基于杂萘联苯结构树脂耐热水分散涂料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着环境污染日益严重,水性涂料已经成为世界共同关注的低挥发性有机物(Volatile Organic Compounds,VOC)排放涂料的研究热点。但是,大多数水性涂料由于耐热性能差而限制了它们的应用范围,采用耐高温树脂制备耐热水性涂料则是重要的方法之一。然而由于耐高温树脂的刚性结构,难以获得稳定的水分散体系,极少有基于这类树脂的耐热水性涂料的文献报道。因此,本论文尝试设计一些新方法应用于耐热水性涂料的制备,以期为将来工业化生产和应用提供理论依据。
     新型含二氮杂萘酮联苯结构的聚芳醚腈酮(PPENK)是本课题组863计划重大项目成果之一,是目前耐热等级最高的可溶性聚芳醚新品种,性能价格比优异,具有很好的应用前景。为了制备耐热水性涂料,通过水解反应对PPENK进行亲水改性,经FT-IR和~1H-NMR表征证实PPENK分子中的氰基转化为亲水性基团COOH或CONH_2,对三个不同反应时间的水解产物HPPENKa(0.5 h),HPPENKb(1.5 h)和HPPENKc(3.5 h)分别进行了性能测试和分析。结果显示,随着反应时间的延长,水解产物的氰基转化率增加,玻璃化转变温度(T_g)略有增加,但热失重温度下降,水解产物的亲水性能得到较大改善,比如当氰基转化率为93.82%时,水解产物的水接触角为54.4°,而PPENK为75.3°。研究了水解反应的动力学,在反应温度为100℃、110℃、120℃和130℃时,反应表观速率常数分别为7.2×10~(-3) min~(-1)、1.0×10~(-2) min~(-1)、1.5×10~(-2) min~(-1)和2.2×10~(-2) min~(-1),反应的表观活化能为47.8 kJ/mol。通过研究反应共溶剂、反应温度和NaOH浓度对水解反应的影响,得到优化的工艺条件如下:反应温度为120℃,6mol/LNaOH溶液,反应共溶剂为DMAc。
     制备了基于上述三种亲水改性树脂的水分散体,其稳定性如下:HPPENKc>HPPENKb>HPPENKa。其中,基于HPPENKc的水分散体具有较好的分散稳定性和成膜性能;优选出了适用于HPPENK水分散体的固化剂和乳化剂。HPPENKc固化膜性能如下:铅笔硬度(6 H)、耐热性能(300℃,24 h)、耐冲击性能(50 cm)以及附着力(1级)。
     从分子设计出发,以甲苯-2,4-二异氰酸酯(TDI)、二羟甲基丙酸(DMPA)、聚乙二醇(PEG)和4-(4’-羟基苯基)-2,3-二氮杂萘-1-酮(DHPZ)为主要原料,用阴离子自乳化法制备了一系列新型聚氨酯水分散体(Polyurethane dispersions,PUDs)涂料。红外测试结果显示二氮杂萘酮联苯结构已被成功引入到聚醚型聚氨酯分子主链中,当PEG分子量分别为570、1000和2000时,DHPZ的含量(投料质量比,下同)分别小于18.06%、22.98%和20.07%时,均可得到较稳定的水分散体,超过这个值则难以实施分散。所得水分散体固含量在22.3~31.2%之间,粒径和粘度随着DHPZ含量的增加而增大;PEG的分子量越大,水分散体的粒径和粘度越大。
     将二氮杂萘酮联苯结构引入到聚氨酯分子中增加了分子链的刚性,改善了涂层的耐热性能。如DHPZ含量为18.06%的PU-A4样品,其分子硬段T_g达到263℃、5%热失重温度为252℃,远高于不含二氮杂萘酮联苯结构聚氨酯的同类数值。随着PUDs中DHPZ含量的增加,固化膜的吸水率下降、水接触角增大、拉伸强度增大、断裂伸长率下降;随着PEG分子量增大,固化膜的吸水率增加、水接触角减小,拉伸强度增加、断裂伸长率减小。通过调节DHPZ和DMPA的含量(投料质量比,下同)和PEG的分子量,可开发出不同耐热等级的综合性能良好的新型聚氨酯水性涂料,具有广阔的应用前景。
     采用相反转乳化法制备了基于未改性PPENK(η=0.51 g/dL,CHCl_3)的水分散体。设计了四因素三水平(L_9(3~4))的正交试验,考察了聚乙烯醇(PVA)水分散液的浓度、PPENK的氯仿溶液浓度、PVA对PPENK的承载率(树脂质量比:W_(PVA)/W_(PPENK))以及分散机的转速等因素对于水分散体性能的影响。结果表明,试样PD-4具有较好的综合性能,其工艺条件为:PVA水分散液的浓度为2.5%、PPENK的氯仿溶液浓度3.0%、PVA对PPENK的承载率(树脂质量比:W_(PVA)/W_(PPENK)=1.25)以及分散机的转速为3000 r/min。PD-4乳液中PPENK微粒粒径在365~666 nm之间,透射电镜观察到微粒形貌有分形的特性,在水相中具有较好的分散性能;PD-4水分散体具有良好的成膜性能,在180℃固化条件下,PD-4涂膜的附着力为1级、铅笔硬度为6 H、冲击强度为50 cm,可以在270℃条件下长期使用。
     通过超临界反溶剂(SAS)过程,成功得到了平均粒径为170~400 nm的PPENK微粒,证明制备PPENK直接水分散涂料是完全可能的。当PPENK/CHCl_3溶液浓度为10.0%时是一个上限值。在操作压力10MPa-12MPa范围内,温度35℃,CO_2流速1.0 m~3/h以及PPENK/CHCl_3溶液流速4 mL/min时,PPENK/CHCl_3浓度为3.0%时的微粒粒径小于浓度为1.0%时的粒径;压力的变化和微粒粒径的大小关系显得较为复杂。当温度为35℃,PPENK/CHCl_3溶液浓度为1.0%,PPENK/CHCl_3溶液流速为4 mL/min以及CO_2流速为1.0 m~3/h时,微粒粒径在9 MPa-17 MPa操作压力范围内,呈现先增大后减小的趋势。当PPENK/CHCl_3浓度为3.0%时,操作压力9 MPa-12 MPa实验范围内,压力对粒径的影响趋势与浓度1.0%时大致相同。聚合物微粒具有分形的特性。
In recent years, with the environmental pollution becoming serious, water-borne coating has been a topical subject for low volatile organic compounds (VOC) coating. However, most of them have low heat-resistant temperature that means their applications are limited in certain areas. In order to obtain heat-resistant waterborne coatings, one of the important ways is to use some heat-resistant resins. But it is difficult to obtain a finely dispersed system due to their rigid structures. Therefore, few papers have been reported on aqueous dispersions based on these resins. In this paper, several novel methods are designed and applied in preparing heat-resistant waterborne coatings, which are theoretical foundations in their industrialization and application in the future.
