小麦蛋白质的流变行为和力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废弃塑料对环境造成的“白色污染”日益严重,已经危及人类健康、生存和可持续发展。生物可降解材料的研究、开发和产业化,成为21世纪的重要课题之一。由于来源丰富,小麦蛋白质作为可再生资源制备生物可降解的环境友好材料,成为新兴的备受关注课题。
     本文以小麦谷朊粉(贮藏蛋白)为主要原料,制备谷朊粉/甘油、谷朊粉/淀粉/甘油、谷朊粉/富谷蛋白组分/甘油、谷朊粉/纤维素/甘油等蛋白质复合物,深入研究了增塑剂含量、模压温度、酸碱性、填料等对增塑小麦蛋白质或小麦蛋白质塑料(复合材料)的流变行为与力学性能的影响,并考察了碱性谷蛋白水性醇溶液的流变行为。
     采用高温模压法制备了甘油增塑小麦蛋白质塑料。发现,增塑剂甘油显著影响蛋白质塑料的力学性能。随增塑剂含量增高断裂强度与杨氏模量降低,断裂伸长率增大。蛋白质塑料的吸水性主要取决于甘油含量,随增塑剂含量增高吸水平衡时间与平衡吸水率提高。
     研究了酸、碱对小麦蛋白质塑料的流变行为与单/双轴力学性能的影响。结果表明,常温下,酸、碱均促进蛋白质交联反应,使储能模量(G')与损耗模量(G″)增大。与碱性试样相比较,酸性试样初期交联速率较高,tanδ随酸含量增大而降低,随碱含量增大而升高;特征松弛时间(τ_c)随酸含量增大而向短时区域移动,随碱含量增大而向长时区域移动,表明加入酸使体系弹性增大为主,加入碱使体系黏性增大为主。此外,还发现酸可略微提高80℃模压体系的杨氏模量(E_U)与断裂强度(σ_(br)),而碱可显著提高80℃模压体系E_U与σ_(br)。加入酸可降低110℃模压体系的交联密度,使E_U与σ_(br)略有降低,而含量低于1wt%的碱可显著提高使E_U与σ_(br);碱含量过大时,蛋白质降解导致E_U与σ_(br)减小。模压温度从80℃升到110℃,谷朊粉塑料E_U、σ_(br)与ε_(br)均所有提高。
     采用热压法和冷压法制备了谷朊粉/淀粉/甘油塑料。结果表明,G'与G″均随淀粉含量增高而增大。复合体系在升温过程中出现橡胶平台,但淀粉仅起填料作用不发生凝胶化。淀粉的加入却使大应变下拉伸应力显著降低。另一方面,含水量显著影响复合材料的力学性能。过量水分在淀粉粒子与蛋白质网络间起着润滑作用,降低分子间作用力,致使其强度下降。
     从谷朊粉分离得到富谷蛋白组分。研究了谷朊粉/富谷蛋白组/甘油共混体系的流变行为和力学性能。结果表明,随富谷蛋白组分含量增大,混体系G'、G″与E_B增大,tanδ降低,在低频区域逐渐出现“第二平台”,特征松弛时间(τ_c)缩短,且交联速率和交联密度均显著增大。含醇溶蛋白时,试样先后出现应变软化与应变硬化行为,而不含醇溶蛋白的试样未出现应变软化行为,在应变硬化行为过程中发生破裂。随富谷蛋白组分含量增加,高温模压试样E_U增大,σ_(br)与ε_(br)降低,表明醇溶蛋白对小麦蛋白质塑料大变形能力有着决定性作用。
     采用热压法制备了谷朊粉/甲基纤维素/甘油复合材料料,研究了其流变行为与力学性能。结果表明,随纤维素含量增高,G'、G″、E_U与σ_(br)增大,tanδ与ε_(br)降低,玻璃化温度(T_g)升高,而随甲基纤维素含量增高,模压交联材料的G'与G″在低频区逐渐呈现“第二平台”,且tanδ出现峰值,表明纤维素-蛋白质相互作用使纤维素起到物理交联的作用。
     用碱性乙醇溶液制备了谷蛋白溶液,其流变行为结果表明,48mgml~(-1)碱性谷蛋白溶液常温下呈现弱非牛顿流体行为,其零切黏度为η_0=0.0237Pa·s,无限剪切黏度η_∞=0.0125Pa·s,剪切变稀指数n=0.931。随浓度降低,溶液牛顿流体特性增强。热处理温度显著影响谷蛋白溶液的稳态流变特性。热处理温度从30℃升高至90℃时,溶液黏度降低,剪切变稀现象减弱。加入Na~+后,溶液黏度降低,剪切变稀现象减弱。Ca~(2+)显著影响谷蛋白溶液的稳态与动态流变特性。Ca~(2+)浓度为0.2M时,溶液黏度、屈服应力与低频区域的平台模量最大。
The increasing pollution from nondegradable plastic wastes have directly threatened human being's survival, health and development. Biodegradable materials thus are desired and their study and application grow rapidly in this century. Wheat proteins show the advantage for usage as biodegradable materials because of their abundant resource and good biodegradability.
     In this dissertation, wheat gluten (storage proteins) is used as matrix to prepare glycerol plasticized gluten bioplastic, and gluten/starch, gluten/glutenin-rich fraction and gluten/methylcellulose biocomposites. Influences of plasticizer content, compression temperature, acid or alkali treatment and filler type and content on rheological behaviors and mechanical properties are investigated. Rheological behaviors of alkaline ethanol soluble glutenin solution are also investigated.
     Glycerol plasticized wheat gluten bioplastics were prepared through compression molding. The results show that the glycerol content significantly affects the mechanical properties of the bioplastics. Young's modulus and tensile strength decrease while elongation at break increases with increasing glycerol content. The moisture absorption of the bioplastics strongly depends on the glycerol content.
     Acid and alkali effects on rheological behaviors and biaxial/uniaxial extensional deformation of wheat gluten bioplastics were studied. The results show that addition of both HCl and NaOH facilitate cross-linking of proteins through thiol-disulfide interchange reaction, resulting in higher dynamic storage modulus (G') and dynamic loss modulus (G″) at room temperature. At the earlier stage, HCl promotes the crosslinking reaction more than NaOH. Loss factor (tanδ) decreases with increasing HCl content while it increases with increasing NaOH content. The characteristic relaxation time from biaxial deformation decreases with increasing HCl content while it increases with increasing NaOH content, indicating that HCl improves elasticity of composites and NaOH mainly improves viscosity. HCl does not show catalysis function for crosslinking proteins at 80℃and even hinders the crosslinking reaction at 110℃. On the other hand, NaOH generally accelerates the crosslinking reaction during compression-molding thus improves Young's modulus, tensile strength and strain at break significantly. However, NaOH with a content above 0.5 wt % could cause an adverse effect at molding temperature as high as 110℃. E_U,σ_(br) andε_(br) of the bioplastics are significantly increased as increasing molding temperature from 80℃to 100℃.
     Glycerol plasticized gluten/starch biocomposites were prepared using thermal and cold molding process. For the samples with 10 % moisture, G' increases while tensile strength and elongation at break decrease with increasing starch content. Temperature scan reveals a "rubber plateau" above 100℃. The plasticized gluten exhibits gel-like behavior at 30℃while it forms a network at 80℃. For the samples with 20 % and 25 % moisture, their tensile strength and elongation at break decrease with increasing starch content, which is ascribed to the dilution and lubrication between starch granule and gluten network by moisture.
