含嵌段共聚物的热固性树脂中纳米结构的形成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于高分子材料结构与性能之间的密切关系,具有纳米结构的热固性树脂的研究是高分子材料领域的一个重要课题。嵌段共聚物在热固性树脂中的应用为得到无序或者有序的纳米结构提供了便捷的途径。嵌段共聚物在热固性树脂中纳米结构的形成有两种机理:自组装机理和反应诱致微相分离机理。
     对于自组装机理,在固化反应前嵌段共聚物已经在热固性树脂的前驱体中自组装形成了纳米结构,这种有序或者无序的纳米结构可以通过后续的固化反应固定。这种方法中的固化反应是固定已经得到的纳米形态。自组装机理的前提是在固化反应前,嵌段共聚物在热固性树脂的前驱体中能自组装形成纳米结构。从相容性的角度来看,无论固化反应前后,需要嵌段共聚物的一个或者多个链段与热固性树脂相容,而其他的链段与热固性树脂不相容。而对于反应诱致微相分离的机理,要求在固化反应前嵌段共聚物的所有链段与热固性树脂的前驱体相容,而在反应后只有一部分链段从热固性树脂的基体中相分离出来。
     本论文根据热固性树脂和嵌段共聚物中链段之间的相容性和相行为,设计合成了一系列两亲性嵌段共聚物,通过嵌段共聚物与热固性树脂的共混,得到具有无序/有序纳米结构的热固性树脂。主要研究内容如下:
     1.含聚己内酯-b-聚(丁二烯-苯乙烯)-b-聚己内酯(PCL-b-PBS-b-PCL)嵌段共聚物的环氧树脂中反应诱致微相分离纳米结构的研究
     以端羟基聚(丁二烯-苯乙烯)(HTPBS)引发己内酯开环聚合得到了两亲性三嵌段共聚物PCL-b-PBS-b-PCL。将嵌段共聚物和环氧树脂共混,制备了具有纳米结构的环氧热固性树脂。进一步研究发现在固化反应前后,PCL链段和环氧树脂都是相容的;而PBS和环氧树脂前驱体之间存在最高临界相容温度(UCST),随着固化反应的进行,PBS链段发生反应诱致微相分离,在环氧热固性树脂中形成了纳米结构。
     2.含聚己内酯-b-聚丙烯酸丁酯(PCL-b-PBA)的环氧树脂中层状纳米结构的研究:反应诱致微相分离
     通过开环聚合与原子转移自由基聚合相结合的方法制备了两亲性的PCL-b-PBA嵌段共聚物。然后将嵌段共聚物与环氧树脂进行原位共混,得到了具有纳米结构的热固性树脂。用场发射扫描电镜,原子力显微镜,小角X射线散射和动态力学热分析对得到的纳米结构进行了表征。随着嵌段共聚物PCL-b-PBA含量的增加,PBA微相纳米结构逐渐从球状粒子向层状结构转变。根据固化反应前后嵌段共聚物中不同链段(PCL和PBA)与环氧树脂相容性和相行为的差异,判断这种有序的层状纳米结构是通过反应诱致微相分离产生的。
     3.嵌段共聚物的拓扑结构对热固性树脂纳米结构的影响
     合成了四臂星型嵌段共聚物fa(PCL-b-PS)4。将嵌段共聚物与环氧树脂共混固化,得到了具有纳米结构的热固性树脂。研究结果表明,含有四臂星型嵌段共聚物fa(PCL-b-PS)4的环氧树脂能形成层状纳米结构,这与含有线型两嵌段共聚物PCL-b-PS的环氧树脂能形成简单立方纳米结构完全不同。FTIR和DSC数据证明,环氧树脂的前驱体能穿过星型嵌段共聚物的外围PS链段而进入内部,使PCL链段与环氧树脂基体间形成了强烈的分子间相互作用,从而得以使PCL链段与环氧树脂基体保持相容。根据PS链段和PCL链段与环氧树脂在固化前后相容性的差别,证明这种纳米结构形成的原因是PS链段在固化反应的过程中发生反应诱致微相分离的结果。
     4.含聚己内酯-b-聚二甲基硅氧烷-b-聚己内酯(PCL-b-PDMS-b-PCL)嵌段共聚物的交联环氧树脂中自组装纳米结构的研究
     用双端羟基聚二甲基硅氧烷(HTPDMS)为引发剂引发己内酯开环聚合得到了两亲性的三嵌段聚合物PCL-b-PDMS-b-PCL,然后与环氧树脂共混制备了具有纳米结构的环氧热固性树脂。透射电子显微镜,原子力显微镜和小角X射线散射结果均证实当嵌段共聚物的含量为10 wt %时,形成直径为10~20 nm的球形PDMS微相,当嵌段共聚物的含量大于20 wt %时,形成蠕虫状的PDMS微相。根据固化反应前后嵌段共聚物中PCL链段和PDMS链段与环氧树脂之间的相容性,判断这种纳米结构的形成机理属于自组装机理。
     5.聚己内酯-b-聚二甲基硅氧烷-b-聚己内酯(PCL-b-PDMS-b-PCL)与线型环氧树脂共混体系的表面性能与结构的研究
     三嵌段共聚物PCL-b-PDMS-b-PCL和聚酚氧共混制备了二元共混物,FTIR和DSC结果表明嵌段共聚物中的PCL链段和聚酚氧是相容的。研究发现,当嵌段共聚物的含量为10 wt %时,共混物的表面接触角显著增加,而且随着嵌段共聚物含量的增加,共混体系的表面接触角增加,表面张力下降。XPS结果表明,这种现象是由于嵌段共聚物中的低表面能的PDMS链段向共混物表面迁移的结果。通过SAXS数据可以证明嵌段共聚物在共混体系中发生了微相分离,形成了纳米结构,而通过共混物表面的不同摩擦力可以证明嵌段共聚物在共混物的表面也发生了相分离。
     6.含聚氧化乙烯-b-聚苯乙烯(PEO-b-PS)嵌段共聚物的酚醛树脂中自组装形成的有序纳米结构的研究
     通过原子转移自由基聚合的方法合成了两亲性嵌段共聚物PEO-b-PS。然后将嵌段共聚物PEO-b-PS与线型酚醛树脂共混,研究证明嵌段共聚物在酚醛树脂中自组装形成了长程有序的纳米结构,并用SAXS研究了自组装形成的纳米结构在酚醛树脂固化反应前后形态的变化情况。结果证实,当嵌段共聚物的含量达到40 wt %后,PS球状粒子按照六边圆柱型均匀排布在整个环氧树脂基体中。根据固化反应前后,嵌段共聚物中PEO链段和PS链段与酚醛树脂之间相容性和相行为的差异,可以证明这种长程有序纳米结构是通过嵌段共聚物在酚醛树脂中的自组装形成的。
The study on the nanostructured thermosets is an important topic in the polymer materials because of the relation between the structure and property of polymer. The application of block copolymers in thermosets provides a convenient way for obtaining disordered and/or ordered nanostructures. It is recognized that the formation of nanostructures can be carried out via self-assembly or reaction-induced microphase separation mechanisms of amphiphilic block copolymers in thermosets.
     In the protocol of self-assembly, self-organized nanostructures are formed prior to curing and these disordered and/or ordered nanostructures are further locked in with the subsequent curing reaction. And for the self-assembly, some self-assembly nanostructured morphologies are formed in the precursor of thermosets before curing reaction. One subchain of the block copolymer is miscible with thermosets while the others are not miscible with the matrix before and after curing reaction. For the formation of nanostructures via reaction-induced microphase separation mechanism, it is required that all the subchains of the block copolymer are miscible with precursors of thermosets before curing whereas only a part of subchains were phase-separated from the matrix of thermosets after curing.
     We designed and sythesized a series of amphilic block copolymers according to the structures of the thermosets and miscibility between block copolymer and thermosets. And disordered and/or ordered nanostructured thermosets were obtained by the mixtures of block copolymer and thermosets. The main researches are as follows:
     1. Study on the nanostructure in epoxy thermosets containing poly(ε-caprolactone)-b- poly(butadiene-styrene)-b-poly(ε-caprolactone) (PCL-b-PBS-b-PCL): an evidence of reaction-induced microphase separation
     The block copolymer PCL-b-PBS-b-PCL was synthesized by the ring-opening polymerization ofε-caprolactone. The triblock copolymer was further mixed with epoxy resin to prepare nanostructured epoxy thermosets. Further study illustrated that PCL subchains were miscible with epoxy after and before curing while PBS subchains and diglycidyl ether of bisphenol A (DGEBA) had the upper critical solution temperature (UCST). Then PBS subchains occurred reaction-induced microphase separation during curing reaction and formed nanostructures in epoxy thermosets.
     2. Lamellar nanostructures in epoxy thermosets containg poly(ε-caprolactone)-b-poly(butyl acrylate) (PCL-b-PBA) via reaction-induced microphase separation
     The diblock copolymer PCL-b-PBA was synthesized via the ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP). The diblock copolymer was incorporated into epoxy thermosets to access the nanostructures in the thermosets. The nanostructures were investigated by means of field-emission scanning electron microscope (FESEM), atomic force microscopy (AFM), small-angle X-ray scattering (SAXS) and dynamic mechanical analysis (DMA). It was found that depending on the concentration of the diblock copolymer in the thermosets, the nanostructures changed from spherical particles to lamellar objects of PBA nanophases. In terms of the miscibility of the PCL/PBA subchains of the block copolymer with epoxy resin after and before curing reaction, it was judged that the nanostructures were formed via the mechanism of reaction-induced phase separation.
     3. Effect of topological structures of block copolymers on nanostructures in thermosets
     The four arms star-shape block copolymer fa(PCL-b-PS)4 was synthesized. Then the star-shape block copolymer was mixed with epoxy resin and the nanostructures were obtained. The results showed that the lamellar nanostructures were formed in epoxy thermosets containing four arms shar-shape block copolymer fa(PCL-b-PS)4 while the lattice with simple cubic nanostructures were in epoxy thermosets containing diblock copolymer PCL-b-PS. FTIR and DSC results illustrated that the precursor of epoxy (DGEBA) could rip into the outer PS subchains and come into the inner PCL subchains of the star-shape block copolymer. This resulted in the miscibility of PCL subchains and epoxy matrix. In terms of the miscibility of the PCL/PS subchains of the block copolymer with epoxy resin after and before curing reaction, it was judged that the lamellar nanostructures were formed via reaction-induced phase separation.
     4. Study on the self-assembly nanostructures in the cross-linked epoxy thermosts containing poly(ε-caprolactone)-b-poly(dimethylsiloxane)-b-poly(ε-caprolactone)
     The triblock copolymer PCL-b-PDMS-b-PCL was synthesized via the ring-opening polymerization ofε-caprolactone in the presence of dihydroxypropyl-terminated PDMS (HTPDMS) initiator, and was incorporated into epoxy resin and the nanostructured thermosets were successfully obtained. The morphology of the epoxy thermosets containing PCL-b-PDMS-b-PCL triblock copolymers were investigated by means of atomic force microscopy, transmission electronic microscopy and small angle X-ray scattering. The spherical PDMS microphase with the diameter as 10-20 nm was dispersed in epoxy thermosets containing 10 wt % block copolymer; and wormlike PDMS microphase was formed when the content of block copolymer more than 20 wt %. The formation was judged to follow the self-assembly mechanism in terms of the difference in miscibility of the PDMS and PCL subchains with epoxy resin after and before curing reaction.