     Poly(phthalazinone ether nitrile ketone)s (PPENK) containing phthalazinone moieties developed by our group is one of the scientific achievements of Hi-tech Research and Development Program of China. PPENK has much better heat resistance and solubility than similar high performance polymers. For better properties, the polymers have a strong competitive capability in international market. PPENK is modified in a hydrolysis reaction in order to prepare heat-resistant waterborne coatings. The CN groups of PPENK are successfully converted into hydrophilic groups, COOH or CONH_2, which give macromolecule hydrophilicity. The structures of hydrolyzates (HPPENK) are confirmed by FT-IR and ~1H-NMR. The properties of hydrolyzates in different reaction time, HPPENKa (0.5 h), HPPENKb (1.5 h) and HPPENKc (3.5 h), are measured. The results indicate that the nitrile groups conversion ratio increases, glass transition temperature (T_g) of hydrolyzates increases slightly whereas the weight loss ratio of HPPENK decreases as hydrolysis time is prolonged. As expected, the hydrophilicity of HPPENK is improved greatly, e.g. when CN conversion ratio is 93.82 %, the water contact angles are decreased from 75.3°of PPENK to 54.4°of HPPENK. The kinetic of hydrolysis reaction is studied. When the reaction temperature are 100℃、110℃、120℃and 130℃, the apparent first-order rate constant K_(ap1) for hydrolysis of PPENK are 7.2×10~(-3) min~(-1)、1.0×10~(-2) min~(-1)、1.5×10~(-2) min~(-1)和2.2×10~(-2) min~(-1), respectively. The activation energy for the hydrolysis reaction is determined as 47.8 kJ/mol (CN)。By studying the effect of the different reaction co-solvents, reaction temperature and NaOH concentration on hydrolysis, the optimal synthetic technique could be concluded that it is of 6 mol/L NaOH solution and DMAc as co-solvent at 120℃.
     Aqueous dispersions based on three modified resins were prepared and their stability was in the following order: HPPENKc>HPPENKb>HPPENKa. Especially, the HPPENKc aqueous dispersion played good stability and good film-forming property. Curing agents and emulsifiers are screened and applied in HPPENKc aqueous dispersion. Cured film properties of HPPENKc were as follows: pencil rigidity (6 H), heat-resistance (300℃, 24 h), impact-resistance (50 cm) and adhesion (grade 1).
     From the molecular design, a series of novel aqueous polyurethane dispersions (PUDs) were synthesized by cation self-emulsification. The main raw materials were TDI, PEG, TEA and DHPZ. The FT-IR spectra confirmed that the phthalazinone segments were introduced into the main chain of polyurethane. Under the same conditions, stable PUDs are obtained when molecular weight of PEG were 600, 1000 and 2000, and the tiptop content of DHPZ (Feeding weght ratio) were 18.03 %, 22.97 % and 20.03 %, respectively. The emulsion could not be dispersed if the tiptop content of DHPZ was exceeded. The solid content of PUDs was between 22.3~31.2 %. The particle size and viscosity of PUDs increased with DHPZ content, the same conclusion as PEG molecular weight.
     The rigidity of polyurethane chain is enhanced and heat-resistance of cured films was improved due to the aromatic structure of the phthalazinone moiety. As to PU-A4 with 18.06 % DHPZ content, the T_g and 5 % weight loss temperature of hard segments were 263℃and 252℃, respectively, outclass the PUDs without DHPZ. With the DHPZ content increased, the water contact angle, hardness and tensile strength of cured films increased, in contrast, water swell, impact resistance and elongation at break decreased significantly. With the PEG molecular weight increased, the water contact angle, hardness and tensile strength of cured films decreased, in contrast, water swell, impact resistance and elongation at break increased. According to different applications, the novel PUDs with different heat resistant class and perfect combination properties could be exploited by controlling the molecule weight of PEG and content of DHPZ and DMPA.
     Phase inversion emulsification is applied in preparing aqueous dispersion based on PPENK (η=0.51 g/dL, in CHCl_3) without any modification. The orthogonal layout of four factors and three levels (L_9(3~4)) was designed to study the effect of concentration of PVA/water, concentration of PPENK/CHCl_3, W_(PVA)/W_(PPENK), and stirring velocity on properties of dispersions. Among the formulations, PD-4 played perfect combination properties. The optimal technology of PD-4 was as follows: 2.5 % PVA/water, 3.0 % PPENK/CHCl_3, W_(PVA)/W_(PPENK)=1.25, and 3000 r/min rotational speed of dispersion machine. PD-4 emulsion played good stability. The particle size of PPENK micro-particle was 365~666 nm. The micro-particles of PPENK could be observed fractal characteristic by TEM and stably dispersed in water phase. PD-4 aqueous dispersion played perfect film-forming property and its cured film baked in 180℃showed adhesion(1 grade), pencil hardness(6H) and impact resistance (50cm). The cured film of PD-4 could be used at 250℃for a long time.
     Supercritical anti-solvent (SAS) process was applied to preparation of PPENK micro-particle of mean particle size 170~400 nm when chloroform and supercritical CO_2 were used as organic solvent and anti-solvent, respectively. This confirmed that it was possible to prepare aqueous dispersion based on the micro-particle. Upper limit value of PPENK/CHCl_3 concentration was 10.0%. When PPENK/CHCl_3 concentration was 3.0 %, particle size of PPENK micro-particle was less than that of 1.0 % PPENK/CHCl_3 at the follow operation conditions: 10 MPa-12 Mpa, 35℃, CO_2 velocity of flow 1.0 m~3/h, and PPENK/CHCl_3 solution velocity of flow 4 mL/min. The experimental data indicated that it was a complex relationship between pressure variation and particle size. Keeping the other operation conditions, particle size of PPENK micro-particle was shown the variation trend of from increase to decrease when operation pressure was 9 MPa-17 MPa. When PPENK/CHCl_3 concentration was 3.0% and operation pressure was 9 MPa-12 MPa, particle size of PPENK micro-particle was similar as that of 1.0 % PPENK/CHCl_3. The polymer micro-particles possessed fractal characteristic.