     Glutenin-rich fraction was extracted from wheat gluten using a modified method. Dynamic rheological behaviors and mechanical properties of glycerol plasticized gluten/glutennin-rich fraction biocomposites were studied. The results show that the crosslinking reaction is accelerated with increasing glutenin-rich fration content. The composites exhibited "second plateau" due to the formation of crosslinking network. Samples containing gliadin exhibit strain softening and strain hardening. However, upon removing gliadins, the samples do not exhibit strain softening but fractures during strain hardening. Increasing glutenin-rich fraction content improves Young's modulus and tensile strength but lowers extensibility, indicating that gliadins are highly important for large deformation properties.
     Glycerol plasticized wheat gluten/methylcellulose biocomposites were prepared by thermal compression molding at 110℃. The results show that G', G″, E_U,σ_(br)r and T_gincrease while tanδandε_(br) decrease with increasing methylcellulose content. Appearance of "second plateau" in the low frequency region reflects the formation of physical crosslinking between methylcellulose and proteins.
     Rheological behaviors of glutenins in 50 % (v/v) alcohol / water and 0.1 NaOH solutions were investigated in relation to glutenin concentration, thermal treatment temperature, sodium (Na~+) and calcium (Ca~(2+)) ionic strength. Glutenin solutions of 48 mg ml~(-1) behave as weak nonNewton liquids with slight shear thinning, which has a zero shear viscosityη_0=0.0237 Pa·s, infinite shear viscosityη_∞=0.0125 Pa·s and shear thinning index n=0.931. The solutions approach newtonian behavior concentration is decreased. The solutions preheated at 30℃-90℃show low viscosity and weakened shear thinning. Addition of Na~+ also lowers viscosity and weakens the shear thinning. Addition of Ca~(2+) has an obvious effect on rheological behavior of gliutenin solutions. The solution with 0.2 M Ca~(2+) shows the highest viscosity, yielding stress and low-frequency plateau modulus.
引文
[1] Hammoudeh, S. and Li, H. The impact of the Asian crisis on the behavior of US andinternational petroleum prices. Engery Economics, 2004,26,135-160.
    [2] Jayaraj, R. S. and Muraleedharan, C. Use of vegetable oils as I.C. engine fuels - a review.A.S. Renewable Energy, 2004,29, 727-742.
    [3] Gross, R. A. and Kalra, B. Biodegradable polymers for the environment. Science, 2002, 297,803-807.
    [4] Caviglia - Harris, J. L., Kahn, J. R. and Green, T. Demand - side police for environmentalprotection and sustainable usage of renewable resources. Ecological Economics, 2003, 45,119-132.
    [5] 陈德敏.中国可再生资源综合利用的战略思路与对策.中国软科学,2003,8,1-7.
    [6] 张俐娜.天然高分子改性材料及应用 北京:化工出版社,2006.
    [7] 戚严磊,崔永岩.关于蛋白质塑料的研究.塑料,2005,34(5),35-39.
    [8] Katoh, K., Shibayanma, M., Tanabe, T. and Yamauchi, K. Preparation and physicochemicalproperties of compression - molded keratin film. Biomaterials, 2004,25, 2265-2272.
    [9] Wu, Q. X., Sakabe, H. and Isobe, S. Studies on the toughness and water resistance of zeinbased polymers by modification. Polymer, 2003,44,3901-3908.
    [10] John, J., Tand, J. and Bhattacharya, M. Processing of biodegradable blends of wheat glutenand modified polycaprolactone. Polymer, 1998, 39(13), 2883-2895.
    [11] El-Adawy, T. A. Functional properties and nutritional quality of acetylated and succinylatedmung bean protein isolate. Food Chem., 2000, 70, 83-91.
    [12] Cuq, B., Gontard, N. and Guilbert, S. Themoplastic properties of fish myofibrillar proteins:application to biopackaging fabrication. Polymer, 1997,38,4071-4078.
    [13] Shewry, P. R., Tatham, A. S., Forde, J., Kreis, M. and Miflin, B. J. The classification andnomenclature of wheat gluten proteins: A reassessment. Journal of Cereal Science, 1986, 4,97-106.
    [14] Lindsy, M. P. and Skerritt, J. H. Low-temperature Scanning Electron Microscopy Study ofGluten Ultrastructure. Cereal Chemistry, 1999, 69, 535-541.
    [15] Lindsy, M. P. and Skerritt, J. H. Immunocytochemical Localization of Gluten Proteins Uncovers Structural Organization of the Glutenin Macropolymer. Cereal Chemistry, 2000, 687-690.
    [16] Tatham, A. S. and Shewry, P. R. The S-poor Prolomins of Wheat, Barley and Rye. Journal of Cereal Science. 1995,22,1-16.
    [17] Tatham, A. S., Miflin, B. J. and Shewry, P. R. The Beta-turn Conformation in Wheat Guten Proteins: Relationship to Guten Elasticity. Cereal Chemistry. 1985, 62,405-412.
    [18] Shewry, P. R., Halford, N. G. and Tatham, A. S. High Molecular Weight Subunits of Wheat Glutenin. Journal of Cereal Science. 1992,15, 105-120.
    [19] Shewry, P. R., Halford, N. G. and Tatham, A. S. The High Molecular Weight Subunits of Wheat, Barley and Rye: Genetics, Molecular Biology, Chemistry and Role in Wheat Structure and Fucntionality. Oxford Surv. Plant Mol. Cell Biolology. 1989, 6, 163.
    [20] Shewry, P. R., Tatham, A. S. and Lazzeri, P. Biotechnology of Wheat Quality. Journal of the Science of food and Agriculture. 1997, 73,397-406.
    [21] Colot, V, Bartels, D., Thompson, R. and Flavell, R. Molecular Characterisation of an Active Wheat Lmw-glutenin Gene and its Relation to Other Wheat and Barley Prolamin Gene. Molecular and general genetics, 1989,216,81-90.
    [22] Cassidy, B. G, Dvorak, J. and Anderson, O. D. The Wheat Low-Molecular-Weight Glutenin Genes: Characterisation of Six New Genes and Progress in Understanding Gene Family Structure. Theoretical and Applied Genetics, 1998,96,743-750.
    [23] Lew, E. J. L., Kuzimicky, D. D. and Kasards, D. D. Characterisation of Low Molecular Weight Glutenin Subunits by Reversed phase High-Performance Liquid Chromatography, Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis, and N-terminal Amino Acid Sequencing. Cereal Chemistry, 1992, 69, 508-515.
    [24] Masci, S., Lew, E. J. L., Lafiandra, D. Porceddu, E. and Kasarda, D. D. Characterization of Low Molecular Weight Subunits in Durum Wheat by Reversed-phase High-performance Liquid Chromatography and N-terminal Sequencing. Cereal Chemistry, 1995, 72, 100-104.
    [25] D'Ovidio, R., Simeone, M., Masci, S., Porceddu, E. and Kasarda, D. D. Nucleotide Sequence of a g-type Glutenin Gene from a Durum Wheat: Correlation with a g-type Glutenin Subunit From the Same Biotype. Cereal Chemistry, 1995 72,443-449.
    [26] Sissons, M. J., Blundell, M. J., Hill, A. S. and Skerritt, J. H. Antibodies to N-terminal Peptides of Low Mr Subunits of Wheat Glutenin. Journal of Cereal Science, 1999, 30, 267-281.