     5. Study on the surface properties and structures of the triblock copolymer PCL-b-PDMS-b-PCL and linear epoxy resin mixtures
     The binary polymer blends were obtained by mixing triblock copolymer PCL-b-PDMS-b-PCL and Phenoxy. FTIR and DSC results illustrated that PCL blocks in the triblock copolymer are miscible with Phenoxy. The contact angle of Phenoxy blends containing 10 wt % triblock copolymer was significantly increased and the contact angles increased with increasing the content of triblock copolymer while the surface free energy decreased. XPS results showed that the PDMS block aggregated on the surface to minimize the surface free energy of the polymer blends. Microphase separation of the triblock copolymer occurred in binary Phenoxy blends and phase separation on the surface of the Phenoxy blends was proved by atom force microscope via the different friction force of the surface of the polymer blends.
     6. Study on the self-assembly ordered nanostructures in phenolic resin containing poly(ethylene oxide)-b-poly(styrene) (PEO-b-PS) diblock copolymer
     The diblock copolymer PEO-b-PS was synthesized by ATRP. Then the PEO-b-PS diblock copolymer was used to incorporate into phenolic resin to afford the long-range ordered nanostructured phenolic resin by self-assembly. And the changes of the nanostructures in phenolic resin before and after curing reaction were studied by SAXS. The results showed that the PS microdomains arranged into hexagonal cylinder when the content of PEO-b-PS diblock copolymer was 40 wt %. In views of the difference in miscibility and phase behavior for the blends of the PEO/PS subchains of the diblock copolymer with phenolic resin after and before cuing, the formation of the ordered nanostructures was judged to be via the mechanism of self-assembly.
引文
1. 封朴,聚合物合金,同济大学出版社,1997,1-5
    2. 何曼君,陈维孝,董西侠,高分子物理,复旦大学出版社,2000,34-83
    3. Price C., Woods D., A method for studying micellar aggregates in block and graft copolymers, Eur. Polym. J., 1973, 9, 827-833
    4. Thurmond K. B., Kowalewski T., Wooley K. L., Water-soluble knedel-like structures: The preparation of shell-cross-linked small particles, J. Am. Chem. Soc., 1996, 118, 7239-7240
    5. Wooley K. L., Shell crosslinked polymer assemblies: Nanoscale constructs inspired from biological systems, J. Polym. Sci. Part A, 2000, 38, 1397-1407
    6. Sanji T., Nakatsuka Y., Kitayama F, Sakurai H., Encapsulation of polysilane into shell cross-linked micelles, Chem. Commun., 1999, 2201-2202
    7. Underhill R. S., Liu G., Triblock nanospheres and their use as templates for inorganic nanoparticle preparation, Chem. Mater., 2000, 12, 2082-2091
    8. Bütün V., Wang X. S., de Paz Banez M. V., Robinson K. L., Billingham N. C., Armes S. P., Tuzar Z., Synthesis of shell cross-linked micelles at high solids in aqueous media, Macromolecules, 2000, 33, 1-3
    9. Bütün V., Billingham N. C., Armes S. P., Synthesis of shell cross-linked micelles with tunable hydrophilic/hydrophobic cores, J. Am. Chem. Soc., 1998, 120, 12135-12136
    10. Liu S., Weaver J. V. M., Tang Y., Billingham N. C., Armes S. P., Tribe K., Synthesis of shell cross-linked micelles with pH-responsive cores using ABC triblock copolymers, Macromolecules, 2002, 35, 6121-6131
    11. Liu G., Ding J., Qiao L, Guo A., Dymov B. P., Gleeson J. T., Hashimoto T., Sajin K., Polystyrene-block-poly(2-cinnamoylethyl methacrylate) nanofibers: preparation, characterization, and liquid crystalline properties, Chem. Eur. J., 1999, 5, 2740-2749
    12. Liu G., Yan X., Duncan S., Polystyrene-block-polyisoprene nanofiber fractions. 1. Preparation and static light-scattering study, Macromolecules, 2002, 35, 9788-9793
    13. Yan X., Liu F., Li Z., Liu G., Poly(acrylic acid)-lined nanotubes of poly(butyl methacrylate)-block-poly(2-cinnamoyloxyethyl methacrylate), Macromolecules, 2001, 34, 9112-9116
    14. Yan X., Liu G., Li Z., Preparation and phase segregation of block copolymer nanotube multiblocks, J. Am. Chem. Soc., 2004, 126, 10059-10066
    15. Lee J. S., Hirao A., Nakahama S., Polymerization of monomers containing functional silyl groups. 7. Porous membranes with controlled microstructures, Macromolecules, 1989, 22, 2602-2606
    16. Guarini K. W., Black C. T., Milkove K. R., Sandstrom R. L., Sub-lithographic patterning using self-assembled polymers for semiconductor applications, J. Vac. Sci. Tech. B, 2001, 19, 2784-2788
    17. Zalusky A. S., Olayo-Valles R., Taylor C. J., Hillmyer M. A., Mesoporous polystyrene monoliths, J. Am. Chem. Soc., 2001, 123, 1519-1520
    18. Liu G., Ding J., Hashimoto T., Kimishima K., Winnik F. M., Nigam S., Thin films with densely, regularly packed nanochannels: Preparation, characterization, and applications, Chem. Mater., 1999, 11, 2233-2240
    19. Rzayev J., Hillmyer M. A., Nanoporous polystyrene containing hydrophilic pores from an ABC triblock copolymer precursor, Macromolecules, 2005, 38, 3-5
    20. Du J., Chen Y., Zhang Y., Han C. C., Fischer K., Schmidt M., Organic/inorganic hybrid vesicles based on a reactive block copolymer, J. Am. Chem. Soc., 2003, 125, 14710-14711
    21. Zhang Y., Luo S., Liu S., Fabrication of Hybrid Nanoparticles with Thermoresponsive Coronas via a Self-Assembling Approach, Macromolecules, 2005, 38, 9813-9820
    22. Ulrich R., Chesne A. D., Templin M., Wiesner U., Nano-objects with controlled shape, size, and composition from block copolymer mesophases, Adv. Mater., 1999, 11, 141-146
    23. Templin M., Franck A., Chesne A. D., Leist H., Zhang Y., Ulrich R., Schadler V., Wiesner U., Organically modified aluminosilicate mesostructures from block copolymer phases, Science, 1997, 278, 1795-1798
    24. Liu S., Weaver J. V. M., Save M., Armes S. P., Synthesis of pH-responsive shell cross-linked micelles and their use as nanoreactors for the preparation of gold nanoparticles, Langmuir, 2002, 18, 8350-8357
    25. Bockstaller M. R., Thomas E. L., Optical properties of polymer-based photonic nanocomposite materials, J. Phys. Chem. B, 2003, 107, 10017-10024
    26. Luo S Z , Liu S Y, Wu C. Fabrication of hybrid nanoparticles with thermoresponsive coronas via a self-assembling approach. Macromolecules, 2005, 38, 9813-9820
    27. Goodmaned I., Developments in Block Copolymers vol. 1. Applied Science, London: 1982
    28. Goodmaned I., Developments in Block Copolymers vol. 2. Applied Science, London: 1985
    29. Reiss G., Hurtrez G., Bahadur P., Block Copolymers in Encyclopedia of Polymer Science andEngineering. Vol l.2.
    30. Mark H. F., Kroschwitz J., eds. Wiley, New: 1985, 4
    31. Nace V. M., Nonionic Surfactants. Polyoxyalkylene Block Copolymers. Surfactant Science Series. Marcel Dekker, New York: 1996, 5
    32. Schmolka I. R., Polyoxamers in the Pharmaceutical Industry. In Polymers for Controlled Drug Delivery. P. J. Tarcha, Ed .CRC Press, Boston: 1991, 6
    33. Thurn-Albrecht I., Schotter J., Kastle G. A., Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates, Science, 2000, 290, 2126-2128
    34. Muthukumar M., Ober C. K., Thomas E. L., Competing interactions and levels of ordering in self-organizing polymeric materials, Science, 1997, 277, 1225-1232
    35. Lodge T. P., Block Copolymers: Past Successes and Future Challenges, Macromol., Chem. Phys., 2003, 204, 265-273
    36. Matsen M. W., Bates F. S., Origins of complex self-assembly in block copolymers, Macromolecules, 1996, 29, 7641-7644
    37. Bates F. S., Fredrickson G. H., Block copolymers--Designer soft materials, Phys. Today, 1999, 52, 32-38
    38. Hillmyer M. A., Lipic P. M., Hajduk D. A., Almdal K., Bates F. S., Self-assembly and polymerization of epoxy resin-amphiphilic block copolymer nanocomposites. J. Am. Chem. Soc. 1997, 119, 2749-2750
    39. Lipic P. M., Bates F. S., Hillmyer M. A., Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mixtures, J. Am. Chem. Soc.,1998, 120, 8963-8970
    40. Kosonen H., Ruokolainen J., Nyholm P., Ikkala O., Self-organized thermosets: blends of hexamethyltetramine cured novolac with poly(2-vinylpyridine)-block-poly(isoprene), Macromolecules, 2001, 34, 3046-3049
    41. Guo Q., Dean J. M., Grubbs R. B., Bates F. S., Block copolymer modified novolac epoxy resin, J. Polym. Sci., Part B: Polym. Phys., 2003, 41, 1994-2003
    42. Ritzenthaler S., Court F., Girard-Reydet E., Leibler L., Pascault J. P., ABC triblock copolymers/epoxy-diamine blends. 1. Keys to achieve nanostructured thermosets, Macromolecules, 2002, 35, 6245-6254
    43. Ritzenthaler S., Court F., Girard-Reydet E., Leibler L., Pascault J. P., ABC triblock copolymers/epoxy-diamine blends. 2. Parameters controlling the morphologies and properties, Macromolecules, 2003, 36, 118-126
    44. Guo Q., Thomann R., Gronski W., Nanostructures, semicrytalline morphology, and nanoscale confinement effect on the crystallization kinetics in self-organized block copolymer/thermoset blends, Macromolecules, 2003, 36, 3635-3645
    45. Meng F., Zheng S., Zhang W., Li H., Liang Q., Nanostructured thermosetting blends of epoxy resin and amphiphilic poly( -caprolactone)-block-polybutadiene-block-poly( -caprolactone) triblock copolymer, Macromolecules, 2006, 39, 711-719
    46. Meng F., Zheng S., Li H., Liang Q., Liu T., Formation of ordered nanostructures in epoxy thermosets: A mechanism of reaction-induced microphase separation, Macromolecules, 2006, 39, 5072-5080
    47. Meng F., Zheng S., Liu T., Epoxy resin containing poly(ethylene oxide)-block-poly(-caprolactone) diblock copolymer: Effect of curing agents on nanostructures, Polymer, 2006, 47, 7590-7600
    48. Schmitz I., Schreiner M., Friedbacher G., Phase imaging as an extension to tapping mode AFM for the identification of material properties on humidity-sensitive surfaces, Appl. Surf. Sci., 1997, 115, 190-198
    49. Magonov S. N., Elings V., Whangbo M. H., Phase imaging and stiffness in tapping-mode atomic force microscopy, Surf. Sci., 1997, 375, L385-L391
    50. Tamayo A., Garcia R., Deformation, Contact time, and phase contrast in tapping mode scanning force microscopy, Langmuir, 1996, 12, 4430-4435
    51. Chen X., McGurk S. L., Davies M. C., Roberts C. J., Shakesheff K. M., Tendler S. J. B., Williams P. M., Davies J., Dawkes A. C., Domb A., Chemical and morphological analysis of surface enrichment in a biodegradable polymer blend by phase-detection imaging atomic force microscopy, Macromolecules, 1998, 31, 2278-2283
    52. Clarke S., Davies M. C., Roberts C. J., Tendler S. J. B., Williams P. M., Lewis A. L., O'Bryne V., Atomic Force Microscope and Surface Plasmon Resonance Investigation of Polymer Blends of Poly([2-(methacryloyloxy)ethyl]phosphorylcholine-co-lauryl methacrylate) and Poly(lauryl methacrylate), Macromolecules, 2001, 34, 4166-4172
    53. Nettesheim S., Zeisel D., Handschuh M., Zenobi R., Self-assembly and Desorption Behavior of Poly(ethylene glycol) Monolayers on Silica, Langmuir, 1998, 14, 3101-3106
    54. Bar G., Thomann Y., Whangbo M.-H., Characterization of the morphologies and nanostructures of blends of poly(styrene)-block-poly(ethene-co-but-1-ene)-block- poly(styrene) with isotactic and atactic polypropylenes by tapping-mode atomic forcemicroscopy, Langmuir, 1998, 14, 1219-1226
    55. Guo Q., Thomann R., Gronski W., Nanostructures, semicrytalline morphology, and nanoscale confinement effect on the crystallization kinetics in self-organized block copolymer/thermoset blends, Macromolecules, 2003, 36, 3635-3645
    56. Mijovic J., Shen M., Sy J. W., Mondragon I., Dynamics and morphology in nanostructured thermoset network/block copolymer blends during network formation, Macromolecules, 2000, 33, 5235-5244
    57. Larranaga M., Grbilondo N., Kortaberria G., Micro- or nano-separated phases in thermoset blends of an epoxy resin and PEO-PPO-PEO triblock copolymer, Polymer, 2005, 46, 7082-7093
    58. Hu W. G., Schmidt-Rohr K., Characterization of ultradrawn polyethylene fibers by NMR: crystallinity, domain sizes and a highly mobile second amorphous phase, Polymer, 2000, 41, 2979-2987
    59. VanderHart D. L., Alamo R. G., Nyden M. R., Observation of resonances associated with stereo and regio defects in the crystalline regions of isotactic polypropylene: toward a determination of morphological partitioning, Macromolecules, 2000, 33, 6078-6093
    60. Werkhoven T. M., Mulder F. M., Zune C., Determination of polyisoprene-block- poly(methyl methacrylate) domain sizes using 1H spin diffusion, Macromol. Chem. Phys., 2003, 204, 46
    61. Kim C., Lee S., C. Kwon I. C., Complexation of Poly(2-ethyl-2-oxazoline)-block-poly(  -caprolactone) micelles with multifunctional carboxylic acids, Macromolecules, 2002, 35,193-200
    62. Kryz J., Masar B., Plestil J., Three-layer micelles of an ABC block copolymer: NMR, SANS, and LS study of a poly(2-ethylhexyl acrylate)-block-poly(methyl methacrylate)-block- poly(acrylic acid) copolymer in D2O, Macromolecules, 1998, 31, 41-51.