引文
[1] 钱伯容.增强环保意识,提高我国水性涂料技术的水平.首届环保型水性树脂及水性工业涂料技术研讨,常州:常州化工研究院,2002:16-19.
    [2] Narayan R, Chattopadhyay D K, Sreedhar B et al. Synthesis and characterization of crosslinked polyurethane dispersions based on hydroxylated polyesters. J. Appl. Polym. Sci., 2006,99,368-380.
    [3] 洪啸吟.辐射固化涂料及进展.现代涂料与涂装,2006,01:8-12.
    [4] 周新华,涂伟萍,胡剑青.双组分水性聚氨酯涂料.制备技术进展,2006,23(3):29-32.
    [5] 董发勤,朱桂平,徐光亮.符合生态建筑的新型环保涂料.现代化工,2006,26(1):67-70.
    [6] 夏范武.高分子树脂的水性化途径.首届环保型水性树脂及水性工业涂料技术研讨,常州:常州化工研究院,2002:1-15.
    [7] Shi Y C, Wu Y S, Zhu Z Q. Modification of aqueous acrylic-polyurethane via epoxy resin post-cross-linking. J. Appl. Polym. Sci.,2003, 88:470-475.
    [8] Subramani S, Park Y J, Lee Y S. Polyurethane ionomer dispersions from a blocked aromatic-diisocyanate prepolymer. Prog. Org. Coat., 2003,48:71-9.
    [9] Anila A, Shi W F. UV-curable water-borne polyurethane acrylate dispersions based on hyperbranched aliphatic polyester: Effect of molecular structure on physical and thermal properties. Polym. Adv. Tech, 2004,15:669-675.
    [10] Kim B K, Lee J S, Lee M C et al. Polyurethane-poly(methyl methacrylate) block copolymer dispersions through polyurethane macroiniferters. J. Appl. Polym. Sci., 2003,88:1971-5.
    [11] 耿耀宗主编.现代水性涂料工艺·配方·应用.中国石化出版社,2003:7-12.
    [12] 顾南君等.涂料工业(第三版).北京:化学工业出版社,2002:35-37.
    [13] Chen M J. Silanes in high-solids and waterborne coatings. J. Coat. Tech., 1997, 69 (870): 43-51.
    [14] 耿耀宗主编.现代水性涂料工艺·配万·应用.北京中国石化出版社,2003:3-7.
    [15] 陈慕祖,于淑霞,周杰.环保型汽车涂装材料的现状和发展(Ⅰ).现代涂料与涂装,2000,(4).17-19.
    [16] 于也.水性涂料——汽车塑料件涂装的新趋势.北京汽车,1995,4:15.
    [17] 周福根.世界涂料工业的近年概况.中国涂料,1997,5:46-49.
    [18] 朱庆红.水性涂料—涂料产品发展的主流.上海涂料,2003,41(8):15-19.
    [19] 钱伯容.21世纪的环保型涂料和溶剂型涂料.中国科技信息,2002,(3):90-94.
    [20] 洪啸吟.光固化汽车涂料.精细与专用化学品,2004,12(8):6-8.
    [21] 张凤茹,王翠红.环保涂料给你一个健康的家.中国建材,2001,(6):23-25.
    [22] 夏范武.高分子树脂的水性化途径.首届环保型水性树脂及水性工业涂料技术研讨,常州:常州化工研究院,2002:1-15.
    [23] Oertel G. Polyurethan handbook. Munich: Hauser Publishers, 1985:125.
    [24] 方禹声,朱吕民.聚氨酯泡沫塑料(第二版).北京:化学工业出版社,1999:102.
    [25] Sebenik U, Krajnc M. Properties of acrylic-polyurethane hybrid emulsions synthesized by the semibatch emulsion copolymerization of acrylates using different polyurethane particles. J. Polym. Sci., Part A: Polym. Chem., 2005,43:4050-4069.
    [26] 山西化工研究所.聚氨酯弹性体(第一版).北京:化学工业出版社,2001:89-95,555-558,571-575.
    [27] Tirpak R E.交联型聚氨酯水分散体.国外涂料与涂装,1996:42-52.
    [28] 王武生.水性聚氨酯汽车漆.涂料技术,1996,(1):21-26.
    [29] Frentze I, Richard L. Preparation of carboxylic acid-containing polyurethane prepolymer and aqueous dispersions thereof, US Patent 4,460,738, 1984-07-17.
    [30] Roelof B, ANDREAS R, JDHAN H. A functionalized polyurethane which can be used to prepare aqueous dispersions of polymer hybrids, EU Patent 0353797,1990-02-07.
    [31] Cozzi E, Conti N. Aqueous dispersions of urethane-acrylic polymers and use thereof in paints, EU Patent 0350040, 1990-01-10.
    [32] Arora G, Kartar S, Water-dispersable air drying coatings, US Patent 5,039,732, 1991-08-13.
    [33] Den H, Herman C. Water-based methylol (meth)acrylamind acrylic polymer and polyurethane containing coating composition, US Patent 5,006,413, 1991-04-09.
    [34] 汤薇.水性聚氨酯涂料的制备与应用.化工时刊,2000,(3):15-17.
    [35] 瞿金清,黄洪等.水性聚氨酯分散体.中国皮革,2001,30(17):6-9.
    [36] 李芝华,李国莱等.聚氨酯水分散体系中丙烯酸酯共聚物乳液合成机理研究.涂料工业,1998,(7):3-5.
    [37] 李芝华,郑子樵.丙烯酸树脂改性的水性聚氨酯性能与结构.化学与粘合,2000,(4):155-157.
    [38] 李芝华,郑子樵.聚氨酯-聚丙烯酸酯树脂的合成及表征.合成化学,2000,8(4):339-343.
    [39] Richard A B, Richard G C, Dave G F et al. Comparing and contrasting the properties of urethane/acrylic hybrids with those of corresponding blends of urethane dispersions and acrylic emulsions. Prog. Org. Coat., 2005,(52):73-84.
