光聚合聚乳酸—聚乙二醇凝胶薄膜的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,生物可降解高分子材料在材料科学和生物医学领域得到了广泛的应用。聚乳酸(PLA)是一种无毒、可完全降解的聚合物,不仅具有较好的化学惰性、易加工性,而且还具有良好的生物相容性,在生物医学领域受到广泛重视。聚乙二醇(PEG)具有良好的亲水性和生物相容性,能够抗蛋白质吸附,是一种优良的生物医学材料。但二者各有其局限性:聚乳酸是疏水性物质,降低了其生物相容性;而聚乙二醇的降解性较差。人们通过各种手段将PLA与PEG复合,使两者在性能上互补,以获得性能更加优异的生物医学材料。
     本文选用L-乳酸、1,6-己二醇、三羟甲基丙烷和季戊四醇为原料,以氯化亚锡为催化剂,通过直接熔融缩聚法,制备了一系列端基结构及分子量各不相同的线形、支链形及星形结构的端羟基聚乳酸(PLLA-OH),进一步与丙烯酰氯反应,得到了相应的聚乳酸丙烯酸酯(PLLA-AC)。在此基础上,将PLLA-AC和聚乙二醇双丙烯酸酯(PEG-DA)按照不同配比,在光引发剂2,2-二甲氧基-2-苯基苯乙酮(DMPA)作用下,经紫外光照射制得PLLA-PEG凝胶薄膜。
     利用IR、1H-NMR、GPC和XRD等对PLLA-OH和PLLA-AC的结构和性质进行分析;利用XRD、拉力机和SEM等对PLLA-PEG凝胶薄膜的结晶性能、力学性能和内部形态进行了分析,并对薄膜的溶胀性能、降解性能和药物释放性能进行了详细地研究。
     结果表明,通过改变PLLA-AC的结构、分子量以及PLLA-AC与PEG-DA的配比,可以调节PLLA-PEG光聚合水凝胶薄膜的各项性质,并使其成为一种具有优良性能和应用前景的生物材料。
The biodegradable polymer materials have been widely investigated and applied in material science and biomedical field in recent years. Poly(L-lactic acid) has been attached much attention in biomaterial applications owing to its safety, biodegradability, environmental compatibility and so on. However, its clinical applications are sometimes interfered with hydrophobic property, which could decrease the biocompatibility. Poly(ethylene glycol) is also an excellent biomaterial with hydrophilic ability, biocompatibility and resistibility to protein adsorption and cell adhesion. PLLA is usually modified by PEG to get a better material, which could combine the advantages of PLLA and PEG.
     In the paper, multi-hydroxyl groups ended poly(L-lactic acid)s (PLLA-OH) were prepared using L-lactic acid and 1, 6-hexanediol / 2-ethyl-2-hydroxymethyl-1, 3-propanediol / pentaerythritol by direct polycondensation. Afterward, acrylated poly (L-lactic acid)s (PLLA-AC) were gained through the reaction of PLLA-OHs and acryloyl chloride. Furthermore, a series of PLLA-PEG hydrogel films were formed by UV photopolymerization using 2, 2-dimethoxy-2-phenylacetophenone (DMPA) as initiator.
     The structures and properties of PLLA-OHs and PLLA-ACs were characterized by IR, 1H-NMR, GPC and XRD. The properties of PLLA-PEG hydrogel films were measured by XRD, SEM and so on. Besides, the swelling performance, degradation and drug release behaviors of PLLA-PEG hydrogel films were also studied in detail.
     The results show that PLLA-PEG hydrogel films could improve the property and performance by changing PLLA-AC molecular weight, structure and proportion of PEG-DA, which could be widely applied in biomedical field in the future.