    63. VanderHart D. L., Feng Y., Han C. C., Morphological characterization of blends of metal-sulfonated poly(styrene) and a methylated poly(amide) by solid state NMR, Macromolecules, 2000, 33, 2206-2227
    64. Vander Hart D. L., Manley R. S., Barnes J., Proton Spin Diffusion Studies of Polymer Blends Having Modest Monomer Size. 2. Blends of Cellulose with either Poly(acrylonitrile) or Poly(4-vinylpyridine), Macromolecules, 1994, 27, 2826-2836
    65. Mulder F. M., Jansen B. J. P., Lemstra P. J., Pronounced poly(methyl methacrylate) dynamics induced by blending morphology. et al, Macromolecules, 2000,33, 457-460
    66. Cho G., Natansohn A., Investigation of Phase Structure of Blends of Poly[(N-ethylcarbazol-3-yl)methyl methacrylate] and Poly{2-[(3,5-Dinitrobenzoyl)oxy] ethyl methacrylate} Using 1H cramps NMR, Chem. Mater., 1997, 9, 148-154
    67. Wagler T., Rinaldi L., Han C. D., Phase behavior and segmental mobility in binary blends of polystyrene and poly(vinyl methyl ether), Macromolecules, 2000, 33, 1778-1789
    68. McCormick M., Smith R. N., Graf R, NMR studies of the effect of adsorbed water on polyelectrolyte multilayer films in the solid state Macromolecules, 2003, 36, 3616-3625
    69. Paul S. M. D., Zwanziger J. W., Ulrich R., Structure, Mobility, and Interface Characterization of Self-Organized Organic-Inorganic Hybrid Materials by Solid-State NMR J. Am. Chem. Soc., 1999, 121, 5727-5736
    70. Vander Hart D. L., Asano A., Gilman J. W., Solid-State NMR Investigation of Paramagnetic Nylon-6 Clay Nanocomposites. 1. Crystallinity, Morphology, and the Direct Influence of Fe3+ on Nuclear Spins, Chem. Mater., 2001, 13, 3781-3796
    71. Hou S. S., Eyer F. L., Schmidt-Rohr K., High-sensitivity multinuclear NMR spectroscopy of a smectite clay and of clay-intercalated polymer, Solid State Nucl. Magn. Reson., 2002, 22, 110-127
    72. Tonelli A. E, NMR Spectroscopy and Polymer Microstructure;VCH: New York, 1989
    73. Clauss J., Schmidt-Rohr K., Spiess H. W., Determination of domain sizes in heterogeneous polymers by solid-state NMR, Acta Polym., 1993, 44, 1
    74. Landfester K., Spiess H. W., Characterization of interphases in core-shell latexes by solid-state NMR, Acta Polym., 1998, 49, 451-464
    75. VanderHart D. L., Proton spin diffusion studies of polymer blends having modest monomer size: 1. polystyrene/poly(xylylene ether), a miscible blend, Macromolecules, 1994, 27, 2837-2845
    76. Cherry B. R., Fujimoto C. H., Cornelius C. J., Investigation of domain size in polymer membranes using double-quantum-filtered spin diffusion magic angle spinning NMR, Macromolecules, 2005, 38, 1201-1206
    77. Mirau P. A., Yang S., Solid-state proton NMR characterization of ethylene oxide and propylene oxide random and block copolymer composites with poly(methyl silsesquioxanes), Chem. Mater, 2002, 14, 249-255
    78. Sun P., Dang Q., Li B., Mobility, miscibility, and microdomain structure in nanostructured thermoset blends of epoxy resin and amphiphilic poly(ethylene oxide)-block-poly(propyleneoxide)-block-poly(ethylene oxide) triblock copolymers characterized by solid-state NMR, Macromolecules, 2005, 38, 5654-5667
    79. Stein R. S., 散射和双折射方法在高聚物织构研究中的应用,科学出版社,1983,84-102
    80. Dingenouts N., Ballauff M., Small-angle x-ray analysis of latex particles using contrast variation, Acta Polymer, 1993, 44, 178-183
    81. Dingenouts N., Ballauff M., Assessment of spatial order in dried latexes by small-angle x-ray scattering, Macromolecules, 1998 31, 7423-7429
    82. Pederson J. S, 1999 Current Opinion in Colloid & Interface Science, 4190
    83. 胡家璁,高分子X射线学,科学出版社,2003,392-451
    84. Pascault J. P., Williams R. J. J, In Polymer Blends, (Eds. Paul D. R., Bucknall C.B.) Wiley: New York, 2000, Vol.1, pp 379-415
    85. Guo Q., In Polymer Blends and Alloy (Eds. Shonaik G. O. and Simon G.), MarcelDekker: New York, 1999, Chap. 6, pp 155 ~ 187
    86. de Gennes P. G., Scale Concepts in Polymer Physics; Cornell University Press: Ithaca, NY, 1979
    87. de Gennes P. G.., Possibilities offered by polymer crosslinking in the presence of a liquid crystal, Phys. Lett.,1969, 28, 725-726
    88. Hillmyer M. A., Lipic P., Hajduk D. A., Almdal K., Bates F. S., Self-assembly and polymerization of epoxy resin-amphiphilic block copolymer nanocomposites, J. Am. Chem. Soc., 1997, 119, 2749-2750
    89. Lipic P. M., Bates F. S., Hillmyer M. A., Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mixtures, J. Am. Chem. Soc., 1998, 120, 8963-8970
    90. Mijovic J., Shen M., Sy J. W., Mondragon I., Dynamics and morphology in nanostructured thermoset network/block copolymer blends during network formation, Macromolecules, 2000, 33, 5235-5244
    91. Guo Q., Thomann R., Gronski W., Phase behavior, crystallization, and hierarchical nanostructures in self-organized thermoset blends of epoxy resin and amphiphilic poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) triblock copolymers, Macromolecules, 2002, 35, 3133-3144
    92. Guo Q., Thomann R., Gronski W., Nanostructures, semicrytalline morphology, and nanoscale confinement effect on the crystallization kinetics in self-organized block copolymer/thermoset blends, Macromolecules, 2003, 36, 3635-3645
    93. Ritzenthaler S., Court F., Girard-Reydet E., ABC Triblock copolymers/epoxy-diamine blends. 1. keys to achieve nanostructured thermosets, Macromolecules, 2002, 35, 6245-6254
    94. Ritzenthaler S., Court F., Girard-Reydet E., ABC triblock copolymers/epoxy-diamine blends.. Parameters controlling the morphologies and properties, Macromolecules, 2003, 36, 118-126
    95. Kosonen H., Ruokolainen J., Nyholm P., Ikkala O., Self-organized thermosets: blends of hexamethylenetetramine cured novolac with poly(2-vinylpyridine)-block-poly(isoprene), Macromolecules, 2001, 34, 3046-3049
    96. Kosonen H., Ruokolainen J., Nyholm P., Ikkala O., Self-organized cross-linked phenolic thermosets: thermal and dynamic mechanical properties of novolac/block copolymer blends, Polymer, 2001, 42, 9481-9486
    97. Kosonen H., Ruokolainen J., Torkkeli M., Micro- and macrophase separation in phenolic resol resin/PEO-PPO-PEO block copolymer blends: effect of hydrogen-bonded PEO length, Macromol. Chem. Phys., 2002, 203, 388
    98. Grubbs R., B, Dean J. M., Broz M. E., Bates F. S., Reactive block copolymers for modification of thermosetting epoxy, Macromolecules, 2000, 33, 9522-9534
    99. Rebizant V., Abetz V., Tournihac T., Court F., Leibler L., Reactive tetrablock copolymers containing glycidyl methacrylate. synthesis and morphology control in epoxy-amine networks, Macromolecules, 2003, 36, 9889-9896
    100. Dean J. M., Verghese N. E., Pham H. Q., Bates F. S., Nanostructure toughened epoxy resins, Macromolecules, 2003, 36, 9267-9270
    101. Rebizant, V., Venet, A. S., Tournilhac, F., Girard-Reydet, E., Navarro, C., Pascault, J. P., Leibler, L., Chemistry and mechanical properties of epoxy-based thermosets reinforced by reactive and nonreactive SBMX block copolymers, Macromolecules, 2004, 37, 8017-8027
    102. Dean J. M., Grubbs R. B., Saad W., Mechanical properties of block copolymer vesicle and micelle modified epoxies, J. Polym. Sci., Part B: Polym. Phys., 2003, 41, 2444-2456
    103. Wu J., Thio Y. S., Bates F. S., Structure and properties of PBO-PEO diblock copolymer modified epoxy, J. Polym. Sci., Part B: Polym. Phys., 2005, 43, 1950-1965
    104. Ochi M., Takemiya K., Kiyohara O., Effect of the addition of aramid-silicone block copolymer on phase structure and toughness of cured epoxy resins modified with silicone, Polymer, 1998, 39, 725-731