    [40] Jaap J B, Learner T. Analytical mass spectrometry of artists' acrylic emulsion paints by direct temperature resolved mass spectrometry and laser desorption ionisation mass spectrometry. Journal of Analytical and Applied Pyrolysis, 2002,64(2): 327-344.
    [41] 董岸杰,冯士有等.水性丙烯酸-聚氨酯微乳液的制备及粒子形态.应用化学,1998,15(1):101-103.
    [42] 蔡斯让,郭宁等.丙烯酸酯接枝改性聚氨酯乳液的结构与性能.化工新型材料,2001,29(12):34-36.
    [43] 蔡斯让,郭宁等.丙烯酸酯接枝共聚改性聚氨酯乳液的结构与性能.涂料工业,2000,(6):12-14.
    [44] 许戈文,熊潜生.水性环氧改性聚氨酯涂料的研究.涂料工业,1998,(11):30-32.
    [45] 许戈文,熊潜生,王彤等.水性环氧改性聚氨酯涂料的研制.涂料工业,1998,(11):35-37.
    [46] 刘春华,方治齐.环氧树脂改性水性聚氨酯.丙烯酸酯的初步研究.聚氨酯工业,2000,(3):36-39.
    [47] 刘晓华,亢茂青,王心葵等.聚氨酯弹性体耐热性能的影响因素.合成橡胶工业,1997,20(6):377-379.
    [48] 袁才登,王艳君.丙烯酸系聚合物水溶胶的合成与性能.天津大学学报,1999,32(4):492-495.
    [49] Paul S. Waterborne Acrylic Emulsion Paints. Prog. Org. Coat., 1997, 5(1): 79-96.
    [50] Warson H. The Applications of Synthetic Resin Emulsions. Ernest Benn Ltd., 1972:51-63.
    [51] Kanou K, Aqueous Pigment Dispersion Water-soluble Resin. EU Patent 0903554A2,1996.
    [52] Koran M K. Water-dispersible Acrylic Based Graft Copolymers, a Method for Making Them and Water-based Paints Thereof. US Patent 803580,1997.
    [53] 温绍国,黄志明.水溶性丙烯酸共聚物的组成与溶液特性.高分子材料科学与工程,1999,15(3):89-92.
    [54] 张良均,童身毅.丙烯酸水溶性涂料的研究.涂料工业,1996,(3):10-11.
    [55] 贾锂,魏德卿,刘宗惠.丙烯酸皮革涂饰材料的发展及无皂水溶胶的合成.中国皮革,1999,28(15):3-6.
    [55] 凌建雄,涂伟萍.聚丙烯酸酯乳液的合成研究.合成材料老化与应用,2000,(2):5-7.
    [56] Robert K. Modern Paint and Coatings. Elsevier Science Publishing Company Inc., 1993, (3)26-30.
    [58] Robert A I, Gaboury S, Wood K. Acrylic-fluoropolymer Mixtures and their use in coatings. Prog. Org. Coat., 2000,40:55-60.
    [59] 唐黎明,董汉鹏,刘德山等.新型无皂丙烯酸酯乳液的合成及性能研究.高分子材料科学与工程,1998,14(1):17-19.
    [60] 方允之,都邵萍.外墙乳胶涂料的耐侯性.新型建筑涂料,1997,(2):11-16.
    [61] 刘德峥,黄艳芹.聚丙烯酸酯植物涂层剂的合成与性能.印染助剂,2001,18(3):25-27.
    [62] Uchida E A, Properties of Surface Modified Polyester Fabrics. Textile Research Journal, 1991, 61(8): 483-488.
    [63] 郭楷,李军,伊敏丙烯酸在PET膜表面的紫外光共辐射接枝.辐射研究与辐射工艺学报,1999,(2):76-79.
    [64] 贾锂,郑永丽,刘宗惠.丙烯酸树脂水溶胶的乳液法合成.合成化学,2002,10(6):557-560.
    [65] Patrick W L, Robert A L, Tim J D. Printing via hot embossing of optically variable images in thermoplastic acrylic lacquer. Microelectronic Engineering, 2006,(83):1961-1965.
    [66] Sathiyanarayanan S, Muthukrishnan S, Venkatachari G. Performance of polyaniline pigmented vinyl acrylic coating on steel in aqueous solutions. Prog. Org. Coat., 2006,(55):5-10.
    [67] 龚兴宇,范晓东.γ-甲基丙烯酰氧基丙基三甲氧基硅烷改性丙烯酸酯乳液的研究.高分子材料科学与工程,2003,19(1):61-64.
    [68] 米普科.有机硅氧烷改性丙烯酸酯乳液的合成与性能.涂料工业,2002,32(7):21-22.
    [69] 刘敬芹,张力,朱志博等.有机硅改性丙烯酸酯乳液的合成.应用化学,2002,19(6):569-573.
    [70] Hidaka Y, Tsutsumi, T. Water-based ink. EU Patent 1113051, 2001-07-04.
    [71] Nakano Y, Tsuru I. Water-based ink for ink-jet recording. EU Patent 1059341, 2000-12-13.
    [72] Krom A, Mulder H, Mestach D. Study on polyacrylate emulsion incorporated with DAAM. American Ink Maker, 2001, 79(1):30-36.
    [73] Okamoto Y, Hasegawa Y, Yoshino F. Urethane/acrylic composite polymer emulsions. Prog. Org. Coat., 1996, (29):175-182.
    [74] 崔月芝,段洪东,张庆思等.双丙酮丙烯酰胺参与共聚的聚丙烯酸酯乳液的制备及其应用.应用化学,2001,18(2):131-134.
    [75] Steve B, Brenda T, Joseph S et al. Heat resistant emulsion resins. US Patent 6,162,850, 2000-12-19.
    [76] Murakami S. Aqueous emulsion, process for producing the same and aqueous paint and aqueous printing ink comprising the same. EU Patent 1057843, 2000-12-06.
    [77] Jean C M, Dennis S G, Reid S R et al. Use of stable anino-functional latexes in water-based inks. EU Patent WO09745495, 1997-12-04.
    [78] Andrew M Z, Kathleen S, Wendella R M et al. Pigment-dispersed liquid for production of water-colour ink. EU Patent 889102, 1999-03-16.
