett.,2008,18(21):5766-5770
    [4]向清祥.新型大环多胺金属配合物的设计合成、超分子识别与仿酶催化作用[D].四川:四川大学化学学院,2002
    [5]Thakkar K, Geahlen R L, Cushman M. Synthesis and protein-tyrosine kinase inhibitory activity of polyhydroxylated stilbene analogs of piceatannol[J]. J. Med. Chem.,1993, 36(20):2950-2955
    [6]Stang S L, Rocaboy C, Gladysz J A, et al. Convenient syntheses of fluorous phenols of the formula HOC6H5-n((CH2)3(CF2)7CF3)n (n=1,2) and the corresponding triaryl phosphites[J]. Journal of Fluorine Chemistry,2003,119(2):141-149
    [7]Battah S H, Edwards C. Synthesis and Biological Studies of 5-Aminolevulinic Acid-Containing Dendrimers for Photodynamic Therapy[J]. Bioconjugate Chem.,2001, 12(6):980-988
    [8]Gilles Q, Philippe K, Christophe M, et al. Enhanced delivery of y-secretase inhibitor DAPT into the brain via an ascorbic acid mediated strategy[J]. Org. Biomol. Chem.,2005, 3:2450-2457
    [9]Kohji S, Masahiro M, Takeshi T. Use of Ferrocene Scaffolds as Pendant Groups in Hairpin-Type Pyrrole-Imidazole Polyamide Molecules Showing Sequence-Selective Binding to DNA Duplexes[J]. J. Org. Chem.,2005,70:10311-10322
    [10]黄伟强,袁谷,肖军华.含六个杂环的寡聚酰胺的合成[J].化学通报,2001,7:425
    [11]LI Q L, Yang B J. Study on synthesis of polyamide with four hetero rings[J]. Journal of Qinghai University (Nature Science),2005,23(2):57
    [12]Xiao J H, Yuan G. A Convenient Method for the Synthesis of DNA-Recognizing Polyamides in Solution[J]. J. Org. Chem.,2000,65:5506-5523
    [1]杨铭.药物研究中的分子识别[M].北京:北京医科大学中国协和医科大学联合出版社,1999
    [2]张今,张红缨,李青山,等.核酸结构与动力学导轮[M].北京:科学出版社
    [3]Moore M H, Hunter W N, Kennard O. DNA-drug interactions:the crystal structrue of d (CGATCG) complexed with daunomycin[J]. J. Mol. Biol.,1989,206:693-705
    [4]Wang A H, Ughetto G, Quigley G J, et al. Interactions between an anthracycline antibiotic and DNA:molecular structure of daunomycin complexed to d (CpGpTpApCpG) at 1.2-A resolution[J]. Biochemistry,1987,26:1152-1163
    [5]杨频,高飞.生物无机化学原理[M].北京:科学出版社,2002
    [6]Hertzberg R P, Dervan P B. Cleavage of DNA with methidiumpropyl-EDTA-iron(II): reaction conditions and product analyses[J]. Biochemistry,1984,23:3934-3945
    [7]Pamatong F V, Detmer C A I, Bocarsly J R. Double-Strand Cleavage of DNA by a Monofunctional Transition Metal Cleavage Agent[J]. J. Am. Chem. Soc.,1996,118: 5339-5345
    [8]Povirk L F, Wubker W, Kohnlein W, et al. DNA double-strand breaks and alkali-labile bonds produced by bleomycin[J]. Nucleic Acids Res.,1977,4:3573-3580
    [9]Freifelder D, Trumbo B. Matching of single-strand breaks to form double-strand breaks in DNA[J]. Biopolymers,1969,7:681-693
    [10]Cowan R, Collis C M, Grigg G W. Breakage of double-stranded DNA due to single-stranded nicking[J]. J. Theor. Biol.,1987,127:229-245
    [11]Branum M E, Tipton A K, Zhu S, et al. Double-Strand Hydrolysis of Plasmid DNA by Dicerium Complexes at 37℃[J]. J. Am. Chem. Soc.,2001,123:1898-1904
    [12]Jin Y, Cowan J A. DNA Cleavage by Copper-ATCUN Complexes. Factors Influencing Cleavage Mechanism and Linearization of dsDNA[J]. J. Am. Chem. Soc.,2005,127: 8408-8415
    [13]Jin Y, Lewis M A, Gokhale N H, et al. Influence of Stereochemistry and Redox Potentials on the Single-and Double-Strand DNA Cleavage Efficiency of Cu(Ⅱ)-and Ni(Ⅱ) ·Lys-Gly-His-Derived ATCUN Metallopeptides[J]. J. Am. Chem. Soc.,2007,129: 8353-8361
    [14]Melvin M S, Tomlinson J T, Saluta G R, et al. Double-Strand DNA Cleavage by Copper(?)Prodigiosin[J]. J. Am. Chem. Soc.,2000,122:6333-6334
    [15]Pamatong F V, Detmer C A, et al. Double-Strand Cleavage of DNA by a Monofunctional Transition Metal Cleavage Agent[J]. J. Am. Chem. Soc.,1996,118(23):5339-5345
    [16]Rodger A, Norden B. Circular Dichroism and Linear Dichroism[M]. Oxford University Press:New York,1997.24-32
    [17]鲁子贤,崔涛,施庆洛.圆二色性和旋光色散在分子生物学中的应用[M].北京:科学出版社,1987.134-156