引文
[1] Hubbell J A. Hydrogel systems for barriers and local drug delivery in the control of wound healing. J CONTROL RELEASE, 1996, 39: 305-313
    [2] Cruise G M, Scharp D S, Hubbell J A. Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. BIOMATERIALS, 1998, 19: 287–1294
    [3] Sawhney A S, Pathak C P, Hubbell J A. Biomerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(α-hydroxy acid)diacrylate macromers. MACROMOLECULES, 1993, 26: 581-587.
    [4] Masters K S, Shah D N, Anseth K S, et al. Designing scaffolds for valvular interstitial cells: Cell adhesion and function on naturally derived materials. J BIOMED MATER RES A, 2004, 71A (1): 172-180.
    [5] Masters K S, Shah D N, Anseth K S, et al. Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells. BIOMATERIALS, 2005, 26 (15): 2517-2525.
    [6] Ono K, Saito Y, Kurita A, et al. Photocrosslinkable chitosan as a biological adhesive. J BIOMED MATER RES, 2000, 49 (2): 289-295.
    [7] Ishihara M, Nakanishi K, Kurita A, et al. Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. BIOMATERIALS, 2002, 23 (3): 833-840.
    [8] Burdick J A, Ward M, Langer R, et al. Stimulation of neurite outgrowth by neurotrophins delivered from degradable hydrogels. BIOMATERIALS, 2006, 27 (3): 452-459.
    [9] Burdick J A, Mason M N, Anseth K S, et al. Delivery of osteoinductive growth factors from degradable PEG hydrogels influences osteoblast differentiation and mineralization. J CONTROL RELEASE , 2002, 83 (1): 53-63.
    [10] Bryant S J, Durand K L, Anseth K S. Manipulations in hydrogel chemistry control photoencapsulated chondrocyte behavior and their extracellular matrix production. J BIOMED MATER RES A, 2003, 67A (4): 1430-1436.
    [11] Bryant S J, Anseth K S, Lee D A, et al. Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. J ORTHOP RES, 2004, 22 (5): 1143-1149.
    [12] Bryant S J, Anseth K S. The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels. BIOMATERIALS, 2001, 22: 619-626
    [13] Li Q, Wang J, Elisseeff J H, et al. Biodegradable and photocrosslinkablepolyphosphoester hydrogel. BIOMATERIALS, 2006, 27 (7): 1027-1034.
    [14] Hahn M S, Taite L J, West J L, et al. Photolithographic patterning of polyethylene glycol hydrogels. BIOMATERIALS, 2006, 27 (12): 2519-2524.
    [15] DeLong S A, Gobin A S, West J L. Covalent immobilization of RGDS on hydrogel surfaces to direct cell alignment and migration. J CONTROL RELEASE, 2005, 109 (1-3): 139-148.
    [16] Cruise G M, Hegre O D, Lamberti F V, et al. In vitro and in vivo performance of porcine islets encapsulated in interfacially photopolymerized poly(ethylene glycol) diacrylate membranes. CELL TRANSPLANT, 1999, 8: 293-306.
    [17] Cruise G M, Scharp D S, Hubbell J A. Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. BIOMATERIALS, 1998, 19: 1287-1294.
    [18] Elisseeff J, Anseth K, Langer R, et al. Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. PLAST RECONSTR SURG, 1999, 104 (4): 1014-1022
    [19] Patel P N, Gobin A S, West J L, et al. Poly( ethylene glycol) hydrogel system supports preadipocyte viability, adhesion, and proliferation. TISSUE ENG, 2005, 11 (9-10): 1498-1505.
    [20] DeLong S A, Moon J J, West J L. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. BIOMATERIALS, 2005, 26 (16): 3227-3234.
    [21] Gobin A S, West J L. Val-ala-pro-gly, an elastin-derived non-integrin ligand: Smooth muscle cell adhesion and specificity. J BIOMED MATER RES A, 2003, 67A (1): 255-259.
    [22] West J L, Hubbell J A. Photopolymerized hydrogel materials for drug-delivery applications. REACTIVE POLYMERS, 1995, 25 (2-3): 139-147.