    [27] Masci, S., Laliandra, D., Porceddu, E., Lew, E. J. L, Tao, H. P. and Kasarda, D. D. D-glutenin Subunits: N-terminal Sequen-ces and Evidence for the Presence of Cysteine. Cereal Chemistry, 1993, 70,581-585.
    [28] Shewry, P. R and Tatham, A.S. The Prolamin Storage Proteins in Cereal Seeds: Structure and Evolution. Biochemical Journal. 1990,267,1-12.
    [29] Ewart, J. A. D. A. Modified Hypothesis for the Structure and Rheology of Glutelins. Journal of Science of Food and Agriculture, 1972,23,687-699.
    [30] Ewart, J. A. D. Glutenin Structure. Journal of Science of Food and Agriculture. 1979, 30, 482-492.
    [31] Kasarda, D. D, Bernardin, J. E. and Nimmo, C. C. Advances in Cereal Science and Technology. Volume. 1 Y. Pomeranz (ed.), pp. American Association of Cereal Chemists, St. Paul, Minnesota, 1976,158-236.
    [32] Khan, K. and Bushuk, W. Glutenin: Structure and Functionality in Breadmaking. Bakers Digest, 1978, 58,14-20.
    [33] Khan, K. and Bushuk, W. Studies of Glutenin. XII. Comparison of Sodium Dodecyl Sulfate-polyacrylamide Gel Electrophoresis of Unreduced and Reduced Glutenin from Variouslsolation and Purification Procedures. Cereal Chemistry, 1979, 56, 63-68.
    [34] Bushuk, W., Khan, K. and McMaster, G. Functional Glutenin: A Complex of Covalently and Non-covalently Linked Components. Journal of Technology and Agricculture, 1980, 29, 279-294.
    [35] Khatkar, B. S., Bell, A. E., and Schofield, J. D. The dynamic rheological properties of glutens and gluten sub-fractions from wheats of good and poor bread making quality. Journal of Cereal Science, 1995,22,29-44.
    [36] Toufeili, I., Ismail, B., Shadarevian, S., Baalbaki, R., Khatkar, B. S., Bell, A. E., and Schofield, J. D. The role of gluten proteins in the baking of Arabic bread. Journal of Cereal Science, 1999,30,255-265.
    
    [37] Madeka, H., and Kokini, J. L. Changes in rheological properties of gliadin as a function of temperature and moisture: Development of a state diagram. Journal of Food Engineering, 1994,22,241-252.
    [38] Martling, S. E., Mulvaney, S. J., and Cohen, C. Effect of moisture content on viscoelastic properties of hydrated gliadin. Cereal Chemistry, 2004, 81,207-219.
    [39] Khatkar, B. S., Bell, A. E., and Schofield, J. D. The dynamic rheological properties of glutens and gluten sub-fractions from wheats of good and poor bread making quality. Journal of Cereal Science, 1995,22,29-44.
    [40] Tsiami, A. A., Bot, A., and Agterof, W. G. M. Rheology of mixtures of glutenin subfractions. Journal of Cereal Science, 1997,26,279-287.
    [41] Tsiami, A. A., Bot, A., Agterof, W. G. M., and Groot, R. D. Rheological properties of glutenin subtractions in relation to their molecular weight. Journal of Cereal Science, 1997, 26,15-27.
    [42] Cornec, M., Popineau, Y, and Lefebvre, J. Characterisation of gluten subtractions by se-hplc and dynamic rheological analysis in shear. Journal of Cereal Science, 1994, 19, 131-139.
    [43] Jood, S., Schofield, J. D., Tsiami, A. A., and Bollecker, S. Effect of composition of glutenin subtractions on rheological properties of wheat. Journal of Food Biochemistry, 2000, 24, 275-298.
    [44] Payne, P. R., Nightingale, M. A., Krattiger, A. F. and Holt, L. M. The relationship between HMW glutenin subunit composition and the breadmaking quality of British grown wheat varieties. Journal of the Science of Food and Agriculture, 1987,40, 5165.
    [45] Gupta, R. B., Khan, K. and MacRitchie, F. Biochemical basis of flour properties in bread wheats. I. Effects of variation in the quantity and size distribution of polymeric protein. Journal of Cereal Science, 1993,17,23-41.
    [46] Shewry, P. R., Halford, N. G. and Tatham, A. S. High-molecular-weight subunits of wheat glutenin. Journal of Cereal Science, 1992,15, 105-20.
    [47] Pritchard, P. E. The glutenin fraction (gel-protein) of wheat protein-a new tool in the prediction of baking quality. Aspects of Applied Biology, 1993, 36, 75-84.
    [48] Sapirstein, H. D. and Suchy, J. SDS protein gel test for prediction of bread loaf volume. Cereal Chemistry, 1999, 76,164-172.
    [49] Weegels, P. L, Hamer, R. J. and Schofield, J. D. Functional properties of wheat glutenin. Journal of Cereal Science, 1996, 23,1-18.
    [50] Weegels, P. L., van de Pijpekamp, A. M., Graveland, A., Hamer, R. J. and Schofield, J. D. Depolymerisation and repolymerisation of wheat gluten during dough processing 1. Relationships between GMP content and quality parameters. Journal of Cereal Science, 1996,23,103-111.
    [51] Don, C, Lichtendonk, W., Plijter, J. J. and Hamer, R. J. Glutenin macropolymer: a gel formed by glutenin particles. Journal of Cereal Science, 2003,37,1-7.
    [52] Lindsay, M. P. and Skerritt, J. H. Examination of the structure of the glutenin macropolymer in wheat flour and doughs by stepwise reduction. Journal of Agricultural and Food Chemistry, 1998,46, 3447-3457.
    [53] Don, C, Lookhart, G, Naeem, H., MacRitchie, F. and Hamer, R. J. Heat stress and genotype affect the glutenin particles of the glutenin macropolymer-gel fraction. Journal of Cereal Science, 2005,42, 69-80.
    [54] Don, C, Lichtendonk, W. J., Plijter, J. J. and Hamer, R. J. Understanding the link between GMP and dough: from glutenin particles in flour towards developed dough. Journal of Cereal Science, 2003, 38,157-165.
    [55] Weegels, P. L., Orsel, R., van de Pijpekamp, A. M., Lichtendonk, W. J., Hamer, R. J. and Schofield, J. D. Functional properties of low Mr wheat proteins. II. Effects on dough properties. Journal of Cereal Science, 1995,21,117-126.
    [56] Wang, M., Hamer, R. J., van Vliet, T., Gruppen, H., Marseille, H. and Weegels, P. L. Effect of water unextractable solids on gluten formation and properties: mechanistic considerations. Journal of Cereal Science, 2003, 37, 55-64.
    [57] Wang, M., van Vliet, T. and Hamer, R, J. Interaction of water unextractable solids and xylanase with gluten protein: effect of wheat cultivar. Journal of Cereal Science, 2005, 41, 251-258.
    [58] Primo-Martin, C, Valera, R. and Martinez-Anaya, M. A. Effect of pentosanase and oxidases on the characteristics of doughs and the glutenin macropolymer (GMP). Journal of Agricultural Food Chemistry, 2003, 51,4673-4679.
    
    [59] Roman-Gutierrez, A. D., Guilbert, S. and Cuq, B. Description of microstructural changes in wheat flour and flour components during hydration by using environmental scanning electron microscopy. Lebensmittel-Wissenschaft and-Technologie, 2002, 35, 730-740.