    105. Ochi M., Mimura K., Kiyohara O., Effect of aramid-CTBN block copolymer on phase structure and toughness of cured epoxy resins modified with carboxy-terminated butadieneacrylonitrile copolymer (CTBN), Ang. Makromol.Chem., 1996, 240, 17-29
    106. Konczol L., Doll W., Buchholz U., Mulhaupt R., Ultimate properties of epoxy resins modified with a polysiloxane-polycaprolactone block copolymer, J. Appl.Polym. Sci., 1994, 54, 815-826
    107. Riess G., Schlienger M., Marti S., New morphologies in rubber-modified polymers, J. Macromol. Sci., Phys., 1980, 17, 355
    108. Kosonen H., Ruokolainen J., Torkkeli M., Micro- and macrophase separation in phenolic resol resin/PEO-PPO-PEO block copolymer blends: effect of hydrogen-bonded PEO length, Macromol. Chem. Phys., 2002, 203, 388
    109. Guo Q. P., Wang K., Chen L., Zheng S. X., Halley P. J., Phase behavior, crystallization, and nanostructures in thermoset blends of epoxy resin and amphiphilic star-shaped block copolymers, J. Polym. Sci., Part B: Polym. Phys., 2006, 44, 975-985
    110. Milner S. T., Polymer brushes, Science, 1991, 251, 905-914
    111. Ferreira P. G., Leibler L., Copolymer brushes, J. Phys. Chem., 1996, 105, 9362-9370
    112. Buchholz U., Mülhaupt R., Branched polysiloxane block copolymers as epoxy toughening agents, ACS Polym. Prepr., 1992, 33, 205-206
    113. Thio Y. S., Wu J., Bates F. S., Epoxy toughening using low molecular weight poly(hexylene oxide)-poly(ethylene oxide) diblock copolymers, Macromolecules, 2006, 39, 7187-7189
    114. Grubbs R. B., Dean J. M., Bates F. S., Methacrylic block copolymers through metal-mediated living free radical polymerization for modification of thermosetting epoxy, Macromolecules, 2001, 34, 8593-8595
    115. Serrano E., Tercjak A., Kortaberria G., Dynamics of Spontaneous Vesicle Formation in Dilute Solutions of Amphiphilic Diblock Copolymers, Macromolecules, 2006, 39, 2254-2261
    116. Grubbs R. B., Broz M. E., Dean J. M., Bates F. S., Electively epoxidized polyisoprene- polybutadiene block copolymers, Macromolecules, 2000, 33, 2308-2310
    117. Jian X., Hay A. S., Catalytic epoxidation of styrene-butadiene triblock copolymer with hydrogen peroxide, J. Polym. Sci., Part A: Polym. Chem., 1991, 29, 1183-1189
    118. Tang P., Qiu F., Zhang H., Yang Y., Morphology and phase diagram of complex block copolymers: abc star triblock copolymers. J. Phys. Chem. B., 2004, 108, 8434-8438
    119. Du J., Chen Y., PCL star polymer, PCL-PS heteroarm star polymer by ATRP, and core-carboxylated PS star polymer thereof, Macromolecules, 2004, 37, 3588-3594
    120. Gao H., Matyjaszewski K., Low-polydispersity star polymers with core functionality bycross-linking macromonomers using functional ATRP initiators, Macromolecules, 2007, 40, 399-401
    121. Terashima T., Ouchi M., Ando T., Kamigaito M., Sawamoto M., Bearing star polymer catalysts: one-pot synthesis of PEG armed star polymers with Ruthenium(II)-enclosed microgel cores via metal-catalyzed living radical polymerization, Macromolecules, 2007, 40, 3581-3588
    122. Kanaoka S., Sawamoto M., Higashimura T., Star-shaped polymers by living cationic polymerization. 4. Selective host-guest interaction of small molecules by amphiphilic star-shaped polymers of vinyl ethers, Macromolecules, 1992, 25, 6414-6418
    123. Kharchenko S. B., Kannan R. M., Role of architecture on the conformation, rheology, and orientation behavior of linear, star, and hyperbranched polymer melts. 2. linear viscoelasticity and flow birefringence, Macromolecules, 2003, 36, 407-415
    124. Furukawa T., Ishizu K., Lattice formation of peripherally charged star polymers in aqueous solution, Macromolecules, 2003, 36, 434-43916
    125. Pispas S., Poulos Y., Hadjichristidis N., Micellization behavior of (PS)8(PI)8 miktoarm (vergina) star copolymers, Macromolecules, 1998, 31 4177-4181
    126. Kanaoka S., Nakata S., Yamaoka H., Amphiphilic heteroarm star-shaped polymers by living cationic polymerization: a unique behavior in aqueous solution, Macromolecules, 2002, 35, 4564-4566
    127. Yamanaka K., Takagi Y., Inoue T., Reaction-induced phase separation in rubber-modified epoxy resins, Polymer, 1989, 60, 1839-1844
    128. Inoue T., Reaction-induced phase decomposition in polymer blends, Porg. Polym. Sci., 1995, 20, 119-153
    129. Okamoto M., Shiomi K., LCST-type phase behavior and structure development during melt processing in a polycarbonate/poly(styrene-co-acrylonitrile) blend, Polymer, 1995, 36, 87-91
    130. Chen W. J., Li X. L., Jiang M., Spinodal decomposition induced by copolymerization in the mixture of methyl methacrylate/vinyl acetate/poly[ethylene-co-(vinyl acetate)], Macromol. Chem. Phys., 1998, 199, 319-325
    131. Chen W. J., Li X. L., Dong T., Jing M., Spinodal decomposition induced by crosslinking reaction in a binary polymer mixture, Macro. Chem. Phys., 1998, 199, 327-333
    132. Lal J., Bansil R., Light-scattering study of kinetics of spinodal decomposition in a polymer solution, Macromolecules, 1991, 24, 290-297
    133. Cunmming A., Wiltzius P., Bates F. S., Light-scattering experiments on phase-separation dynamics in binary fluid mixtures, Phys. Rev. A, 1992, 45, 885-897
    134. Kyu T., Lee J. H., Nucleation initiated spinodal decomposition in a polymerizing system, Phys. Rev. Lett.,1996, 76, 3746
    135. Hourston J., Lane J. M., Zhang H. X., Toughening of epoxy resins with thermoplastics: 3. An investigation into the effects of composition on the properties of epoxy resin blends, Polymer international, 1997, 42, 349-355
    136. Rong M. Z., Zeng H. M., Polycarbonate-epoxy semi-interpenetrating polymer network: 2. Phase separation and morphology, Polymer, 1997, 38, 269-277
    137. Datta S., Dharmarajan N., Ver Strate G., Ban L., Impact toughened blends of styrene-maleic anhydride copolymer, polyethylene, and ethylene-propylene copolymer, Polym. Eng. Sci., 1993, 33, 721-735
    138. Gramespacher H., Meissner., Melt elongation and recovery of polymer blends, morphology, and influence of interfacial tension, J. Rheol., 1997, 41, 27-44
    139. Xie X. M., Xiao T. J., Zhang Z. M., Effect of interfacial tension on the formation of the gradient morphology in polymer blends, J. Colloid. Interf. Sci., 1998, 206, 189-194
    140. Liang H., Favis B. D., Yu Y. S., Eisenberg A., Correlation between the interfacial tension and dispersed phase morphology in interfacially modified blends of LLDPE and PVC, Macromolecules, 1999, 32, 1637-1642
    141. Li Z. H., Zhang X. M., Tanaka S., Inagaki N., The interfacial tension and morphology of reactive polymer blends, Mater. Lett., 2001, 48, 81-88
    142. Kim S. C., Ko M. B., Jo W. H., The effect of the viscosity of epoxy prepolymer on the generated morphology in rubber-toughened epoxy resin, Polymer, 1995, 36, 2189-219
    143. Ruseckaite R. A., Hu L. J., Riccardi C. C., Castor-oil-modified epoxy resins as model systems of rubber-modified thermosets. 2. Influence of cure conditions on morphologies generated, Polym. Int., 1993, 30, 287-295
    144. Inoue T., Reaction-induced phase decomposition in polymer blends, Prog. Polym. Sci., 1995, 20, 119-153
    1. Bates F. S., Fredrickson G. H., Block copolymer thermodynamics: theory and experiment, Annu. Rev. Phys. Chem., 1990, 41, 525-557
    2. Han C. D., Baek D. M., Kim J. K., Ogawa T., Hashimoto T., Effect of volume fraction on the order-disorder transition in low molecular weight polystyrene-block-polyisoprene copolymers.