    [23] Schmedlen K H, Masters K S, West J L. Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. BIOMATERIALS, 2002, 23 (22): 4325-4332.
    [24] Sershen S R, Westcott S L, West J L, et al. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J BIOMED MATER RES , 2000, 51 (3): 293-298.
    [25] Nuttelman C R, Benoit D S W, Anseth K S, et al. The effect of ethylene glycol methacrylate phosphate in PEG hydrogels on mineralization and viability of encapsulated hMSCs. BIOMATERIALS, 2006, 27 (8): 1377-1386.
    [26] Reddy S K, Anseth K S, Bowman C N. Modeling of network degradation in mixed step-chain growth polymerizations. POLYMER, 2005, 46 (12): 4212-4222.
    [27] Rydholm A E, Bowman C N, Anseth K S. Degradable thiol-acrylate photopolymers: polymerization and degradation behavior of an in situ forming biomaterial. BIOMATERIALS, 2005, 26 (22): 4495-4506.
    [28] Bryant S J, Chowdhury T T, Anseth K S, et al. Crosslinking density influences chondrocyte metabolism in dynamically loaded photocrosslinked poly(ethylene glycol) hydrogels. ANN BIOMED ENG, 2004, 32 (3): 407-417.
    [29] Bryant S J, Bender R J, Anseth K S, et al. Encapsulating Chondrocytes in degrading PEG hydrogels with high modulus: Engineering gel structural changes to facilitate cartilaginous tissue production. BIOTECHNOL BIOENG , 2004, 86 (7): 747-755.
    [30] Bryant S J, Anseth K S. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J BIOMED MATER RES , 2002, 59 (1): 63-72.
    [31] Rice M A, Anseth K S. Encapsulating chondrocytes in copolymer gels: Bimodal degradation kinetics influence cell phenotype and extracellular matrix development. J BIOMED MATER RES A, 2004,70A (4): 560-568.
    [32] Davis K A, Burdick J A, Anseth K S. Photoinitiated crosslinked degradable copolymer networks for tissue engineering applications. BIOMATERIALS, 2003, 24 (14): 2485-2495.
    [33] Bryant S J, Anseth K S. Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. J BIOMED MATER RES A, 2003, 64A (1): 70-79.
    [34] Burdick J A, Mason M N, Anseth K S, et al. Delivery of osteoinductive growth factors from degradable PEG hydrogels influences osteoblast differentiation and mineralization. J CONTROL RELEASE , 2002, 83 (1): 53-63.
    [35] Burdick J A, Anseth K S. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. BIOMATERIALS, 2002, 23 (22): 4315-4323.
    [36] Martens P J, Bryant S J, Anseth K S. Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering. BIOMACROMOLECULES, 2003, 4 (2): 283-292.
    [37] Nuttelman C R, Henry S M, Anseth K S. Synthesis and characterization of photocrosslinkable, degradable poly(vinyl alcohol)-based tissue engineering scaffolds. BIOMATERIALS, 2002, 23 (17): 3617-3626.
    [38] Bryant S J, Davis-Arehart K A, Anseth K S, et al. Synthesis and characterization of photopolymerized multifunctional hydrogels: Water-soluble poly(vinyl alcohol) and chondroitin sulfate macromers for chondrocyte encapsulation. MACROMOLECULES, 2004, 37 (18): 6726-6733.
    [39] Dikovsky D, Bianco-Peled H, Seliktar D. The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration. BIOMATERIALS, 2006, 27 (8): 1496-1506.
    [40] Almany L, Seliktar D. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. BIOMATERIALS, 2005, 26 (15):2467-2477.
    [41] Sontjens S H M, Nettles D L, Grinstaff M W, et al. Biodendrimer-based hydrogel scaffolds for cartilage tissue repair. BIOMACROMOLECULES, 2006, 7 (1): 310-316.