    [60] Pezolet, M., Bonenfant, S., Dousseau, F. and Popineau, Y. Conformation of wheat gluten proteins. Comparison between functional and solution states as determined by infrared spectroscopy. FEBS Letter, 1992,299,247-250.
    [61] Popineau, Y., Cornec, M., Lefebvre, J. and Marchylo, B. Influence of high Mr glutenin subunits on glutenin polymers and rheological properties of glutens and gluten subfractions of near-isogenic lines of wheat sicco. Journal of Cereal Science, 1994, 19, 231-241.
    [62] Popineau, Y, Bonenfant, S., Cornec, M. and Pezolet, M. A Study by infrared spectroscopy of the conformations of gluten proteins differing in their gliadin and glutenin compositions. Journal of Cereal Science, 1994, 20,15-22.
    [63] Hargreaves, J., Popineau, Y, Marion, D., Lefebvre, J. and Le Meste, M. Gluten viscoelasticity is not lipid-mediated. A rheological and molecular flexibility study on lipid and non-prolamin protein depleted glutens. Journal of Agricultural and Food Chemistry, 1995,43,1170-1176.
    [64] Hargreaves, J., Popineau, Y, Cornec, M. and Lefebvre, J. Relations between aggregative, viscoelastic and molecular properties in gluten from genetic variants of bread wheat. International Journal of Biological Macromolecules, 1996,18, 69-75.
    [65] Khatkar, B. S. Effect of mixing time on dynamic rheological properties of wheat flour dough. Journal of Food Science and Technology, 2004,41, 320-322.
    [66] Pommet, M., Morel, M. H., Redl, A. and Guilbert, S. Aggregation and degradation of plasticized wheat gluten during thermo-mechanical treatments, as monitored by rheological and biochemical changes. Polymer, 2004,45,6853-6860.
    [67] Nicolas, Y, Smit, R. J. M., van Aalst, H., Esselink, F. J., Weegels, P. L. and Agterof, W. G. M. Effect of storage time and temperature on rheological and microstructural properties of gluten. Cereal Chemistry, 2003, 80,371-377.
    [68] Domenek, S., Brendel, L., Morel, M. H. and Guilbert, S. Swelling behavior and structural characteristics of wheat gluten polypeptide films. Biomacromolecules, 2004, 5, 1002-1008.
    [69] Lefebvre, J., Popineau, Y, Deshayes, G. and Lavenant, L. Temperature-induced changes in the dynamic rheological behavior and size distribution of polymeric proteins for glutens from wheat near-isogenic lines differing in HMW glutenin subunit composition. Cereal Chemistry, 2000,77,193-201.
    [70] Popineau, Y., Comec, M., Lefebvre, J. and Marchylo, B. Influence of high Mr glutenin subunits on glutenin polymers and rheological properties of glutens and gluten subfractions of near-isogenic lines of wheat sicco. Journal of Cereal Science, 1994,19,231-241.
    [71] Popineau, Y., Deshayes, G, Lefebvre, J., Fido, R., Tatham, A. S. and Shewry, P. R. Prolamin aggregation, gluten viscoelasticity, and mixing properties of transgenic wheat lines expressing 1Ax and 1Dx high molecular weight glutenin subunit transgenes. Journal of Agricultural and Food Chemistry, 2001,49,395-401.
    [72] Cornec, M., Popineau, Y. and Lefebvre, J. Characterisation of gluten subtractions by se-hplc and dynamic rheological analysis in shear. Journal of Cereal Science, 1994,19,131-139.
    [73] Hargreaves, J., Popineau, Y, Cornec, M. and Lefebvre, J. Relations between aggregative, viscoelastic and molecular properties in gluten from genetic variants of bread wheat. International Journal of Biological Macromolecules, 1996,18, 69-75.
    [74] Khatkar, B. S. and Schofield, J. D. Dynamic rheology of wheat flour dough. II. Assessment of dough strength and bread-making quality. Journal of the Science of Food and Agriculture, 2002, 82, 823-826.
    [75] Schofield, J. D., Bottomley, R. C, Timms, M. F. and Booth, M. R. The effect of heat on wheat gluten and the involvement of sulphydryl-disulphide interchange reactions. Journal of Cereal Science, 1983,1,241-253.
    [76] Weegels, P. L., Groot, A. M. G, Verhoek, J. A. and Hamer, R. J. Effects on gluten of heating at different moisture contents. I. Changes in functional properties. Journal of Cereal Science, 1994,19,31-38.
    [77] Dreese, P. C, Faubion, J. M. and Hoseney, R. C. Dynamic rheological properties of flour, gluten, and gluten-starch doughs. I. Temperature-dependent changes during heating. Cereal Chemistry, 1988,65, 348-353.
    [78] Stathopoulos, C. E., Tsiami, A. A., Dobraszczyk, B. J. and Schofield, J. D. Effect of heat on rheology of gluten fractions from flours with different bread-making quality. Journal of Cereal Science, 2006,43, 322-330.
    
    [79] Santos, D. M. J., Monteiro, S. R. and da Silva, J. A. L. Small strain viscoelastic behaviour of wheat gluten-pentosan mixtures. European Food Research and Technology, 2005, 221, 398-405.
    [80] Larre, C, Deshayes, G, Lefebvre, J. and Popineau, Y. Hydrated gluten modified by a transglutaminase. Nahrung-Food, 1998,42,155-157.
    [81] Larre, C, Denery-Papini, S., Popineau, Y., Deshayes, G, Desserme, C. and Lefebvre, J. Biochemical analysis and rheological properties of gluten modified by transglutaminase. Cereal Chemistry, 2000, 77,121-127.
    [82] van Der Borght, A., Goesaert, H., Veraverbeke, W. S. and Delcour, J. A. Fractionation of wheat and wheat flour into starch and gluten: overview of the main processes and the factors involved. Journal of Cereal Science, 2005,41, 221-237.
    [83] Amend, T. and Belitz, H.-D. The formation of dough and gluten-a study by scanning electron microscopy. European Food Research and Technology, 1990,190,401-409.
    [84] Roman-Gutierrez, A. D., Guilbert, S. and Cuq, B. Description of microstructural changes in wheat flour and flour components during hydration by using environmental scanning electron microscopy. Lebensmittel-Wissenschaft und-Technologie, 2002, 35, 730-740.
    [85] Letang, C., Piau, M. and Verdier, C. Characterization of wheat flour-water doughs. Part I: Rheometry and microstructure. Journal of Food Engineering, 1999,41,121-132.
    [86] Ross, K. A., Pyrak-Nolte, L. J. and Campanella, O. H. The use of ultrasound and shear oscillatory tests to characterize the effect of mixing time on the rheological properties of dough. Food Research International, 2004,37, 567-577.
    [87] Roman-Gutierrez, A. D., Guilbert, S. and Cuq, B. Description of microstructural changes in wheat flour and flour components during hydration by using environmental scanning electron microscopy. Lebensmittel-Wissenschaft und-Technologie, 2002, 35, 730-740.
    [88] Zheng, H., Morgenstern, M. P., Campanella, O. H. and Larsen, N. G. Rheological properties of dough during mechanical dough development. Journal of Cereal Science, 2000, 32, 293-306.