    1. Order-disorder transition temperature determined by rheological measurements, Macromolecules, 1995, 28, 5043-5062
    3. Matsen M. W., Bates F. S., Unifying weak- and strong-segregation block copolymer theories, Macromolecules, 1996, 29, 1091-1098
    4. Ryu D. Y., Lee D. H., Jeong U., Yun S. H., Park S., Kwon K., Sohn B. H., Kim J. K., Closed-loop phase behavior of polystyrene-block-poly(n-pentyl methacrylate) copolymers with various block length ratios, Macromolecules, 2004, 37, 3717-3724
    5. Hillmyer M. A., Lipic P. M., Hajduk D. A., Almdal K., Bates F. S., Self-assembly and polymerization of epoxy resin-amphiphilic block copolymer nanocomposites, J. Am. Chem. Soc., 1997, 119, 2749-2750
    6. Lipic P. M., Bates F. S., Hillmyer M. A., Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mixtures, J. Am. Chem. Soc., 1998, 120, 8963-8970
    7. Grubbs R. B., Dean J. M., Broz M. E., Bates F. S., Reactive block copolymers for modification of thermosetting epoxy, Macromolecules, 2000, 33, 9522-9534
    8. Mijovic J., Shen M., Sy J. W., Mondragon I., Dynamics and morphology in nanostructured thermoset network/block copolymer blends during network formation, Macromolecules, 2000, 33, 5235-5244
    9. Ritzenthaler S., Court F., Girard-Reydet E., Leibler L., Pascault J. P., ABC triblock copolymers/epoxy-diamine blends. 1. Keys to achieve nanostructured thermosets, Macromolecules, 2002, 35, 6245-6254
    10. Ritzenthaler S., Court F., Girard-Reydet E., Leibler L., Pascault J. P., ABC triblock copolymers/epoxy-diamine blends. 2. Parameters controlling the morphologies and properties, Macromolecules, 2003, 36, 118-126
    11. Guo Q., Thomann R., Gronski W., Phase behavior, crystallization, and hierarchical nanostructures in self-organized thermoset blends of epoxy resin and amphiphilic poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) triblockcopolymers, Macromolecules, 2002, 35, 3133-3144
    12. Guo Q., Thomann R., Gronski W., Nanostructures, semicrytalline morphology, and nanoscale confinement effect on the crystallization kinetics in self-organized block copolymer/thermoset blends, Macromolecules, 2003, 36, 3635-3645
    13. Kosonen H., Ruokolainen J., Nyholm P., Ikkala O., Self-organized thermosets: blends of hexamethyltetramine cured novolac with poly(2-vinylpyridine)-block-poly(isoprene), Macromolecules, 2001, 34, 3046-3049
    14. Kosonen H., Ruokolainen J., Nyholm P., Ikkala O., Self-organized cross-linked phenolic thermosets: thermal and dynamic mechanical properties of novolac/block copolymer blends, Polymer, 2001, 42, 9481-9486
    15. Rebizant V., Abetz V., Tournihac T., Court F., Leibler L., Reactive tetrablock copolymers containing glycidyl methacrylate. Synthesis and morphology control in epoxy-amine networks, Macromolecules, 2003, 36, 9889-9896
    16. Dean J. M., Verghese N. E., Pham H. Q., Bates F. S., Nanostructure toughened epoxy resins, Macromolecules, 2003, 36, 9267-9270
    17. Rebizant V., Venet A. S., Tournillhac F., Girard-Reydet E., Navarro C., Pascault J. P., Leibler L., Chemistry and mechanical properties of epoxy-based thermosets reinforced by reactive and nonreactive SBMX block copolymers, Macromolecules, 2004, 37, 8017-8027
    18. Dean J. M., Grubbs R. B., Saad W., Cook R. F., Bates F. S., Mechanical properties of block copolymer vesicle and micelle modified epoxies, J. Polym. Sci., Part B: Polym. Phys., 2003, 41, 2444-2456
    19. Wu J., Thio Y. S., Bates F. S., Structure and properties of PBO-PEO diblock copolymer modified epoxy, J. Polym. Sci., Part B: Polym. Phys., 2005, 43, 1950-1965
    20. Maiez-Tribut S., Pascault J. P., Soule E. R., Borrajo J., Williams R. J. J., Nanostructured epoxies based on the self-assembly of block copolymers: A new miscible block that can be tailored to different epoxy formulations, Macromolecules, 2007, 40, 1268-1273
    21. Sinturel C., Vayer M., Erre R., Amenitsch H., Nanostructured polymers obtained from polyethylene-block-poly(ethylene oxide) block copolymer in unsaturated polyester, Macromolecules, 2007, 40, 2532-2538
    22. Pascault J. P., Williams R. J. J., In Polymer Blends, (Eds. Paul D. R., Bucknall C. B.) Wiley: New York, 2000, Vol. 1, pp 379-415
    23. Guo Q., In Polymer Blends and Alloy (Eds. Shonaik G. O. and Simon G.), Marcel Dekker:New York, 1999, Chap. 6, pp 155-187
    24. Yin M., Zheng S., Ternary thermosetting blends of epoxy resin, poly(ethylene oxide) and poly(ε-caprolactone), Macromol. Chem. & Phys., 2005, 206, 929-937
    25. Ni Y., Zheng S., Influence of intramolecular specific interactions on phase behavior of epoxy resin and poly(ε-caprolactone) blends cured with aromatic amines, Polymer, 2005, 46, 5828-5839
    26. Guo Q., Harrats C., Groeninckx G., Reynaers H., Koch M. H. J., Miscibility, crystallization and real-time small-angle X-ray scattering investigation of the semicrystalline morphology in thermosetting polymer blends, Polymer, 2001, 42, 6031-6041
    27. Guo Q., Groeninckx G., Crystallization kinetics of poly(ε-caprolactone) in miscible thermosetting polymer blends of epoxy resin and poly(ε-caprolactone), Polymer, 2001, 42, 8647-8655
    28. Zheng S., Zheng H., Guo Q., Epoxy resin/poly (ε-caprolactone) blends cured with 2,2-bis[4-(4-aminophenoxy)phenyl]propane. I. Miscibility and crystallization kinetics, J. Polym. Sci., Part B: Polym. Phys., 2003, 41, 1085-1098
    29. Zheng S., Guo Q., Chan C.-M., Epoxy resin/poly(ε-caprolactone) blends cured with 2,2-bis[4-(4-aminophenoxy)phenyl]propane. II. Studies by fourier transform infrared and carbon-13 cross-polarization/magic-angle spinning nuclear magnetic resonance spectroscopy, J. Polym. Sci., Part B: Polym. Phys., 2003, 41, 1099-1111
    30. Luo X., Zheng S., Zhang N., Ma D., Miscibility of epoxy resins/poly(ethylene oxide) blends cured with phthalic anhydride, Polymer, 1994, 35, 2619-2623
    31. Zheng S., Zhang N., Luo X., Ma D., Epoxy resin/poly(ethylene oxide) blends cured with aromatic amine, Polymer, 1995, 36, 3609-3613
    32. Zheng H., Zheng S., Guo Q., Thermosetting polymer blends of unsaturated polyester resin and poly(ethylene oxide). I. Miscibility and thermal properties, J. Polym. Sci., Part A: Polym. Chem., 1997, 35, 3161-3168
    33. Zheng H., Zheng S., Guo Q., Thermosetting polymer blends of unsaturated polyester resin and poly(ethylene oxide). II. Hydrogen-bonding interaction, crystallization kinetics, and morphology, J. Polym. Sci., Part A: Polym. Chem., 1997, 35, 3169-3179
    34. Mucha M., Poly(ethylene oxide) blends with crosslinking polyester resin, Colloid Polym. Sci., 1994, 272, 1090-1097
    1. Pascault J. P., Williams R. J. J., In Polymer Blends, (Eds. Paul D. R., Bucknall C.B.) Wiley: New York, 2000, Vol.1, p 379-415
    2. Guo Q., In Polymer Blends and Alloy (Eds. Shonaik G. O. and Simon G.), Marcel Dekker: New York, 1999, Chap. 6, p 155-187
    3. Noshay A., Robeson L. M., Epoxy-modifier block copolymers, J. Polym. Sci., Part A: Polym. Chem., 1974, 12, 689-705
    4. Clark J. N., Daly J. H., Garton A., Hydrogen bonding in epoxy resin/poly(ε-caprolactone) blends, J. Appl. Polym. Sci., 1984, 29, 3381-3390
    5. Luo X., Zheng S., Zhang N., Ma D., Miscibility of epoxy resins/poly(ethylene oxide) blends cured with phthalic anhydride, Polymer, 1994, 35, 2619-2623
    6. Zheng S., Zhang N., Luo X., Ma D., Epoxy resin/poly(ethylene oxide) blends cured with aromatic amine, Polymer, 1995, 36, 3609-3613
    7. Zheng H., Zheng S., Guo Q., Thermosetting polymer blends of unsaturated polyester resin and poly(ethylene oxide). I. Miscibility and thermal properties, J. Polym. Sci., Part A: Polym. Chem., 1997, 35, 3161-3168
    8. Guo Q., Harrats C., Groeninckx G., Koch M. H. J., Miscibility, crystallization kinetics and real-time small-angle X-ray scattering investigation of the semicrystalline morphology in thermosetting polymer blends of epoxy resin and poly(ethylene oxide), Polymer, 2001, 42, 4127-4140
    9. Guo Q., Harrats C., Groeninckx G., Reynaers H., Koch M. H. J., Miscibility, crystallization and real-time small-angle X-ray scattering investigation of the semicrystalline morphology in thermosetting polymer blends, Polymer, 2001, 42, 6031-6041
    10. Guo Q., Groeninckx G., Crystallization kinetics of poly(ε-caprolactone) in miscible thermosetting polymer blends of epoxy resin and poly(ε-caprolactone), Polymer, 2001, 42, 8647-8655
    11. Zheng S., Lu H., Chen C., Nie K., Guo Q., Epoxy resin/poly(ethylene oxide) (PEO) and poly(e-caprolactone) (PCL) blends cured with 1,3,5-trihydroxybenzene: miscibility and intermolecular interactions, Colloid & Polym. Sci., 2003, 281, 1015-1024
    12. Zheng S., Zheng H., Guo Q., Epoxy resin/poly (ε-caprolactone) blends cured with 2,2-bis[4-(4-aminophenoxy)phenyl]propane. I. Miscibility and crystallization kinetics, J.Polym. Sci., Part B: Polym. Phys., 2003, 41, 1085-1098
    13. Larra?aga M., Gabilondo N., Kortaberria G., Serrano E., Remiro P., Riccardi C. C., Mondragon I., Micro- or nanoseparated phases in thermoset blends of an epoxy resin and PEO–PPO–PEO triblock copolymer, Polymer, 2005, 46, 7082-7093
    14. Meng F., Zheng S., Zhang W., Li H., Liang Q., Nanostructured thermosetting blends of epoxy resin and amphiphilic poly( -caprolactone)-block-polybutadiene-block-poly( -caprolactone) triblock copolymer, Macromolecules, 2006, 39, 711-719
    15. Meng F., Zheng S., Li H., Liang Q., Liu T., Formation of ordered nanostructures in epoxy thermosets: A mechanism of reaction-induced microphase separation, Macromolecules, 2006, 39, 5072-5080
    16. Meng F., Zheng S., Liu T., Epoxy resin containing poly(ethylene oxide)-block-poly(-caprolactone) diblock copolymer: Effect of curing agents on nanostructures, Polymer, 2006, 47, 7590-7600
    17. Serrano E., Tercjak A., Kortaberria G., Pomposo J. A., Mecerreyes D., Zafeiropoulos N. E., Stamm M., Mondragon, I., Nanostructured thermosetting systems by modification with epoxidized styrene-butadiene star block copolymers. Effect of epoxidation degree, Macromolecules, 2006, 39, 2254-2261
    18. Hillmyer M. A., Lipic P. M., Hajduk D. A., Almdal K., Bates F. S., Self-assembly and polymerization of epoxy resin-amphiphilic block copolymer nanocomposites, J. Am. Chem. Soc., 1997, 119, 2749-2750