    [42] Nettles D L, Vail T P, Grinstaff M W, et al. Photocrosslinkable hyaluronan as a scaffold for articular cartilage repair. ANN BIOMED ENG, 2004, 32 (3): 391-397.
    [43] Miki D, Dastgheib K, Grinstaff M W. A photopolymerized sealant for corneal lacerations. CORNEA, 2002, 21 (4): 393-399.
    [44] Smeds K A, Grinstaff M W. Photocrosslinkable polysaccharides for in situ hydrogel formation. J BIOMED MATER RES, 2001, 54 (1): 115-121.
    [45] Elisseeff J, McIntosh W, Langer R, et al. Controlled-release of IGF-I and TGF-beta 1 in a photopolymerizing hydrogel for cartilage tissue engineering. J ORTHOP RES, 2001, 19 (6): 1098-1104.
    [46] Elisseeff J, McIntosh W, Langer R, et al. Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. J BIOMED MATER RES, 2000, 51 (2): 164-171.
    [47] Jia X Q, Burdick J A, Langer R, et al. Synthesis and characterization of in situ cross-linkable hyaluronic acid-based hydrogels with potential application for vocal fold regeneration. MACROMOLECULES, 2004, 37 (9): 3239-3248.
    [48] Li Q, Wang J, Elisseeff J H, et al. Biodegradable and photocrosslinkable polyphosphoester hydrogel. BIOMATERIALS, 2006, 27 (7): 1027-1034.
    [49] Wang D A, Williams C G, Elisseeff J H, et al. Bioresponsive phosphoester hydrogels for bone tissue engineering. TISSUE ENG, 2005, 11 (1-2): 201-213.
    [50] Wang D A, Williams C G, Elisseeff J H, et al. Synthesis and characterization of a novel degradable phosphate-containing hydrogel. BIOMATERIALS, 2003, 24 (22): 3969-3980.
    [51] Williams C G, Kim T K, Elisseeff J H, et al. In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. TISSUE ENG, 2003, 9 (4): 679-688.
    [52] Li Q, Williams C G, Elisseeff J H, et al. Photocrosslinkable polysaccharides based on chondroitin sulfate. J BIOMED MATER RES A, 2004, 68A (1): 28-33.
    [53] Yang F, Williams C G, Elisseeff J H, et al. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. BIOMATERIALS, 2005, 26 (30): 5991-5998.
    [54] Wang D A, Williams C G, Elisseeff J H, et al. Enhancing the tissue-biomaterial interface: Tissue-initiated integration of biomaterials. ADV FUNCT MATER, 2004, 14 (12): 1152-1159.
    [55] Obara K, Ishihara M, Maehara T, et al. Acceleration of wound healing in healing-impaired db/db mice with a photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2. WOUND REPAIR REGEN, 2005, 13 (4): 390-397.
    [56] Ono K, Ishihara M, Maehara T, et al. Experimental evaluation of photocrosslinkable chitosan as a biologic adhesive with surgical applications. SURGERY, 2001, 130 (5): 844-850.
    [57] Fujita M, Ishihara M, Maehara T, et al. Vascularization in vivo caused by the controlled release of fibroblast growth factor-2 from an injectable chitosan/non-anticoagulant heparin hydrogel. BIOMATERIALS, 2004, 25 (4): 699-706.
    [58] Alhadlaq A, Tang M, Mao J J. Engineered adipose tissue from human mesenchymal stem cells maintains predefined shape and dimension: Implications in soft tissue augmentation and reconstruction. TISSUE ENG, 2005, 11 (3-4): 556-566.
    [59] Alhadlaq A, Mao J J. Tissue-engineered osteochondral constructs in the shape of an articular condyle. J BONE JOINT SURG AM, 2005, 87A (5): 936-944.
    [60] Alhadlaq A, Elisseeff J H, Mao J J, et al. Adult stem cell driven genesis of human-shaped articular condyle. ANN BIOMED ENG, 2004, 32 (7): 911-923.