    [89] Campos, D. T., Steffe, J. F. and Ng, P. K. W. Rheological behavior of undeveloped and developed wheat dough. Cereal Chemistry, 1997, 74,489-494.
    
    [90] Lee, L., Ng, P. K. W., Whallon, J. H. and Steffe, J. F. Relationship between rheological properties and microstructural characteristics of nondeveloped, partially developed, and developed doughs. Cereal Chemistry, 2001,78,447452.
    [91] Khatkar, B. S. Effect of mixing time on dynamic rheological properties of wheat flour dough. Journal of Food Science and Technology, 2004, 41,320-322.
    [92] Baltsavias, A., Jurgens, A. and van Vliet, T. Rheological properties of short doughs at small deformation. Journal of Cereal Science, 1997,26,289-300.
    [93] Edwards, N. M., Dexter, J. E., Scanlon, M. G. and Cenkowski, S. Relationship of Creep-Recovery and Dynamic Oscillatory Measurements to Durum Wheat Physical Dough Properties. Cereal Chemistry, 1999,76,638-645.
    [94] Kim, Y.-R. and Cornillon, P. Effects of temperature and mixing time on molecular mobility in wheat dough. Lebensmittel-Wissenschaft und -Technologie, 2001, 34,417-423.
    [95] Charun, E., Abecassis, J., Contamine, A.-S., Roulland, T.-M., Vergnes, B. and Morel, M.-H. Effects of temperature and mechanical input on semisweet biscuit (cookie) quality and dough characteristics. Cereal Chemistry, 2000, 77,265-271.
    [96] Hibberd, GE. Dynamic viscoelastic behavior of wheat flour doughs. II. Effects of water content in the linear region. Rheologica Acta, 1970,9,497-500.
    [97] Navickis, L. L., Anderson, R. A., Bagley, E. B. and Jasberg, B.K. Viscoelastic properties of wheat flour doughs: variation of dynamic moduli with water and protein content. Journal of Texture Studies, 1982,13,249-264.
    [98] Masi, P. Cavella, S. and Sepe, M. Characterization of dynamic viscoelastic behavior of wheat flour doughs at different moisture contents. Cereal Chemistry, 1998, 75,428-432.
    [99] Li, J. Y, and Yeh, A.-I. Relationships between thermal, rheological characteristics and swelling power for various starches. Journal of Food Engineering , 2001, 50, 141-148.
    [100] Amemiya, J. I. and Menjivar, J. A. Comparison of small and large deformation measurements to characterize the rheology of wheat flour doughs. Journal of Food Engineering, 1992, 16,91-108.
    [101] Larsson, H. and Eliasson, A.-C. Influence of the starch granule surface on the rheological behaviour of wheat flour dough. Journal of Texture Studies, 1997,28,487-501.
    [102] Smith, J. R., Smith, T. L. and Tschoegl, N. W. Rheological properties of wheat flour doughs HI. Dynamic shear modulus and its dependence on amplitude, frequency, and dough composition. Rheologica Acta, 1970,9, 239-252.
    [103] Watanabe, A., Larsson, H.and Eliasson, A.-C. Effect of physical state of nonpolar lipids on rheology and microstructure of gluten-starch and wheat flour doughs. Cereal Chemistry, 2002,79,203-209.
    [104] Edwards, N. M., Dexter, J. E.and Scanlon, M. G. Starch participation in durum dough linear viscoelastic properties. Cereal Chemistry, 2002, 79, 850-856.
    [105] Petrofsky, K. E. and Hoseney, R. C. Rheological properties of dough made with starch and gluten from several cereal sources. Cereal Chemistry, 1995, 72, 53-58.
    [106] Khatkar, B. S. and Schofield, J. D. Dynamic rheology of wheat flour dough. I. Non-linear viscoelastic baheviour, Journal of the Science Food and Agriculture, 2002, 82, 827-829.
    [107] Shiau, S.-Y. and Yeh, A. I. Effects of alkali and acid on dough rheological properties and characteristics of extruded noodles. Journal of Cereal Science, 2001, 33,27-37.
    [108] Dreese, P. C, Faubion, J. M. and Hoseney, R. C. Dynamic rheological properties of flour, gluten, and gluten-starch doughs. II. Effect of various processing and ingredient changes. Cereal Chemistry, 1988, 65,354-359.
    [109] Sasaki, T, Kohyama, K., Yasui. T. and Satake, T. Rheological properties of white salted noodles with different amylose content at small and large deformation. Cereal Chemistry, 2004,81,226-231.
    [110] Khatkar, B. S. Effect of protein contents and water absorption values on dynamic rheological properties of wheat flour dough. Journal of Food Science and Technology, 2005, 42, 321-325.
    [111] Uthayakumaran, S., Newberry, M., Keentok, M., Stoddard, F. L. and Bekes, F. Basic rheology of bread dough with modified protein content and glutenin-to-gliadin ratios. Cereal Chemistry, 2000, 77, 744-749.
    [112] Edwards, N. M., Dexter, J. E. and Scanlon, M. G. The use of rheological techniques to elucidate drum wheat dough stretch properties. The 5th Italian Conference on Chemical and Process Engineering, Florence, Italy, 2001, vol. 2, 825-830.
    [113] Edwards, N. M., Mulvaney, S. J., Scanlon, M. G. and Dexter, J. E. Role of gluten and its components in determining durum semolina dough viscoelastic properties. Cereal Chemistry, 2003, 80, 755-763.
    
    [114] MacRitchie, F. Studies of the methodology for the fractionation and reconstitution of wheat flours. Journal of Cereal Science, 1985,3,221-230.
    [115] Lorenz, K. Cereal sprouts: composition, nutritive value, food applications. CRC Critical Reviews in Food Science and Technology, 1980,13, 353-385.
    [116] Singh, H., Singh, N., Kaur, L. and Saxena, S. K. Effect of sprouting conditions on functional and dynamic rheological properties of wheat. Journal of Food Engineering, 2001, 47,23-29.
    [117] Kokelaar, J., van Vliet, T. and Prins, A. Strain hardening and extensibility of flour and gluten doughs in relation to breadmaking performance. Journal of Cereal Science, 1996, 24, 199-214.
    [118] Dobraszczyk, B. J. The physics of baking: Rheological and polymer molecular structure-function relationships in breadmaking. Journal of Non-Newtonian Fluid Mechanics, 2004,124,61-69.
    [119] Dobraszczyk, B. J., Smewing, J., Albertini, M., Maesmans, G. and Schofield, J. D. Extensional rheology and stability of gas cell walls in bread doughs at elevated temperatures in relation to breadmaking performance. Cereal Chemistry, 2003, 80,218-224.
    [120] Izydorczyk, M. S., Hussain, A. and MacGregor, A. W. Effect of barley and barley components on rheological properties of wheat dough. Journal of Cereal Science, 2001, 34, 251-260.
    [121] Huebner, F. and Wall, J. Polysaccharide interactions with wheat proteins and flour doughs. Cereal Chemistry, 1979, 56, 68-73.
    [122] Howell, N., Bristow, E., Copeland, E. and Friedli, G. Interaction of deamided soluble wheat protein with sodium alginate. Food Hydrocolloids, 1998,12, 317-324.
    [123] Yu, L. J., Ngadi, M. O. Rheological properties of instant fried noodle dough as affected by some ingredients. Journal of the Science of Food and Agriculture, 2006, 86, 544-548.