    [79] Nabuurs T, Pears D, Overbeek A. Defect free coatings from two-pack isocyanate curable acrylic dispersions.Prog. Org. Coat., 1999,(35): 129-140.
    [80] 金其良,陈来,魏平,高汉银,冯戡.水性丙烯酸树脂的合成和UV固化研究.核技术,2000,23(12).873-878.
    [81] 夏范武.反应性微凝胶的制备及其在水性涂料中的应用.涂料工业,998,(10).33-38.
    [82] 张心亚,涂伟萍,杨卓如等.水性丙烯酸酯类共聚物乳液的合成与应用.合成材料老化与应用,2001,4:24-27.
    [83] Nabuurs T,.Baijards R A, Geman A L. Alkyd-acrylic hybrid systems for use as binders in waterborne paints. Prog. Org. Coat., 1996, 27: 163-172.
    [84] Matzinger M D. Method for producing hydrocarbon/acrylic hybrid resins. EU Patent 1054028,2000.11.22.
    [85] Clark, Dwight M, Peterson B. Polyester/acrylic hybrid latexes for printing inks with improved rewettability. US Patent 5912281, 1999-06-15.
    [86] 李延科,凌爱莲,桑鸿勋.丙烯酸酯-聚氨酯改性乳液的性能研究.中国胶粘剂,2001,10(6):7-11.
    [87] Nakano S. Polycarbonate-modified acrylic polymers for coating materials. Prog. Org. Coat., 1999, (35): 141-151.
    [88] WU S B, Jon D J, Allen D S etal. Effects of sulphonic and phosphonic acrylic monomers on the crosslinking of acrylic latexes with cycloaliphatic epoxide. Prog. Org. Coat., 1999, 36: 21-33.
    [89] 杨瑞芹,崔天放,陈尔凡等.环氧-丙烯酸酯乳液的研制.化学世界,2002,(1):21-25.
    [90] 韩峰,陈志明,何青峰等.水性环氧-丙烯酸树脂制备及其涂膜性能.涂料工业,2003,33(3):1-4.
    [91] 谢飞,刘宗惠,魏德卿.氮丙啶交联剂的交联性能及固化动力学研究.合成化学,2002,10(2):120-126.
    [92] 张良均,童身毅.丙烯酸水溶性涂料的研究.涂料工业,1996,26(3):10-11.
    [93] 马建中.丙烯酸树脂涂饰剂改性进展.皮革化工,1996,(1):35-42.
    [94] 赵芳,吴佑实.水性防锈涂料耐盐水性探讨.山东化工,2000,29:11-13.
    [95] 杨小毛,杨建文,陈用烈,熊伟.光固化氨酯改性丙烯酸系水性涂料.功能高分子学报,1999,(9):285-288.
    [96] 汤凤,沈慧芳,张心亚等.有机氟涂料研究动向.涂料工业,2004,34(6):41-46.
    [97] 唐黎明,张侃,潘志存等.一种氟橡胶改性的聚丙烯酸酯乳液的制备方法.中国专利1337415,2002-12-17.
    [98] Tanaka H, Suzuki Y, Yoshino F. Synthesis and coating application of waterborne fluoroacrylic-polyurethane composite dispersions. Colloids and Surfaces A: Physiochemical and Engineering Aspects, 1999, 153: 597-601.
    [99] Hu H Q, He T, Feng J C et al. Synthesis of fluorocarbon-modified poly(acrylic acid) in supercritical carbon dioxide. Polymer, 2002, (43): 6357-6361.
    [100] 杨立群,谢志明,李卓美.金属离子络合交联聚丙烯酸酯共聚物无皂水溶胶涂Ⅱ.Zn(NH_4)_4~(2+)交联无皂水性涂料的性能.应用化学,1998,15(2):85-87.
    [101] 罗正汤,侯有军.涂料丙烯酸酯-苯乙烯超微乳液的研究.华南理工大学学报(自然科学版),2001,29(3):71-74.
    [102] Takanori H, Toshuku M, Naotami A, StoragesTablele Silyl Compound and Acrylate Copolymer Aqueous Emulsions and Their Manufacture. JP 06122806,1994-05-23.
    [103] Tomio H, Takeshi K, Aqueous Siliconized Acrylic Resin Dispersions and Process for Preparing the Same.WO 9722641.1997-06-26.
    [104] Luta M A, Polmanteer K E. Methyltrimethoxysilane Modification of Organic Latexes:Room Temperature curable films. J.Coat.Tech., 1979, 51:3742.
    [105] Naguchi T, Katch T, Zhang W et al. International Conference on Synthesis and Properties of Polymer Emulsion. Kobe, 1993:19-22.
    [106] Chen M J, Osterholtz F D, Pohl E R et al. Silanes in High Solids and Waterborne Coatings. J. Coat. Tech., 1997, 69(8):43-51.
    [107] 侯有军,罗正汤,曾繁森.丙烯酸酯共聚物无皂水溶胶固化行为的研究.高分子材料科学与工程,1993,(2):91-95.
    [108] 谢志明,朱树辉,李卓美.丙烯酸酯共聚物无皂水溶胶与金属离子的络合交联.物理化学学报,1999,15(1):28-34.
    [109] 张东亮,张新兵,俞进见.室温交联丙烯酸酯核壳乳胶的合成及成膜性能.江苏石油化工学院学报,2000,12(4):11-14.
    [110] Michael O J, Richard G T. Crosslinked Acid-functional Acrylic Polymers and Their Manufacture and Use in Aqueous Coating. EU Patent 0373918, 1992-08-26.
    [111] 林剑雄,王小妹.水溶性丙烯酸树脂的合成及表征.塑料工业,2003,31(1):1-7.
    [112] Brolly B. Diffusion and Sorption of CO_2 in Poly(ethylene terephthalate) and Poly(ethylene naphthalate). J. Polym. Sci., Part B:Polym. Sci.,1996, 34(4):769-780.
    [113] Iwata H, Kishida A, Suzuki M. Oxidation of Polyethylene Surface by Corona Discharge and the Subsequent Graft Polymerization. J. Polym. Sci., Part A: Polym. Chem.,1988, 26:3309-3322.
    [114] Suzuki M, Kishida A, Iwata H. Graft Copolymerization of Acrylamide onto a Polyethylene Surface Pretreated with a Glow Discharge.Macromolecules,1986, 19:1804-1808.