    [18]Ivanov V I, Minchenkova L E, Schyolkina A K, et al. Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism[J]. Biopolymers, 1973,12:89-110
    [19]Lakowicz J R. Principles of fluorescence spectroscopy[M]. Kluwer Academic/Plenum Publishers, second edition:New York.1999
    [20]Le Pecq J B, Paoletti C. A new fluorometric method for RNA and DNA determination[J]. Anal. Biochem.,1966,17:100-107
    [21]Benevides J M, Thomas G J. Conformational changes induced in B-DNA by ethidium intercalation[J]. Biochemistry,2005,44:2993-2999
    [22]Lee M, Rhodes A L, Wyatt M D, et al. GC base sequence recognition by oligo(imidazolecarboxamide) and C-terminus modified analogues of distamycin deduced from circular dichroism proton nuclear magnetic resonance and methidiumpropylethylenediaminetetraacetate-Iron (Ⅱ) Footprinting studies[J]. Biochemistry,1993,32:4237-4245
    [23]李来生,黄伟东,王瑞琼,等.荧光法研究抗癌药物更生霉素D与小牛胸腺DNA的作用机理[J].化学学报,1999,57:572-577
    [24]Michael G G. Spectrophotometry and Spectrofluorimetry[M]. Oxford University Press: New York,2000.329-356
    [25]Kumar C V, Buranaprapuk A. Tuning the Selectivity of Protein Photocleavage: Spectroscopic and Photochemical Studies[J]. J. Am. Chem. Soc.,1999,121:4262-4270
    [26]Buranappapuk A, Kumar C V, Jockusch S, et al., Photochemical Protein Scissors:Role of Aromatic Residues on the Binding Affinity and Photocleavage Efficiency of Pyrenyl Peptides[J]. Tetrahedron,2000,56:7019-7025
    [27]Rentzeperis D, Marky L A. Interaction of minor groove ligands to an AAATT/AATTT site: correlation of thermodynamic characterization and solution structure[J]. Biochemistry, 1995,34:2937-2945
    [28]Zhong W, Yu J, Huang W, et al. Spectroscopic studies of interaction of chlorobenzylidine with DNA[J]. Biopolymer,2001,62:315-323
    [29]Kumar C V, Asuncion E H. DNA binding studies and site selective fluorescence sensitization of an anthryl probe[J]. J. Am. Chem. Soc.,1993,115:8547-8553
    [1]Mark D B, Ian C G, Marcello D, et al. Pyridine-Borane-Based Reductive Amination Protocol[J]. J. Org. Chem.,1996,60:5995-5996
    [2]Ahmed F A, Kenneth G C, Bruce D H, et al. Reductive Amination of Aldehydes and Ketones with Sodium Triacetoxyborohydride. Studies on Direct and Indirect Reductive Amination Procedures[J]. J. Org. Chem.,1996,61:3849-3862
    [3]Brindaban C R, Adinath M, Arunkanti S. One-Pot Reductive Amination of Conjugated Aldehydes and Ketones with Silica Gel and Zinc Borohydride[J]. J. Org. Chem.,1998,63: 370-373
    [4]Kuehne M E, Shannon P J. Reduction of Amides and Lactams to Amines by Reactions with Phosphorus Oxychloride and Sodium Borohydride[J]. J. Org. Chem.,1977,42(12): 2082-2087
    [1]Benjamin J R, Alison L M, Snjezana S, et al. Microscopic Investigations into PEG-Cationic Polymer-Induced DNA Condensation[J]. Langmuir,2001,17 (11): 3185-3193
    [2]Luda S S, Alexander A G, Alexander F, et al. Lyubchenko. Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials[J]. Ultramicroscopy,2003,97:279-287
    [3]Ye F, Thomas S S, Tim W, et al. Solid-State DNA Sizing by Atomic Force Microscopy[J]. Anal. Chem.,1998,70(10):2123-2129
    [4]David P, Loc H, Fabrice L, et al. Anionic Polyelectrolyte Adsorption on Mica Mediated by Multivalent Cations:A Solution to DNA Imaging by Atomic Force Microscopy under High Ionic Strengths[J]. Langmuir,2006,22:6651-6660
    [5]Paul R D, Yuri L L. Atomic Force Microscopy Study of the Effects of Mg2+ and Other Divalent Cations on the End-to-End DNA Interactions[J]. Biochemistry,2002,41: 11372-11378
    [6]Aleksandra M, Ioana V, Micah M, et al. Exploring the Interaction of Ruthenium(II) Polypyridyl Complexes with DNA Using Single-Molecule Techniques[J]. Langmuir, 2006,22:4699-4709

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700