    [124] Miller, K. A. and Hoseney, R. C. Effect of oxidation on the dynamic rheological properties of wheat flour-water doughs. Cereal Chemistry, 1999, 76,100-104.
    [125] Georgopoulos, T, Larsson, H. and Eliasson, A.-C. Influence of native lipids on the rheological properties of wheat flour dough and gluten. Journal of Texture Studies, 2006, 37, 49-62.
    
    [126] Papantoniou, E., Hammond, E. W., Scriven, K, Gordon, M. H. and Schofield, J. D. Effects of endogenous flour lipids on the quality of short-dough biscuits. Journal of the Science of Food and Agriculture, 2004, 84, 1371-1380.
    [127] Papantoniou, E., Hammond, E. W., Tsiami, A. A., Scriven, F., Gordon, M. H. and Schofield, J. D. Effects of endogenous flour lipids on the quality of semisweet biscuits. Journal of Agricultural and Food Chemistry, 2003, 51,1057-1063.
    [128] Yeh, A.-I. and Shiau, S.-Y. Effects of oxido-reductants on rheological properties of wheat flour dough and comparison with some characteristics of extruded noodles. Cereal Chemistry, 1999, 76, 614-620.
    [129] Lambert, I. A. and Kokini, J. L. Effect of L-cysteine on the rheological properties of wheat flour. Cereal Chemistry, 2001, 78, 226-230.
    [130] Lee, C. C. and Mulvaney, S. J. Dynamic viscoelastic and tensile properties of gluten and glutenin gels of common wheats of different strength. Journal of Agricultural and Food Chemistry, 2003, 51, 2317-2327.
    [131] Miller K. A. and Hoseney, R. C. Dynamic rheological properties of wheat starch-gluten doughs (1). Cereal Chemistry, 1999, 76,105-109.
    [132] Dong, W. and Hoseney, R. C. Effects of certain breadmaking oxidants and reducing agents on dough rheological properties. Cereal Chemistry, 1995, 72, 58-64.
    [133] Vemulapalli, V. and Hoseney, R. C. Glucose oxidase effects on gluten and water solubles. Cereal Chemistry, 1998, 75, 859-862.
    [134] Martinez-Anaya, M. A. and Jimenez, T. Rheological properties of enzyme supplemented doughs. Journal of Texture Studies, 1997,28, 569-583.
    [135] Pedersen, L., Kaack, K., Bergsoe, M. N., Adler-Nissen, J. Effects of chemical and enzymatic modification on dough rheology and biscuit characteristics. Journal of Food Science, 2005, 70, E152-E158.
    
    [136] Dogan, I. S. Dynamic rheological properties of dough as affected by amylases from various sources. Die Nahrung, 2002,46, 399-403.
    [137] Koksel, H., Sivri, D., Ng, P. K. W. and Steffe, J. F. Effects of transglutaminase enzyme on fundamental rheological properties of sound and bug-damaged wheat flour doughs. Cereal Chemistry, 2001, 78,26-30.
    
    [138] Wehrle, K., Grau, H. and Arendt, E. K. Effects of lactic acid, acetic acid, and table salt on fundamental rheological properties of wheat dough. Cereal Chemistry, 1997,74,739-744.
    [139] Shiau, S. Y. and Yeh, A. I. Effects of alkali and acid on dough rheological properties and characteristics of extruded noodles. Journal of Cereal Science, 2001, 33, 27-37.
    [140] Edwards, N. M., Scanlon, M. G, Kruger, J. E. and Dexter, J. E. Oriental noodle dough rheology: relationship to water absorption, formulation, and work input during dough sheeting. Cereal Chemistry, 1996, 73, 708-711.
    [141] Angioloni, A. and Rosa, M. D. Dough thermo-mechanical properties: influence of sodium chloride, mixing time and equipment. Journal of Cereal Science, 2005, 41, 327-331. Anker, A., Foster, G. A., and Loader. M. A. Method of preparing gluten containing films and coatings, U.S. Patent, 1972, 3,653,925.
    [142] Anker, A., Foster, G. A., and Loader. M. A. Method of preparing gluten containing films and coatings, U.S. Patent, 1972, 3,653,925.
    [143] Aydt, T. P., Weller, C. L. and Testin, R. F. Mechanical and barrier properties of edible corn and wheat protein films. Transactions of the American Entomological, 1991,34,207-211.
    [144] Gontard, N., Guilbert, S. and Cuq, J. L. Edible wheat gluten films: Influence of main process variables on film properties using response surface methodology. Journal of Food Science, 1992,57,190-199.
    [145] Gennadios, A., Weller, C. L. and Testin, R. F. Modification of physical and barrier properties of edible wheat gluten-based films. Cereal Chemistry, 1993, 70,426-429.
    [146] Rayas, L. M. and Ng, P. K. W. Method for the separation of proteins from grain flour. U.S. patent, 1997, 5, 605, 577.
    [147] Debeaufort, F. and Voilley, A. Aroma compound and water vapor permeability of edible films and polymeric packagings. Journal of Agriculture and Food Chemistry, 1994, 42, 2871-2875.
    [148] Krull, L. H. and Inglett, G. E. Industrial uses of gluten. Cereal Science Today. 1971, 16, 232-261.
    [149] Park, H. J., Bunn, J. M., Weller, C. L, Vergano, P. J. and Testin, R. F. Water vapor permeability and mechanical properties of grain protein-based films as affected by mixtures of polyethylene glycol and glycerin plasticizers. Transactions of the American Entomological Society, 1994, 37, 1281-1285.
    [150] Wu, Y. V. and Dimler, R. J. Hydrogen-ion equilibria of wheat gluten. Archives of Biochemistry and Biophysics, 1963,102,230-237.
    [151] Gennadios, A., Brandenburg, A. H., Weller, C. Land Testin, R. F. Effect of pH on properties of wheat gluten and soy protein isolate films. Journal of Agriculture and Food Chemistry, 1993,41,1835-1839.
    [152] Gontard, N., Guilbert, S. and Cuq, J. L. Water and glycerol as plasticizer affect mechanical and water vapor barrier properties of an edible wheat gluten film. Journal of Food Science, 1993,58,206-211.
    [153] Herald, T. J., Gnanasambandam, R., McGuire, B. H. and Hachmeister, K. A. Degradable wheat gluten films: preparation, properties and applications. Journal of Food Science, 1995, 60,1147-1156.
    [154] Okamoto, S. Factors affecting protein film formation. Cereal Foods World, 1978, 23, 256-262.
    [155] Friedman, M. Chemistry, biochemistry, nutrition, and microbiology of lysinoalanine, lanthionine, and histidinoalanine in food and other proteins. Journal of Agriculture and Food Chemistry, 1999,47,1295-1317.
    [156] Zhang, X., Hoobin, P., Burgar, I. and Do, M. D. pH Effect on the mechanical performance and phase mobility of thermally processed wheat gluten-based natural polymer materials. Biomacromolecules, 2006, 7, 3466-3473.
    [157] Soskey, P. R. and Winter, H. H. Equibiaxial extension of two polymer melts: Polystyrene and low density polyethylene. Journal of Rheology, 1985,29,493-517.
    [158] Takahashi, M., Isaki, T., Takigawa, T. and Masuda, T. Measurement of biaxial and uniaxial extensional flow behavior of polymer melts at constant strain rates. Journal of Rheology, 1993, 37, 827-846.
    [159] Ali, Y., Ghorpade, V. M. and Hanna, M. A. Properties of thermally treated wheat gluten films. Industrial Crops and Products, 1997, 6,177-184.