    19. Lipic P. M., Bates F. S., Hillmyer M. A., Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mixtures, J. Am. Chem. Soc., 1998, 120, 8963-8970
    20. Mijovic J., Shen M., Sy, J. W., Mondragon I., Dynamics and morphology in nanostructured thermoset network/block copolymer blends during network formation, Macromolecules, 2000, 33, 5235-5244
    21. Guo Q., Thomann R., Gronski W., Phase behavior, crystallization, and hierarchical nanostructures in self-organized thermoset blends of epoxy resin and amphiphilic poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) triblock copolymers, Macromolecules, 2002, 35, 3133-3144
    22. Guo Q., Thomann R., Gronski W., Nanostructures, semicrytalline morphology, and nanoscale confinement effect on the crystallization kinetics in self-organized block copolymer/thermoset blends, Macromolecules, 2003, 36, 3635-3645
    23. Ritzenthaler S., Court F., Girard-Reydet E., Leibler L., Pascault J. P., ABC triblock copolymers/epoxy-diamine blends. 1. Keys to achieve nanostructured thermosets, Macromolecules, 2002, 35, 6245-6254
    24. Ritzenthaler S., Court F., Girard-Reydet E., Leibler L., Pascault J. P., ABC triblock copolymers/epoxy-diamine blends. 2. Parameters controlling the morphologies and properties, Macromolecules, 2003, 36, 118-126
    25. Kosonen H., Ruokolainen J., Nyholm P., Ikkala O., Self-organized thermosets: blends of hexamethyltetramine cured novolac with poly(2-vinylpyridine)-block-poly(isoprene), Macromolecules, 2001, 34, 3046-3049
    26. Kosonen H., Ruokolainen J., Nyholm P., Ikkala O., Self-organized cross-linked phenolic thermosets: thermal and dynamic mechanical properties of novolac/block copolymer blends, Polymer, 2001, 42, 9481-9486
    27. Grubbs R B., Dean J. M., Broz M. E., Bates F. S., Reactive block copolymers for modification of thermosetting epoxy, Macromolecules, 2000, 33, 9522-9534
    28. Kosonen H., Ruokolainen J., Torkkeli M., Serimaa R., Nyholm P., Ikkala O., Micro- and macrophase separation in phenolic resol resin/PEO-PPO-PEO block copolymer blends: effect of hydrogen-bonded PEO length, Macromol. Chem. Phys., 2002, 203, 388-392
    29. Rebizant V., Abetz V., Tournihac T., Court F., Leibler L., Reactive tetrablock copolymers containing glycidyl methacrylate. Synthesis and morphology control in epoxy-amine networks, Macromolecules, 2003, 36, 9889-9896
    30. Dean J. M., Verghese N. E., Pham H. Q., Bates F. S., Nanostructure toughened epoxy resins, Macromolecules, 2003, 36, 9267-9270
    31. Rebizant V., Venet A. S., Tournillhac F., Girard-Reydet, E., Navarro C.; Pascault J. P., Leibler L., Chemistry and mechanical properties of epoxy-based thermosets reinforced by reactive and nonreactive SBMX block copolymers, Macromolecules, 2004, 37, 8017-8027
    32. Dean J. M., Grubbs R. B., Saad W., Cook R. F., Bates F. S., Mechanical properties of block copolymer vesicle and micelle modified epoxies, J. Polym. Sci., Part B: Polym. Phys., 2003, 41, 2444-2456
    33. Wu J., Thio Y. S., Bates F. S., Structure and properties of PBO-PEO diblock copolymer modified epoxy, J. Polym. Sci., Part B: Polym. Phys., 2005, 43, 1950-1965
    34. Guo Q., Dean J. M., Grubbs R. B., Bates F. S., Block copolymer modified novolac epoxy resin, J. Polym. Sci., Part B: Polym. Phys., 2003, 41, 1994-2003
    35. Thio Y. S., Wu J., Bates F. S., Epoxy toughening using low molecular weight poly(hexylene oxide)-poly(ethylene oxide) diblock copolymers, Macromolecules, 2006, 39, 7187-7189
    36. Wang J. S., Matyjaszewski K., Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes, J. Am. Chem. Soc., 1995, 117, 5614-5615
    37. Moineau G., Minet M., Dubois P., Teyssie P., Senninger T., Controlled radical polymerization of (meth)acrylates by ATRP with NiBr2(PPh3)2 as catalyst, Macromolecules, 1999, 32, 27-35
    38. Jnkova K., Chen X., Kops J., Batsberg W., Synthesis of amphiphilic PS-b-PEG-b-PS by atom transfer radical polymerization, Macromolecules, 1998, 31, 538-541
    39. Zhang, Q., Remsen, E. E., Wooley K., Shell cross-linked nanoparticles containing hydrolytically degradable, crystalline core domains, J. Am. Chem. Soc., 2000, 122, 3642-3651
    40. Tanaka H., Nishi T., Local phase separation at the growth front of a polymer spherulite during crystallization and nonlinear spherulitic growth in a polymer mixture with a phase diagram, Phys. Rev. A, 1989, 39, 783-794
    41. Yin M., Zheng S., Ternary thermosetting blends of epoxy resin, poly(ethylene oxide) and poly(caprolactone), Macromol. Chem. & Phys., 2005, 206, 929-937
    42. Ni Y., Zheng S., Influence of intramolecular specific interactions on phase behavior of epoxy resin and poly(caprolactone) blends cured with aromatic amines, Polymer, 2005, 46, 5828-5839
    1. Hillmyer M. A., Lipic P. M., Hajduk D. A., Almdal K., Bates F. S., Self-assembly and polymerization of epoxy resin-amphiphilic block copolymer nanocomposites, J. Am. Chem. Soc., 1997, 119, 2749-2750
    2. Lipic P. M., Bates F. S., Hillmyer M. A., Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mixtures, J. Am. Chem. Soc., 1998, 120, 8963-8970
    3. Grubbs R. B., Dean J. M., Broz M. E., Bates F. S., Reactive block copolymers for modification of thermosetting epoxy, Macromolecules, 2000, 33, 9522-9534
    4. Mijovic J., Shen M., Sy J. W., Mondragon I., Dynamics and morphology in nanostructured thermoset network/block copolymer blends during network formation, Macromolecules, 2000, 33, 5235-5244
    5. Ritzenthaler S., Court F., Girard-Reydet E., Leibler L., Pascault J. P., ABC triblock copolymers/epoxy-diamine blends. 1. Keys to achieve nanostructured thermosets, Macromolecules, 2002, 35, 6245-6254
    6. Ritzenthaler S., Court F., Girard-Reydet E., Leibler L., Pascault J. P., ABC triblock copolymers/epoxy-diamine blends. 2. Parameters controlling the morphologies and properties, Macromolecules, 2003, 36, 118-126
    7. Guo Q., Thomann R., Gronski W., Phase behavior, crystallization, and hierarchical nanostructures in self-organized thermoset blends of epoxy resin and amphiphilic poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) triblock copolymers, Macromolecules, 2002, 35, 3133-3144
    8. Guo Q., Thomann R., Gronski W., Nanostructures, semicrytalline morphology, and nanoscale confinement effect on the crystallization kinetics in self-organized block copolymer/thermoset blends, Macromolecules, 2003, 36, 3635-3645
    9. Kosonen H., Ruokolainen J., Nyholm P., Ikkala O., Self-organized thermosets: blends of hexamethyltetramine cured novolac with poly(2-vinylpyridine)-block-poly(isoprene), Macromolecules, 2001, 34, 3046-3049
    10. Kosonen H., Ruokolainen J., Nyholm P., Ikkala O., Self-organized cross-linked phenolic thermosets: thermal and dynamic mechanical properties of novolac/block copolymer blends, Polymer, 2001, 42, 9481-9486
    11. Rebizant V., Abetz V., Tournihac T., Court F., Leibler L., Reactive tetrablock copolymerscontaining glycidyl methacrylate. Synthesis and morphology control in epoxy-amine networks, Macromolecules, 2003, 36, 9889-9896
    12. Dean J. M., Verghese N. E., Pham H. Q., Bates F. S., Nanostructure toughened epoxy resins, Macromolecules, 2003, 36, 9267-9270
    13. Rebizant V., Venet A. S., Tournillhac F., Girard-Reydet E., Navarro C., Pascault J. P., Leibler L., Chemistry and mechanical properties of epoxy-based thermosets reinforced by reactive and nonreactive SBMX block copolymers, Macromolecules, 2004, 37, 8017-8027
    14. Dean J. M., Grubbs R. B., Saad W., Cook R. F., Bates F. S., Mechanical properties of block copolymer vesicle and micelle modified epoxies, J. Polym. Sci., Part B: Polym. Phys., 2003, 41, 2444-2456
    15. Wu J., Thio Y. S., Bates F. S., Structure and properties of PBO-PEO diblock copolymer modified epoxy, J. Polym. Sci., Part B: Polym. Phys., 2005, 43, 1950-1965
    16. Maiez-Tribut S., Pascault J. P., Soule E. R., Borrajo J., Williams R. J. J., Nanostructured epoxies based on the self-assembly of block copolymers: A new miscible block that can be tailored to different epoxy formulations, Macromolecules, 2007, 40, 1268-1273
    17. Sinturel C., Vayer M., Erre R., Amenitsch H., Nanostructured polymers obtained from polyethylene-block-poly(ethylene oxide) block copolymer in unsaturated polyester, Macromolecules, 2007, 40, 2532-2538
    18. Larra?aga M.,Gabilondo N., Kortaberria G., Serrano E., Remiro P., Riccardi C. C., Mondragon I., Micro- or nanoseparated phases in thermoset blends of an epoxy resin and PEO–PPO–PEO triblock copolymer, Polymer, 2005, 46, 7082-7093
    19. Meng F., Zheng S., Zhang W., Li H., Liang Q., Nanostructured thermosetting blends of epoxy resin and amphiphilic poly( -caprolactone)-block-polybutadiene-block-poly( -caprolactone) triblock copolymer, Macromolecules, 2006, 39, 711-719
    20. Meng F., Zheng S., Li H., Liang Q., Liu T., Formation of ordered nanostructures in epoxy thermosets: A mechanism of reaction-induced microphase separation, Macromolecules, 2006, 39, 5072-5080
    21. Meng F., Zheng S., Liu T., Epoxy resin containing poly(ethylene oxide)-block-poly(-caprolactone) diblock copolymer: Effect of curing agents on nanostructures, Polymer, 2006, 47, 7590-7600
    22. Serrano E., Tercjak A., Kortaberria G., Pomposo J. A., Mecerreyes D., Zafeiropoulos N. E., Stamm M., Mondragon I., Nanostructured thermosetting systems by modification withepoxidized styrene-butadiene star block copolymers. Effect of epoxidation degree, Macromolecules, 2006, 39, 2254-2261
    23. Xu Z., Zheng S., Reaction-induced microphase separation in epoxy thermosets containing poly( -caprolactone)-block-poly(n-butyl acrylate) diblock copolymer, Macromolecules, 2007, 40, 2548-2558
    24. Moineau G., Minet M., Dubois P., Teyssie P., Senninger T., Jerome R., Controlled radical polymerization of (meth)acrylates by ATRP with NiBr2(PPh3)2 as catalyst, Macromolecules, 1999, 32, 27-35
    25. Jnkova K., Chen X., Kops J., Batsberg W., Synthesis of amphiphilic PS-b-PEG-b-PS by atom transfer radical polymerization, Macromolecules, 1998, 31, 538-541
    26. 孟凡良, 热固性聚合物中具有纳米尺度上微结构的形成: 反应诱致的微相分离机制, 上海交通大学博士学位论文, 2006
    27. Hoppe C. E., Galante M. J., Oyanguren P. A., Williams R. J. J., Girard-Reydet E., Pascault J. T., Transparent multiphasic polystyrene/epoxy blends, Polym. Eng. Sci., 2002, 42, 2361-2368