    [115] Kumar M, Prakash R, Gupta H. Reaction Rate Enhancement During Swollen-State Polymerization of Poly (ethylene terephthalate).J. Appl. Polym. Sci.,1998, 67(9): 1589-1595.
    [116] 魏平,庞浩,廖兵.聚丙烯酸丁酯/磺化聚苯乙烯复合水基微乳液的制备.高分子材料科学与工程,2005,21(2):150-153.
    [117] 夏宇正,石淑先,李敬玮.聚丙烯酸酯/聚硅氧烷乳胶粒核壳结构相反转及控制.胶体与聚合物,2004,22(1):1-4.
    [118] 武龙,李著萍,沈宁祥.防腐蚀涂料基料树脂水性化研究进展.材料保护,2001,34(7):18-21.
    [119] 叶扬祥,潘肇基.涂装技术实用手册(第2版).北京:机械工业出版社,2003,6:70.
    [120] Robinson P V. Design of Water Reducible Polymers for Use in Food Contact Applications. J. Coat.Tech.,1981,53(674):23-30.
    [121] 童身毅,王虎彪.室温固化水性环氧涂料新进展.中国涂料,2001,(2):39-41.
    [122] 王洪祚,王颖.环氧树脂的水性化.粘接,2005,26(5):38-40.
    [123] 杨振忠,赵得禄,许元泽等.环氧树脂相反转乳化过程相态发展研究.高等学校化学学报,1999,20(5):809-813.
    [124] 徐宝学,胡慧珠,倪寒秋.高稳定环氧树脂乳液的制备.中国胶粘剂,1997,71(2):21-25.
    [125] Richardson F. Waterborne epoxy. Pigments and Resin Tech., 1973,(5):41-43.
    [126] 徐燕丽.表面活性剂的功能.北京:化工工业出版社,2000:65-72.
    [127] 陈挺,顾国芳.Ⅱ型水性环氧树脂乳液及其固化过程的研究.建筑材料学报,2001,4:356-361.
    [128] 徐龙贵.室温固化水性环氧涂料的研究:(硕士学位论文).长沙:湖南大学,2003.
    [129] Cooke J, Honeyman M, Charles H et al. Polymer-coated modified carbon products and other pigments and their manufacture by aqueous media polymerization or solvent coating methods. US Patent 200022051,2000-4-20.
    [130] 陶永忠,陈挺,顾国芳.Ⅰ型水性环氧树脂涂料的研制.胶体与聚合物,2001,6:19-23.
    [131] 张黎.固化剂乳化型水性坏氧树脂体系的研究:(硕士学位论文).西安:西北工业大学.2003:5.
    [132] 杨振忠,许元泽,赵得禄等.相反转技术制备环氧树脂水基体系.相反转过程的流变行为研究.高分子学报,1998,(1):78-82.
    [133] Shinoda K, Sagitani H. Emulsifier selection in water/oil type emulsions by the hydrophile-lipophile balance-temperature system. Colloid and interface Science, 1978,64(1): 68-71.
    [134] 陶永忠,陈挺,顾国芳.室温固化水性环氧树脂涂料.涂料工业,2001,(1):36.
    [135] Kojima S, Watanabe Y. Development of high performance waterborne coatings: Emulsification of epoxy resin. Polym. Eng. Sci., 1993,33:253.
    [136] 杨振忠,赵得禄,许元泽等.不完全相反转发展过程的流变行为.高分子学报,1999,(2):129-133.
    [137] 杨振忠,许元泽,徐懋等.环氧树脂微粒化水基化体系.高分子通报,1997,9:190-194.
    [138] 张肇英,黄玉惠,廖兵等.环氧树脂水性化改性及其固化.高分子通报,2000,(9):77-80.
    [139] 黄子汛.涂料结构学.北京:北京航空航天大学出版社,1992:71-78.
    [140] Kawanami T, Kawakami I, Sakamoto H et al. Super environment-friendly electrodeposition paint. Prog. Org. Coat., 2000,(40):61-62.
    [141] 李伟奇,梁化民.常温固化水性环氧酯防腐涂料的研究.涂料工业,1996,(2):3-4.
    [142] Husbands M J, Standen C S, Hayward G. A Manual of Resin for Surface Coat (3). London: Selective Industrial Training Associates Ltd.,1987:191-192.
    [143] 胡慧萍,刘素琴,黄可龙等.水基改性环氧树脂涂料的合成研究.湖南化工,1999,(6):41-43.
    [144] Massingil J L, Sheih P S. Fundamental studies of epoxy resins for can and coil coatings. J. Coat. Tech., 1990,62(781):31-39
    [145] 马洪芳,赵文俊,于泉德.环氧树脂水性化技术的研究.山东化工,2002,31(4):10-11.
    [146] Suzuki H, Kuno J. Aqueous coating resin composition. US Patent 4458030, 1984.
    [147] Patrick E K, Dahn L C, Christine M. Characterization of recombinant human liver dehydroepiandrosterone sulfotransferase with minoxidil as the substrate. Biochemical Pharmacology,1997,53(2):215-221.
    [148] 张肇英,黄玉惠,廖兵等.对氨基苯甲酸改性环氧树脂的性能表征及乳化性质.高等学校化学学报,2002,(5):974-978.
    [149] 朱方,赵宝华,裘兆蓉.环氧树脂水性化体系研究进展.高分子通报,2006,(1):53-57.
    [150] 陈尔凡,程远杰.接枝环氧水溶性涂料.涂料工业,1997,(5):16-18.
    [151] Kim H W, Chung C W, Kim S S. Preparation and cell compatibility of acrylamide-grafted poly(3-hydroxyoctanoate).International Journal of Biological Macromolecules, 2002,30(2):129-135.
    [152] 朱国民,王善琦.环氧磷酸酯-丙烯酸接枝共聚反应的研究.涂料工业,1995,(2):5-8.
    [153] 游长江,贾德民,石小华.国外水性环氧树脂和水性聚氨酯涂料的研究进展.化学建材,1998,(3):19-21.
    [154] 储九荣.环氧树脂高性能化的方法与机理.化工新型材料,1999,26(10):16-19.
    [155] 储九荣.有机硅高聚物改性环氧树脂的方法和机理.高分子通报,1999(2):66-72.