    [160] Olabarrieta, I., Cho, S. W., Gallstedt, M., Sarasua, J. R., Johansson, E. and Hedenqvist, M. S. Aging Properties of films of plasticized vital wheat gluten cast from acidic and basic solutions. Biomacromolecules, 2006,7,1657-1664.
    
    [161] Ferry, J. D. Viscoelastic Properties of Polymers. 1980, New York: John Wiley & Sons, Inc.
    [162] Kayserilioglu, B. S., Stevels, W. M., Mulder, W. J. and Akkas, N. Mechanical and biochemical characterization of wheat gluten films as a function of pH and co-solvent. Starch/Staerke, 2001,53,381-386.
    [163] Kayserilioglu, B. S., Bakir, U., Yilmaz, L. and Akkas, N. Drying temperature and relative humidity effects on wheat gluten film properties. Journal of Agriculture and Food Chemistry, 2003, 5, 964-968.
    [164] Lens, J. P., de Graaf, L. A., Stevels, W. M., Dietz, C. H. J. T., Verhelst, K. C. S., Vereijken, J.M. and Kolster, P. 2003. Influence of processing and storage conditions on the mechanical and battier properties of films cast from aqueous wheat gluten dispersions. Industrial crops and products, 2003,17,119-130.
    [165] Mangavel, C, Rossignol, N., Perronnet, A., Barbot, J., Popineau, Y. and Gueguen, J. properties and microstructure of thermo-pressed wheat gluten films: a comparison with cast films. Biomacromolecules, 2004, 5,1596-1601.
    [166] Hiss, R., Hobeika, S., Lynn, C. and Strobl, G. Network streching, slip processed, and fragmentation of crystallites during uniaxial drawing of polyethylene and related Copolymers. A comparative study. Macromolecules, 1999, 32,4390-4403.
    [167] Haward, R. N. Strain hardening of thermoplastics. Macromolecules, 1993,26, 5860-5869.
    [168] Domenek, S., Brendel, L., Morel, M. H. and Guilbert, S. Swelling behavior and structural characteristics of wheat gluten polypeptide films. Biomacromolecules, 2004, 5,1002-1008.
    [169] Roy, S., Gennadios, A., Weller, C. L, Zeece, M. G. and Testin, R. F. J. Physical and molecular properties of wheat gluten films cast from heated film-forming solutions. Journal of Food Science, 1999,64,57-60.
    [170] Kayserilioglu, B. S., Stevels, W. M., Mulder, W. J. and Akkas, N. Mechanical and biochemical characterization of wheat gluten films as a function of pH and co-solvent. Starch/Staerke, 2001,53,381-386.
    [171] Cuq, B., Boutrot, F., Redl, A. and Lullien-Pellerin, V. Study of the temperature effect on the formation of wheat gluten network: influence on mechanical properties and protein solubility. J. Agric. Food Chemistry, 2000,48,2954-2959.
    [172] Roy, S., Gennadios, A., Weller, C. L., Zeece, M. G. and Testin, R. F. J. Physical and molecular properties of wheat gluten films cast from heated film-forming solutions. Journal of Food Science, 1999,64, 57-60.
    [173] Hernandez-Munoz, P., Villalobos, R. and Chiralt, A. Effect of thermal treatments on functional properties of edible films made from wheat gluten fractions. Food Hydrocolloids, 2004,18, 647-654.
    [174] Shimada, K. and Cheftel, J. C. Sulfhydryl group/disulfide bond interchange reactions during heat-induced gelation of whey protein isolate. Journal of Agricultural and Food Chemistry, 1989,37,161-168.
    [175] Sun, S., Song, Y. and Zheng, Q. Morphologies and properties of thermo-molded biodegradable plastics based on glycerol-plasticized wheat gluten. Food Hydrocolloids, 2007,21,1005-1013.
    [176] Chen, P. and Zhang, L. N. New evidences of glass transitions and microstructure of soy protein plasticized with glycerol. Macromolecular Bioscience, 2005, 5,237-245.
    [177] Park, H. J. and Chinnan, M S. Gas and water vapor barrier properties of edible films from protein and cellulosic materials. Journal of Food Engineering, 1995,25,497-507.
    [178] Woerdeman, D. L, Veraverbeke, W. S. and Parnas, R. S. Designing new materials from wheat protein. Biomacromolecules, 2004,5,1262-1269.
    [179] Dean, D. and Duxbury. Milk-Protein-Derived Edible Coatings Extend Fruit, Vegetable Shelf Life. Food Processing. 1989, 50 (11), 56-58.
    
    [180] Ringe, D. and Pesko, G. A. Biophy Chemistry, 2003, 105,667-680.
    [181] Zavodszky, P, Kardos, J., Svingor, A. and Pestsko, G. A. Proc Natl Acadamic Science, USA, 1998,95,7406-7411.
    [182] Feher, M. N. and Cavanagh, J. Millisecond-timescale motions contribute to the function of the bacterial response regulator protein spoof. Nature, 1999, 400,289-293.
    [183] Angles, M. N. and Dufresne, A. Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules, 2001, 34, 2921-2931.
    [184] Zhang, J., Mungara, P. and Jan, J. Mechanical and thermal properties of extruded soy protein. Polymer, 2001,42,2569-2578.
    [185] Wu, Q. and Zhang, L. Effects of molecular weight on properties of thermoplastics prepared from soy protein isolated. Journal of Applied of Polymer Science, 2001, 82, 3373-3380.
    [186] Malkin, A. Y., Rheology of filled polymer. Advanced Polymer Science, 1990, 96, 69-97.
    [187] Wu, G, Asai, S., Sumita, M., Hattori, T., Higuchi, R. and Washiyama, J. Estimation of flocculation structure in filled polymer composites by dynamic rheological measurements. Progress in Colloid and Polymer Science. 2000,278,220-228.
    [188] Aranguren, M. I., Mora, E. M., DeGroot, J. V. and Macosko, C. W. Effect of Reinforcing Fillers on the Rheology of Polymer Melts, Journal of. Rheology. 1992, 36,1165-1182.
    [189] Piau, J. M., Dorget, M., Palierne, J. F. and Pouchelon, A. Shear Elasticity and Yield Stress of Silica-Silicone Physical Gels: Fractal Approach, Journal of. Rheology. 1999,43, 305-314.
    [190] Cassagnau, P. and Mleis, F. Non-linear viscoelastic behaviour and modulus recovery in silica filled polymers. Polymer, 2003,44,6607-6615.
    [191] Cassagnau, P. Payne effect and shear elasticity of silica-filled polymers in concentrated solutions and in molten state. Polymer, 2003,44,2455-2462.
    [192] Ferry, J. D. John Wiley and Sons. Viscoelastic Properties of Polymer, New York: 1980, 33-55.
    [193] Kalichevsky, M. T., Jaroszkiewicz, E. M. and Blanshard, J. M. V. The glass transition of amylopectin measured by DSC, DMTA and NMR Carbohydrate Polymers. Biomacromolecules, 1992,14,267-273.
    [194] Di, G. L. and Guilbert, S. Thermal properties of corn gluten meal and its proteic components. Journal of Agriculture science and Food Chemitry, 1999,47,1254-1261.
    [195] Salvador, A., Sanz, T. and Fiszman, S. M. Dynamic rheological characteristics of wheat flour-water doughs. Effect of adding NaCl, sucrose and yeast. Food Hydrocolloids, 2006, 20, 780-786.