    [61] Alhadlaq A, Mao J J. Tissue-engineered neogenesis of human-shaped mandibular condyle from rat mesenchymal stem cells. J DENT RES, 2003, 82 (12): 951-956.
    [62] Brown C D, Stayton P S, Hoffman A S. Semi-interpenetrating network of poly(ethylene glycol) and poly(D,L-lactide) for the controlled delivery of protein drugs. J BIOMAT SCI-POLYM E, 2005, 16 (2): 189-201.
    [63] Leach J B, Schmidt C E. Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds. BIOMATERIALS, 2005, 26 (2): 125-135.
    [64] Leach J B, Bivens K A, Schmidt C E, et al. J BIOMED MATER RES A, 2004, 70A (1): 74-82.
    [65] Leach J B, Bivens K A, Schmidt C E, et al. Development of photocrosslinkable hyaluronic acid-polyethylene glycol-peptide composite hydrogels for soft tissue engineering. BIOTECHNOL BIOENG , 2003, 82 (5): 578-589.
    [66] Obara K, Ishihara M, Kurita A, et al. Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. BIOMATERIALS, 2003, 24 (20): 3437-3444.
    [67] Ishihara M, Ono K, Kurita A, et al. Acceleration of wound contraction and healing with a photocrosslinkable chitosan hydrogel. WOUND REPAIR REGEN, 2001, 9 (6): 513-521.
    [68] An Y J, Hubbell J A. Intraarterial protein delivery via intimally-adherent bilayer hydrogels. J CONTROL RELEASE, 2000, 64 (1-3): 205-215.
    [69] HillWest J L, Dunn R C, Hubbell J A. Local release of fibrinolytic agents for adhesion prevention. J SURG RES, 1995, 59 (6): 759-763.
    [70] Sawhney A S, Pathak C P, Hubbell J A. Modification of islet of langerhans surfaces with immunoprotective poly(ethylene glycol) coatings via interfacial photopolymerization. BIOTECHNOL BIOENG, 1994, 44 (3): 383-386.
    [71] Hubbell J A. Hydrogel systems for barriers and local drug delivery in the control of wound healing. J CONTROL RELEASE, 1996, 39 (2-3): 305-313.
    [72] Chowdhury S M, Hubbell J A. Adhesion prevention with ancrod released via a tissue-adherent hydrogel. J SURG RES, 1996, 61 (1): 58-64.
    [73] Halstenberg S, Panitch A, Hubbell J A, et al. Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: A cell adhesive and plasm in-degradable biosynthetic material for tissue repair. BIOMACROMOLECULES, 2002, 3 (4): 710-723.
    [74] Elbert D L, Hubbell J A. Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering. BIOMACROMOLECULES, 2001, 2 (2): 430-441.
    [75] Hern D L, Hubbell J A. Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J BIOMED MATER RES, 1998, 39 (2): 266-276.
    [76] Winblade N D, Nikolic I D, Hubbell J A, et al. Blocking adhesion to cell and tissue surfaces by the chemisorption of a poly-L-lysine-graft-(poly(ethylene glycol); phenylboronic acid) copolymer. BIOMACROMOLECULES, 2000, 1 (4): 523-533.
    [77] Okino H; Nakayama Y; Tanaka M; Matsuda T. In situ hydrogelation of photocurable gelatin and drug release. J BIOMED MATER RES, 2002, 59 (2): 233-245.
    [78] Doi K, Nakayama Y, Matsuda T. Novel compliant and tissue-permeable microporous polyurethane vascular prosthesis fabricated using an excimer laser ablation technique. J BIOMED MATER RES, 1996, 31 (1): 27-33.
    [79] Nakayama Y, Kim J Y, Matsuda T, et al. Development of high-performance stent: gelatinous photogel-coated stent that permits drug delivery and gene transfer. J BIOMED MATER RES, 2001, 57 (4): 559-566.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700