    [156] Ribot F,Sanchz C. New Photochromic Hybrid Organic-Inorganic Materials Built from Well-Defined Nano-Building Blocks. Adv. Mater., 2002,14(20): 1496-1499.
    [157] Kioul A, Mascia L. Compatibility of polyimide-silicate creamers induced by alkoxysilane silance coupling agents. J. Non-Cryst. Solids, 1994, 175:169-186.
    [158] Morikawa A, Lyoku Y. Preparation of new polyamide-silica hybrid materials via the sol-gel process. J. Mater. Chem.,1992,2(7):679-690.
    [159] Ruiz-hizky E. New polyelectrolyte materials based on smectite polyoxyethylene intercalation compounds. Acta Polymerica,1994,45(2):59-67.
    [160] 曹诺,肖卫东.水性环氧树脂体系的制备及研究进展.上海涂料,2005,43(7/8):35-39.
    [161] Sebenik U, Golob J, Krajnc M. Comparison of properties of acrylic-polyurethane hybrid emulsions prepared by batch and semibatch processes with monomer emulsion feed. Polym. Int., 2003, 52: 740-748.
    [162] Deng S B, Bai R, Chen J P. Behaviors and mechanisms of copper adsorption on hydrolyzed polyacrylonitrile fibers.Journal of Colloid and Interface Science,2003, 260: 265-272.
    [163] Sebenik U, Krajnc M. Properties of acrylic-polyurethane hybrid emulsions synthesized by the semibatch emulsion copolymerization of acrylates using different polyurethane particles. J. Polym. Sci. Part A: Polym. Chem., 2005,43:4050-4069.
    [164] Lu M G, Lee J Y, Shim M J et al. Thermal degradation of film cast from aqueous polyurethane dispersions. J. Appl. Polym. Sci., 2002, 85:2552-2558.
    [165] 胡新意.耐高温水性涂料在汽车排气系统零件上的应用研究.现代涂料与涂装,2003,(4).17-19.
    [166] 张茂根,平晓东,裴航.快干水性二烯聚合物涂料.电镀与环保,1994,14,(1):16-18.
    [167] 梁滔,茅素芬.耐蚀防腐涂料的研究.兰化科技,1995,(3):14-18.
    [168] John H L R, Stephen W P. Imperial Chemical Industries, UK, EU Patent Application 32630, 1981-07-29.
    [169] 卢迪斯,罗国钦,林既森.水性自分层PTFE耐高温防粘涂料.精细与专用化学品,2000(18):27-29.
    [170] 刘付胜聪,肖汉宁,李玉平.制备多孔SiO_2涂层的研究.硅酸盐学报,2003,31(7):682-686.
    [171] 李世荣.水基型物种光敏树脂的合成与交联特性.武汉化工学院学报,2002,24(1):17-20.
    [172] Wang G Q, Zhang S H, Yang D L et al. Preparation of a novel poly(phthalazinone ether nitrile ketone) ultrafiltration membrane: Effect of non-solvent additives. Journal of Functional Polymers, 2005,18 (1):105-109.
    [173] 李琦.新型可溶型聚芳醚腈(酮)的合成研究:(硕士学位论文).大连:大连理工大学,2002.
    [174] Q L Yan, J Y Wang, Z Y Liu et al. The novel wire, Wire Industry, 2005,72 (883): 177-180.
    [175] Wang G Q, Jian X G, Zhang S H et al. Preparation of poly(phthalazinone ether nitrile ketone) ultrafiltration membrane with low molecular weight cut-off. Modern Chemical Industry, 2003, 23(7):37-40.
    [176] Wang G Q, Zhang S H, Yang D L et al. Study on the effect of evaporation on the performance of PPENK ultrafiltration membranes. Membrane Science and Technology, 2005,25 (3):18-21.
    [177] 丁汉伦,杨良驹,朱德春.聚丙烯腈废料水解反应研究.安徽化工,1994,(3):31-37.
    [178] Sugahara Y, Ohta T. Synthesis of starch-graft-polyacrylonitrile hydrolyzate and its characterization. J. Appl. Polym. Sci., 2001,82:1437-1443.
    [179] Krul' L P, Nareiko E I, Krakodeev D V et al. ~(13)C-NMR study of the structure of products formed in base hydrolysis of Nitron D polyacrylonitdle fiber. Russian J. Appl. Chem., 2003,76 (6):978-980.
    [180] Wang R L, Jian X G, Zhu X L Synthesis and property of polyamides containing o-methyl phthalazinone moieties. Chinese J. Appl. Chem., 2001,18 (5): 404-407.
    [181] Piao Y S, Mao L J, Sun R H. Investigation on hydrolysis process of PAN by IR, Journal of Wuxi University of Light Industry, 19, (3):276-278.
    [182] Chen P, Tang Z P, Wang X J. Structure and property of co-curing reaction product for epoxy and cyanate resin system. Chinese J. Mater. Res., 2004,18,(3): 265-272.
    [183] Wang J Y, Liu S, Jian X G. Study on hydroxylation of poly(ether sulfone ketone) containing the phthalazinone moiety copolymer. Polym. Mater. Sci. and Eng., 2002,18 (2):49-52.
    [184] 张学敏编著.涂装工艺学[M].北京:化学工业出版社,2002年9月第1版:32.
    [185] 钟振声.表面活性剂在化妆品中的应用[M].北京:化学工业出版社,2003年8月第1版:232.
    [186] 杨春晖,陈兴娟,徐用军,贾晓琳编.涂料配方设计与制备工艺[M].北京:化学工业出版社,2003年5月第1版:216.
    [187] 钱逢麟,竺玉书.涂料助剂.北京:化学工业出版社,1999:102.
    [188] 钱逢麟,竺玉书.涂料助剂-品种和性能手册.北京:化学工业出版社,1990:555-557.
    [189] 黄汉生.硅烷偶联剂在涂料中的应用.上海涂料,1997,2:45-50.
    [190] 阎庆玲.杂萘联苯型聚芳醚耐高温绝缘漆和涂料的研究:(博士学位论文).大连:大连理工大学,2006:37-39.
    [191] Aslamazova T R. Emulsifier-free latexes and Polymers on their base. Prog. Org. Coat., 1995,25(2): 109-167.
    [192] Cesta G W. Effect of carboxylic monomers on surfactant-Free emulsion polymerization. J. Appl. Polym. Sci., 1974,18(2):427-435.