    28. Zucchi I. A., Galante M. J., Borrajo J., Williams R. J. J., A model system for the thermodynamic analysis of reaction-induced phase separation: Solutions of polystyrene in bifunctional epoxy/amine monomers, Macromol. Chem. Phys., 2004, 205, 676-683
    29. Meng F., Zheng S., Li H., Liang Q., Liu T., Formation of ordered nanostructures in epoxy thermosets: A mechanism of reaction-induced microphase separation, Macromolecules, 2006, 39, 5072-5080
    30. Ni Y., Zheng S., Influence of intramolecular specific interactions on phase behavior of epoxy resin and poly(ε-caprolactone) blends cured with aromatic amines, Polymer, 2005, 46, 5828-5839
    31. Bogdanov B., Vidts A., Van Den Buicke A., Verbeeck R., Schacht, E., Synthesis and thermal properties of poly(ethylene glycol)-poly(caprolactone) copolymers, Polymer, 1999, 39, 1631-1636
    1. Larra?aga M.,Gabilondo N., Kortaberria G., Serrano E., Remiro P., Riccardi C. C., Mondragon I., Micro- or nanoseparated phases in thermoset blends of an epoxy resin and PEO–PPO–PEO triblock copolymer, Polymer, 2005, 46, 7082-7093
    2. Meng F., Zheng S., Zhang W., Li H., Liang Q., Nanostructured thermosetting blends of epoxy resin and amphiphilic poly( -caprolactone)-block-polybutadiene-block-poly( -caprolactone) triblock copolymer, Macromolecules, 2006, 39, 711-719
    3. Meng F., Zheng S., Li H., Liang Q., Liu T., Formation of ordered nanostructures in epoxy thermosets: A mechanism of reaction-induced microphase separation, Macromolecules, 2006, 39, 5072-5080
    4. Meng F., Zheng S., Liu T., Epoxy resin containing poly(ethylene oxide)-block-poly(-caprolactone) diblock copolymer: Effect of curing agents on nanostructures, Polymer, 2006, 47, 7590-7600
    5. Serrano E., Tercjak A., Kortaberria G., Pomposo J. A., Mecerreyes D., Zafeiropoulos N. E., Stamm M., Mondragon I., Nanostructured thermosetting systems by modification with epoxidized styrene-butadiene star block copolymers. Effect of epoxidation degree, Macromolecules, 2006, 39, 2254-2261
    6. Xu Z., Zheng S., Reaction-induced microphase separation in epoxy thermosets containing poly(ε-caprolactone)-block-poly(n-butyl acrylate) diblock copolymer, Macromolecules, 2007, 40, 2548-2558
    7. Mijovic J., Shen M., Sy J. W., Mondragon I., Dynamics and morphology in nanostructured thermoset network/block copolymer blends during network formation, Macromolecules, 2000, 33, 5235-5244
    8. Guo Q., Thomann R., Gronski W., Phase behavior, crystallization, and hierarchical nanostructures in self-organized thermoset blends of epoxy resin and amphiphilic poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) triblock copolymers, Macromolecules, 2002, 35, 3133-3144
    9. Guo Q., Thomann R., Gronski W., Nanostructures, semicrytalline morphology, and nanoscale confinement effect on the crystallization kinetics in self-organized block copolymer/thermoset blends, Macromolecules, 2003, 36, 3635-3645
    10. Ritzenthaler S., Court F., Girard-Reydet E., Leibler L., Pascault J. P., ABC triblockcopolymers/epoxy-diamine blends. 1. Keys to achieve nanostructured thermosets, Macromolecules, 2002, 35, 6245-6254
    11. Ritzenthaler S., Court F., Girard-Reydet E., Leibler L., Pascault J. P., ABC triblock copolymers/epoxy-diamine blends. 2. Parameters controlling the morphologies and properties, Macromolecules, 2003, 36, 118-126
    12. Kosonen H., Ruokolainen J., Nyholm P., Ikkala O., Self-organized thermosets: blends of hexamethyltetramine cured novolac with poly(2-vinylpyridine)-block-poly(isoprene), Macromolecules, 2001, 34, 3046-3049
    13. Kosonen H., Ruokolainen J., Nyholm P., Ikkala O., Self-organized cross-linked phenolic thermosets: thermal and dynamic mechanical properties of novolac/block copolymer blends, Polymer, 2001, 42, 9481-9486
    14. Grubbs R. B., Dean J. M., Broz M. E., Bates F. S., Reactive block copolymers for modification of thermosetting epoxy, Macromolecules, 2000, 33, 9522-9534
    15. Rebizant V., Abetz V., Tournihac T., Court F., Leibler L., Reactive tetrablock copolymers containing glycidyl methacrylate. Synthesis and morphology control in epoxy-amine networks, Macromolecules, 2003, 36, 9889-9896
    16. Dean J. M., Verghese N. E., Pham H. Q., Bates F. S., Nanostructure toughened epoxy resins, Macromolecules, 2003, 36, 9267-9270
    17. Rebizant V., Venet A. S., Tournillhac F., Girard-Reydet E., Navarro C., Pascault J. P., Leibler L., Chemistry and mechanical properties of epoxy-based thermosets reinforced by reactive and nonreactive SBMX block copolymers, Macromolecules, 2004, 37, 8017-8027
    18. Dean J. M., Grubbs R. B., Saad W., Cook R. F., Bates F. S., Mechanical properties of block copolymer vesicle and micelle modified epoxies, J. Polym. Sci., Part B: Polym. Phys., 2003, 41, 2444-2456
    19. Wu J., Thio Y. S., Bates F. S., Structure and properties of PBO-PEO diblock copolymer modified epoxy, J. Polym. Sci., Part B: Polym. Phys., 2005, 43, 1950-1965
    20. Maiez-Tribut S., Pascault J. P., Soule E. R., Borrajo J., Williams R. J. J., Nanostructured epoxies based on the self-assembly of block copolymers: A new miscible block that can be tailored to different epoxy formulations, Macromolecules, 2007, 40, 1268-1273
    21. Sinturel C., Vayer M., Erre R., Amenitsch H., Nanostructured polymers obtained from polyethylene-block-poly(ethylene oxide) block copolymer in unsaturated polyester, Macromolecules, 2007, 40, 2532-2538
    22. May C. A., Tanaka G. Y. (eds), “Epoxy Resin Chemistry and Technology”, Marcel Dekker. New York, 1973
    23. Bauer R. S. (ed), “Advances in Chemistry”, Vol. 114, American Chemical Society, Washington DC, 1979
    24. Manson J. A., Hertzberg R. W., Connelly G. M., Hwang J., “Advances in Chemistry Series 211, “Multi-component Polymer Materials”, D. R. Paul, L. M. Sperling (eds), 1986, p. 300
    25. Riew C. K., Rowe E. H., Siebert A. R., Toughness and brittleness of plastics, Am. Chem. Soc., Adv. Chem. Ser., 1976, 154, 326-343
    26. Yee A. F., Pearson R. A., Toughening mechanisms in elastomer-modified epoxy part 1: Mechanical studies, J. Mater. Sci., 1986, 21, 2462-2474
    27. Yorkgitis E. M., Eiss N. S., Tran C., Wilkes G. L., McGrath J. E., Siloxane-modified epoxy resins, Am. Chem. Soc., Adv. Polym. Sci., 1985, 72, 79-109
    28. Meijerink J. I., Eguchi S., Ogata M., Ishii T., Amagi S., Numata S., Sashima H., The influence of siloxane modifiers on the thermal expansion coefficient of epoxy resins, Polymer, 1994, 35, 179-186
    29. Zheng S., Wang H., Dai Q., Luo X., Ma D., Morphology and structure of organosilicon polymer-modified epoxy resins, Macromol. Chem. & Phys., 1995, 196, 269-278
    30. Kemp T. J., Wilford A., Howarth O. W., Lee T. C. P., Structural and materials properties of a polysulphide-modified epoxide resin, Polymer, 1992, 33, 1860-1871
    31. Bussi P., Ishida H., Dynamic mechanical properties of epoxy resin/epoxidized rubber blends: Effect of phase separated rubber, J. Polym. Sci., PartB: Polym. Phys., 1994, 32, 647-657
    32. Bucknall C. B., Patridge I. K., Phase separation in epoxy resins containing polyethersulphone, Polymer, 1983, 24, 639-644
    33. Bucknall C. B., Gilbert A. H., Toughening tetrafunctional epoxy resins using polyetherimide, Polymer, 1989, 30, 213-217
    34. Hourston D. J., Lane J. M., The toughening of epoxy resins with thermoplastics. 1. Trifunctional epoxy resin-poly(ether imide) blends, Polymer, 1992, 33, 1379-1383
    35. Hedrick J. H., Yilgor I., Jurek M., Hedrick J. C., Wilkens G. L., McGrath J. E., Chemical modification of matrix resin networks with engineering thermoplastics: 1. Synthesis, morphology, physical behaviour and toughening mechanisms of poly(arylene ether sulphone) modified epoxy networks, Polymer, 1991, 32, 2020-2032
    36. Raghava R. S., Development and characterization of thermosetting-thermoplastic polymerblends for applications in damage-tolerant composites, J. Polym. Sci., PartB: Polym. Phys., 1988, 26, 65-81
    37. Gilbert A. H., Bucknall C. B., Epoxy resin toughened with thermoplastic, Macromol. Chem. & Phys., Macromol. Symp., 1991, 45, 289-298
    38. Cho J. B., Hwang J. W., Cho K., An J. H., Park C. E., Effects of morphology on toughening of tetrafunctional epoxy resins with poly(ether imide), Polymer, 1993, 34, 4832-4836
    39. Iijima T., Tochiomoto T., Tomoi M., Modification of epoxy resins with poly(aryl ether ketone)s, J. Appl. Polym. Sci., 1991, 43, 1685-1692
    40. Zheng S., Wang J., Guo Q., Wei J., Li J., Miscibility, morphology and fracture toughness of epoxy resin/poly(styrene-co-acrylonitrile) blends, Polymer, 1996, 37, 4667-4673
    41. Takahashi T., Nakajima N., Saito N., in “Rubber-Toughened Plastics”, Adv. Chem. Ser., 222, (C. K. Riew, ed); Am. Chem. Soc., Washington D. C., 1989, p. 243
    42. Pascault J. P., Williams R. J. J., In Polymer Blends (Eds. Paul D. R., Bucknall C. B.) Wiley: New York, 2000, Vol. 1, pp 379-415
    43. Hillmyer M. A., Lipic P. M., Hajduk D. A., Almdal K., Bates F. S., Self-assembly and polymerization of epoxy resin-amphiphilic block copolymer nanocomposites, J. Am. Chem. Soc., 1997, 119, 2749-2750
    44. Lipic P. M., Bates F. S., Hillmyer M. A., Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mixtures, J. Am. Chem. Soc., 1998, 120, 8963-8970
    45. Buchholz U., Mülhaupt R., Branched polysiloxane block copolymers as epoxy toughening agents, Polym. Prepr., 1992, 33, 205-206
    46. K?ncz?l L., D?ll W., Buchholz U., Mülhaupt R., Ultimate properties of epoxy resins modified with a polysiloxane-polycaprolactone block copolymer, J. Appl. Polym. Sci., 1994, 54, 815-826
    47. Guo Q., Chen F., Wang K., Chen L., Nanostructured thermoset epoxy resin templated by an amphiphilic poly(ethylene oxide)-block-poly(dimethylsiloxane) diblock copolymer, J. Polym. Sci., Part B: Polym. Phys., 2006, 44, 3042-3052
    48. Yin M., Zheng S., Ternary thermosetting blends of epoxy resin, poly(ethylene oxide) and poly(ε-caprolactone), Macromol. Chem. & Phys., 2005, 206, 929-937
    49. Ni Y., Zheng S., Influence of intramolecular specific interactions on phase behavior of epoxy resin and poly(caprolactone) blends cured with aromatic amines, Polymer, 2005, 46, 5828-583950. Liang B., Pan L., He X., Structure and properties of blend fibers from poly(ethylene terephthalate) and liquid crystalline polymer, J. Appl. Polym. Sci., 1997, 66, 217-224