    [193] 黄应钦,成晓玲,白晓军等.表面活性剂在超细粉体制备和分散中的应用.日用化学工业,2006,36(1):29-33.
    [194] 汪谨,许煜汾.超细粉体在液相中分散稳定性的研究.合肥工业大学(自认科学版),2002,25(1):123-126.
    [195] 张国旺,黄圣生.超细粉体制备技术的应用和发展.化工矿物与加工,2001,12:1-3.
    [196] Brunno T J, Ely J F. Supercritical Fluid Technology-Review in Modem Theory and Applications, Boston: CRC PRESS,MA,1991.
    [197] Horst M H, Behme S, Sadowski G et al. The influence of supercritical gases on the phase behavior of polystyrene-cyclohexane and polyethylene-cyclohexane systems: experimental results and modeling with the SAFT-equation of state.The Journal of Supercritical Fluids, 2002,23, (2):181-194.
    [198] Adschiri T, Arai K. Hydrothermal Science Handbook, Tokyo: Gihodo, 1997.
    [199] Yeo S D, Lee J C. Crystallization of sulfamethizole using the supercritical and liquid antisolvent processes.The Journal of Supercritical Fluids, 2004,30, (3):315-323.
    [200] Guney A O, Levit N, Pestov D et al. Precipitation of nanocomposite particles from a multi-component, rapidly expanding supercritical solution. The Journal of Supercritical Fluids, 2006,37, (2):229-241.
    [201] Huang J T, Moriyoshi T. Fabrication of fine powders by RESS with a clearance nozzle.The Journal of Supercritical Fluids, 2006, 37, (2):292-297.
    [202] 韩冰,刘学武,李志义.超临界反溶剂过程在生物制药中的应用.药学进展,2003,27(1):26-29.
    [203] Cho K Y, Moon J Y, Lee Y W et al. Preparation of self-assembled silk sericin nanoparticles. International Journal of Biological Macromolecules, 2003,(32): 36-42.
    [204] Dong Z X, Liu Z M, Han B X et al. Modification of isotactic polypropylene films by grafting methyl acrylate using supercritical CO_2 as a swelling agent.The Journal of SupercriticaI Fluids, 2004,31, (1):67-74.
    [205] Tandya A, Dehghani F, Foster R N. Micronization of cyclosporine using dense gas techniques. The Journal of Supercritical Fluids, 2006,37, (3):272-278.
    [206] Taki S, Badens S, Charbit G. Controlled release system formed by supercritical anti-solvent coprecipitation of a herbicide and a biodegradable polymer.The Journal of Supercritical Fluids, 2001.21, (1):61-70.
    [207] Yury M. Y, Victor I. S, Olga V. K et al. Particles of liquid-crystalline dispersions formed by (nucleic acid-rare earth element) complexes as a potential platform for neutron capture therapy.International Journal of Biological Macromolecules, 2005,37(4):165-173.
    [208] Dai X H, Liu Z M, Wang Y et al. High damping property of microcellular polymer prepared by friendly environmental approach. The Journal of Supercritical Fluids, 2005,33(3):259-267.
    [209] Liu J C, Shervani Z, Raveendran P et al. Micellization of sodium bis(2-ethylhexyl)sulfosuccinate in supercritical CO_2 with fluorinated co-surfactant and its solubilization of hydrophilic species.The Journal of Supercritical Fluids, 2005,33, (2):121-130.
    [210] Won D H, Kim M S, Lee S et al. Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation process. International Journal of Pharmaceutics, 2005,301, (2):199-208.
    [211] Diego Y P, Pellikaan H C, Wubbolts F E et al. Operating regimes and mechanism of particle formation during the precipitation of polymers using the PCA process. The Journal of Supercritical Fluids, 2005,35, (2):147-156.
    [212] Yury M. Y, Sergey G. S, Yury D. N. Nanoconstructions based on double-stranded nucleic acids.International Journal of Biological Macromolecules, 2005,36(1-2): 103-115.
    [213] Wu H T, Lee M J, Lin H M. Precipitation kinetics of pigment blue 15:6 sub-micro particles with a supercritical anti-solvent process. The Journal of Supercritical Fluids, 2006,37, (2):220-228.
    [214] 刘学武,李志义,金良安等.SAS过程制备乙基纤维素超细微粒实验研究.功能材料,2005,6(36):921-922.
    [215] Yeo S D, Kiran E. Formation of polymer particles with supercritical fluids: A review. The Journal of Supercritical Fluids, 2005, 34, (3):287-308.
    [216] Yeo S D, Debenedetti P G, Radosz M et al. Supercritical antisolvent process for substituted para-linked aromatic polyamides: phase equilibrium and morphology study. Macromolecules,1993, 26(23):6207-6210.
    [217] 王国庆,张守海,杨大令等.新型聚芳醚腈酮超滤膜制备:非溶剂添加剂的影响.功能高分子学报,2005,18(1):105-109.
    [218] 王国庆,蹇锡高,张守海,杨大令,苏仪.低截留分子质量新型聚芳醚腈酮超滤膜的研制.现代化工,2003,23(7):37-40.
    [219] 王国庆,朱秀玲,张守海等.一种杂环磺化聚芳醚腈酮质子交换膜材料的合成及表征.高分子学报,2006(2):209-212.
    [220] 阎庆玲,王锦艳,王明晶等.新型杂萘联苯聚芳醚腈(酮)耐高温绝缘漆的研制.功能材料,2005,9:1347-1349.
    [221] 阎庆玲,刘志勇,王锦艳等.新型杂萘联苯耐高温漆包线的研制.国外建材科技.2004,25(4):91.
    [222] Yan Q L, Wang J Y, Liu Z Y et al. The novel wire, Wire Industry, 2005,72 (883),177~180.
    [223] 唐林生.高性能氨基丙烯酸水性漆的研制及相关理论研究(博士学位论文).大连:大连理工大学,2003.
    [224] Jian X G, Hay A S. Catalytic epoxidation of polyisobutylene-co-isoprene with hydrogen peroxide. J Polym. Sci., Part A: Polym. Chem., 1991,29:547-553.
    [225] 卢冶.新型含二氮杂萘酮结构聚氨酯胶粘剂的合成(硕士学位论文).大连:大连理工大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700