    51. Han C. D., Ed. Polymer blends and composites in multiphase systems; American Chemical Society: Washington, DC, 1984; Advances in Chemistry Series 206
    52. Zhang D., Gracias D. H., Ward R., Gauckler M., Tian Y., Shen Y. R., Somorjai G. A., Surface studies of polymer blends by sum frequency vibrational spectroscopy, atomic force microscopy, and contact angle goniometry, J. Phys. Chem. B.,1998, 102, 6225-6230
    53. Chen Z., Ward R., Tian Y., Eppler A. S., Shen Y. R., Somorjai G. A., Surface composition of biopolymer blends Biospan-SP/Phenoxy and Biospan-F/Phenoxy observed with SFG, XPS, and contact angle goniometry, J. Phys. Chem. B., 1999, 103, 2935-2942
    54. Wen J., Somorjai G.., Lim F., Ward R., XPS Study of surface composition of a segmented polyurethane block copolymer modified by PDMS end groups and its blends with phenoxy, Macromolecules, 1997, 30, 7206-7213
    55. Jalbert C. J.,Koberstein J. T., Balaji R., Bhatia Q., Salvati L. Jr.,Yilgor I., Surface depletion of end groups in amine-terminated poly(dimethylsiloxane), Macromolecules, 1994, 27, 2409-2413
    56. Chen X., Gardella J., Jr., Cohen R., Surface study of diblock copolymers of poly(dimethylsiloxane) and nylon-6 by electron spectroscopy for chemical analysis, Macromolecules, 1994, 27, 2206-2210
    57. Fleischer C. A., Koberstein J. T., Krukonis V., Wetmore P.A., The effect of end groups on thermodynamics of immiscible polymer blends. 1. Interfacial tension, Macromolecules, 1993, 26, 4172-4178
    58. Viville P., Lazzaroni R., Dubois P., Kotzev A., Geerts Y., Borcia G., Pireaux J. J., Impact of silicone-based block copolymer surfactants on the surface and bulk microscopic organization of a biodegradable polymer, poly(caprolactone), Biomacromolecules, 2003, 4, 696-703
    59. Hu W., Koberstein J., Lingelser J., Gallot Y., Interfacial tension reduction in polystyrene poly(dimethylsiloxane) blends by the addition of poly(styrene-b-dimethylsiloxane), Macromolecules, 1995, 28, 5209-5214
    60. Kaelble D. H., Uy K. C., Dispersion-polar surface tension properties of organic solids, J. Adhes., 1970, 2, 50-60
    61. Kaelble D. H., Phys. Chem. of Adhesion, Wiley-Interscience, New York, 1971
    62. Wu S., Polymer Interface and Adhesion, Marcel Dekker, New York, 1982
    63. Erbil H. Y., Banu Y., ?efik S., Bahattin M. B., Surface characterization of the hydroxy-terminated poly(caprolactone)/poly(dimethylsiloxane) triblock copolymers by electron spectroscopy for chemical analysis and contact angle measurements, Langmuir, 1997, 13, 5484-5493
    64. Hu J., Xiao X. D., Ogletree D. F., Salmeron M., Atomic scale friction and wear of mica, Surf. Sci., 1995, 327, 358-370
    65. Wang X. P., Tsui O. K. C., Xiao X. D., Dyanmic study of polymer films by friction firce microscopy with continuously varying load, Langmuir, 2002, 18, 7066-7072
    66. Tian F., Xiao X. D., Loy M. M. T., Humidity and temperature effect on frictional properties of mica and alkylsilane monolayer self-assembled on mica, Langmuir, 1999, 15, 244-249
    67. Qian L., Xiao X. D., Tip in situ chemical modification and its effects on tribological measurements, Langmuir, 2000, 16, 662-670
    1. Pascault J. P., Williams R. J. J, In Polymer Blends, (Eds. Paul D. R., Bucknall C.B.) Wiley: New York, 2000, Vol.1, p379-415
    2. Guo Q., In Polymer Blends and Alloy (Eds. Shonaik G. O. and Simon G.), Marcel Dekker: New York, 1999, Chap. 6, p155-187
    3. de Gennes P.-G.., Scale Concepts in Polymer Physics; Cornell University Press: Ithaca, NY, 1979
    4. de Gennes P.-G.., Phys. Lett., Possibilities offered by polymer crosslinking in the presence of a liquid crystal, 1969, 28, 725-726
    5. Barclay G. G., Ober C. K., Papathomas K. I., Wang D. W., Rigid-rod thermosets based on 1,3,5-triazine-linked aromatic ester segments, Macromolecules, 1992, 25, 2947-2954
    6. Boer D., Lun J. J., Mol,G. N., Synthesis and photopolymerization of a liquid-crystalline diepoxide, Macromolecules, 1993, 26, 1244-1247
    7. Hikmet R. A. M., Piezoelectric networks obtained by photopolymerization of liquid crystal molecules, Macromolecules, 1992, 25, 5759-5764
    8. Litt M. H., Whang W.-T., Yen K.-T., Qian X.-J., Crosslinked liquid crystal polymers from liquid crystal monomers: synthesis and mechanical properties, J. Polym. Sci., Part A: Polym. Chem., 1993, 31, 183-191
    9. Kishore G. K., Novel photocrosslinkable liquid-crystalline polymers: poly[bis(benzylidene)] esters, Macromolecules, 1993, 26, 2995-3003
    10. Hikmet R. A. M., Lub J., Higgins J. A., Anisotropic networks obtained by in situ cationic polymerization of liquid-crystalline divinyl ethers, Polymer, 1993, 34, 1736-1740
    11. Lin Q., Yee A. F., Earls J. D., Hefner R. E., Sue H.-J., Phase transformations of a liquid crystalline epoxy during curing, Polymer, 1994, 35, 2679-2682
    12. Hillmyer M. A., Lipic P., Hajduk D. A., Almdal K., Bates F. S., Self-assembly and polymerization of epoxy resin-amphiphilic block copolymer nanocomposites, J. Am. Chem. Soc., 1997, 119, 2749-2750
    13. Lipic P. M., Bates F. S., Hillmyer M. A., Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mixtures, J. Am. Chem. Soc., 1998, 120, 8963-8970
    14. Mijovic J., Shen M., Sy J. W., Mondragon I., Dynamics and morphology in nanostructured thermoset network/block copolymer blends during network formation, Macromolecules, 2000,33, 5235-5244
    15. Guo Q., Thomann R., Gronski W., Phase behavior, crystallization, and hierarchical nanostructures in self-organized thermoset blends of epoxy resin and amphiphilic poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) triblock copolymers, Macromolecules, 2002, 35, 3133-3144
    16. Guo Q., Thomann R., Gronski W., Nanostructures, semicrytalline morphology, and nanoscale confinement effect on the crystallization kinetics in self-organized block copolymer/thermoset blends, Macromolecules, 2003, 36, 3635-3645
    17. Ritzenthaler S., Court F., Girard-Reydet E., Leibler L., Pascault J. P., ABC triblock copolymers/epoxy-diamine blends. 1. Keys to achieve nanostructured thermosets, Macromolecules, 2002, 35, 6245-6254
    18. Ritzenthaler S., Court F., Girard-Reydet E., Leibler L., Pascault J. P., ABC triblock copolymers/epoxy-diamine blends. 2. Parameters controlling the morphologies and properties, Macromolecules, 2003, 36, 118-126
    19. Kosonen H., Ruokolainen J., Nyholm P., Ikkala O., Self-organized thermosets: blends of hexamethyltetramine cured novolac with poly(2-vinylpyridine)-block-poly(isoprene), Macromolecules, 2001, 34, 3046-3049
    20. Kosonen H., Ruokolainen J., Nyholm P., Ikkala O., Self-organized cross-linked phenolic thermosets: thermal and dynamic mechanical properties of novolac/block copolymer blends, Polymer, 2001, 42, 9481-9486
    21. Kosonen H., Ruokolainen J., Torkkeli M., Serimaa R., Nyholm P., Ikkala O., Micro- and macrophase separation in phenolic resol resin/PEO-PPO-PEO block copolymer blends: effect of hydrogen-bonded PEO length, Macromol. Chem. Phys., 2002, 203, 388-392
    22. Grubbs R. B., Dean J. M., Broz M. E., Bates F. S., Reactive block copolymers for modification of thermosetting epoxy, Macromolecules, 2000, 33, 9522-9534
    23. Rebizant V., Abetz V., Tournihac F., Court F., Leibler L., Reactive tetrablock copolymers containing glycidyl methacrylate. Synthesis and morphology control in epoxy-amine networks, Macromolecules, 2003, 36, 9889-9896
    24. Dean J. M., Verghese N. E., Pham H. Q., Bates F. S., Nanostructure toughened epoxy resins, Macromolecules, 2003, 36, 9267-9270
    25. Rebizant V., Venet A. S., Tournillhac F., Girard-Reydet E., Navarro C., Pascault J. P., Leibler L., Chemistry and mechanical properties of epoxy-based thermosets reinforced by reactiveand nonreactive SBMX block copolymers, Macromolecules, 2004, 37, 8017-8027
    26. Dean J. M., Grubbs R. B., Saad W., Cook R. F., Bates F. S., Mechanical properties of block copolymer vesicle and micelle modified epoxies, J. Polym. Sci., Part B: Polym. Phys., 2003, 41, 2444-2456
    27. Wu J., Thio Y. S., Bates F. S., Structure and properties of PBO-PEO diblock copolymer modified epoxy, J. Polym. Sci., Part B: Polym. Phys., 2005, 43, 1950-1965
    28. Guo Q., Dean J. M., Grubbs R. B., Bates F. S., Block copolymer modified novolac epoxy resin, J. Polym. Sci., Part B: Polym. Phys., 2003, 41, 1994-2003
    29. Knop A., Pilato L. A., Phenolic Resins; Springer-Verlag: Berlin, 1985
    30. Zhong Z., Guo Q., The miscibility and morphology of hexamine cross-linked novolac/poly(ε-caprolactone) blends, Polymer, 1997, 38, 279-286
    31. Zhong Z., Guo Q., Crosslinkable interpolymer complexes of novolac resin and poly(ethylene oxide), J. Polym. Sci., Part A: Polym. Chem., 1998, 36, 401-411
    32. Pennacchia J. R., Pearce E. M., Kwei T. K., Bulkin B. J., Chen J.-P., Compatibility of substituted phenol condensation resins with poly(methyl methacrylate), Macromolecules, 1986, 19, 973-977
    33. Zhang X., Solomon D. H., Phase structures of hexamine cross-linked novolac blends. 1. Blends with poly(methyl methacrylate), Macromolecules, 1994, 27, 4919-4926
    34. Jnkova K., Chen X., Kops J., Batsberg W., Synthesis of amphiphilic PS-b-PEG-b-PS by atom transfer radical polymerization, Macromolecules, 1998, 31, 538-541
    35. Zhong Z., Guo Q., Crystallization kinetics of crosslinkable polymer complexes of novolac resin and poly(ethylene oxide), J. Polym. Sci., Part B: Polym. Phys., 1999, 37, 2726-2736
    36. Chen H., Jiang C., Wu H., Chang F., Hydrogen bonding effect on the poly(ethylene oxide), phenolic resin, and lithium perchlorate-based solid-state electrolyte, J. Appl. Polym. Sci., 2004, 91, 1207-1216
    37. Zhong Z., Guo Q., Miscibility and morphology of thermosetting polymer blends of novolac resin with poly(ethylene oxide), Polymer, 1998, 39, 517-523
    38. Zhong Z., Guo Q., Interpolymer complexes and miscible blends of poly(N-vinyl-2-pyrrolidone) with novolac resin and the effect of crosslinking on related behaviour, Polymer International, 1996, 41, 315-322

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700