    [196] Lai, L. S. and Kokini, J. L. Physicochemical changes and rheological properties of starch during extrusion (a review). Biotechnology Progress, 1991, 7,251-266.
    [197] Olkku, J. and Rha, C. Gelatinization of starch and wheat flour starch (a review). Food Chemistry, 1978,3,293-311.
    [198] Uthayakumaran, S., Newberry, M., Phan, T. N. and Tanner, R. Rheology Acta, 2002, 41, 162-172.
    [199] Payne, A. R. and Whittaker, R. E. Low strain dynamic properties of filled rubber. Rubber Chemistry and Technology, 1971,44,440-478.
    
    [200] Song, Y. H. and Zheng, Q. Dynamic rheological properties of wheat flour dough and??proteins.Trends in Food Science and Technolog,2007,18,132-138.
    [201] 马骁飞,于九皋.尿素和甲酰胺塑化热塑性淀粉.高分子学报,2004,(4),483-489.
    [202] 姜闻博,乔秀颖,唐忠柱,孙康.乙酰化淀粉的塑化和性能研究.高分子学报,2006,(2), 97-101.
    [203] 郑强,杨碧波,吴刚,等.多组分高分子体系动态流变学研究.高等学校化学学报.1999, 20(9),1483-1490.
    [204] 郑强,荒木修,升田利史郎.用动态粘弹函数关系表征PMMA/a-SAN共混物的相分离. 高等学校化学学报,1998,19(8),1339-1342.Payne,P.I.and Corfield,K.G.Subunitscomposition of wheat glutenin proteins isolated by gel filtration in a dissociating medium.Planata, 1979,14, 83-88.
    [205] Domenek, S., Feuilolley, P., Gratuaud, J., Morel, M.-H. and Guilbert, S. Biodegradability ofwheat gluten based bioplastics. Chemospherre, 2004, 54,551-559.
    [206] Shewry, P. R., Tatham, A. S., Forde, J., Kreis, M. and Miflin, B. J. The classification andnomenclature of wheat gluten proteins: A reassessment. Journal of Cereal Science, 1986, 4,97-106.
    [207] Veraverbeke, W. S. and Delcour, J. A. Wheat protein composition and properties of wheatglutenin in relation to breadmaking functionality. Critical Reviews in Food Science andNutrition, 2002,42,179-208.
    [208] Wahlund, K. G., MacRitchie, F., Nylander, T. and Wannerberger, L. Size characterization ofwheat proteins, particularly glutenin, by asymmetrical flow field flow fractionation. Journalof Cereal Science, 1996,23,113-119.
    [209] Feillet, P., Ait-Mouh, O., Kobrehel, K. and Autran, J. C. The role of low molecular weightglutenin proteins in the determination of cooking quality of pasta products: An overview.Cereal Chemistry, 1989,66,26-30.
    [210] Khatkar, B. S., Bell, A. E. and Schofield, J. D. The dynamic rheological properties ofglutens and gluten sub-fractions from wheats of good and poor bread making quality.Journal of Cereal Science, 1995,22,29-44.
    [211] Tsiami, A. A., Bot, A., and Agterof, W. G.M. Rheology of mixtures of glutenin subfractions.Journal of Cereal Science, 1997,26,279-287.
    [212] Tsiami, A. A., Bot, A., Agterof, W. G. M., and Groot, R. D. Rheological properties of glutenin subfractions in relation to their molecular weight. Journal of Cereal Science, 1997, 26,15-27.
    [213] Sarwin, R., Laskawy, G. and Grosch, W. Changes in the levels of glutathione and cysteine during the mixing of doughs with L-threo- and D-erythro-ascorbic acid. Cereal Chemistry, 1993, 70, 553-557.
    [214] Strecker, T. D., Cavalieri, R. P., Zollars, R. L. and Pomeranz, Y. Polymerization and mechanical degradation kinetics of gluten and glutenin at extruder melt-section temperatures and shear rates. Journal of Food Science, 1995,60,532-537.
    [215] Jerez, A., Partal, P., Martinez, I., Gallegos, C. and Guerrero, A. Rheology and processing of gluten based bioplastics. Biochemical Engineering Journal, 2005,26,131-138.
    [216] Mangavel, C, Rossignol, N., Perronnet, A., Barbot, J., Popineau, Y. and Gueguen, J. Properties and microstructure of thermo-pressed wheat gluten films: a comparison with cast films. Biomacromolecules, 2004,5,1596-1601.
    [217] Schofield, J. D., Bottomley, R. C, Timms, M. F. and Booth M. R. The effect of heat on wheat gluten and the involvement of sulphydryl-disulphide interchange reactions. Journal of cereal Science, 1983,241-253.
    [218] Larre, C, Nicolas, Y, Desserme, C, Courcoux, P. and Popineau, Y Preparative separation of high and low molecular weight subunits of glutenin from wheat. Journal of Cereal Science, 1997,25,143-150.
    [219] Song, Y. H. and Zheng, Q. Dynamic rheological properties of wheat flour dough and proteins .Trends in Food Science and Technolog, 2007,18,132-138.
    [220] Fu, J., Mulvaney, S. J. and Cohen, C. Effect of added fat on the rheological properties of wheat flour doughs. Cereal Chemistry, 1997, 74,304-311.
    [221] Payne, P. I. and Corfield, K. G. Subunits composition of wheat glutenin proteins isolated by gel filtration in a dissociating medium. Planata, 1979,14, 83-88.
    [222] Hernandez-Munoz, P., Kanavouras, A., Ng, P.K..W. and Guavara, R. Development and characterization of biodegradablefilms made from wheat gluten protein fractions. Journal of Agriculture and Food Chemistry, 2003, 51, 7647-7654.
    [223] Hernandez-Munoz, P., Villalobos, R. and Chiralt, A. Effect ofcross-linking using aldehydes on properties of glutenin-richfilms. Food Hydrocolloids, 2004, 18,403-411.
    [224] Mangaval, C, Barbot, J., Bervas, E., Linossier, L., Feys, M., Gueguen, J. and Popineau, Y. Influence of prolamin composition on the mechanical properties of cast wheat gluten films. Journal of Cereal Science, 2002, 36,157-166.
    [225] Rayas, L. M, Hernandez, R. J. and Ng, P. K. W. Development and characterization of biodegradable/edible wheat protein films. Journal of Food Science, 1997, 62 (189), 160-162.
    [226] Matveev, Y. I., Grinberg, V.Ya. and Tolstoguzov, V.B. The plasticizing effect of water on proteins, polysaccharides and their mixtures. Glassy state of biopolymers, food and seeds. Food Hydrocolloids, 2000,14,425-437.
    [227] Redl, A., Morel, M. H., Bonicel, J., Vergnes, B. and Guilbert, S. Extrusion of wheat gluten plasticized with glycerol: influence of process conditions on flow behavior, rheological properties, and molecular size distribution. Cereal Chemistry, 1999, 76, 361-370.
    [228] Lodha, P. and Netravali, A. N. Characterization of interfacial and mechanical properties of "green" composites with soy protein isolate and ramie fiber. Journal of Material Science, 2002, 37, 3657-3665.
    [229] Tkaczyk, A. H., Otaigbe, J. U. and Ho, K. L. G. Bioabsorbable soy protein plastic composites: effect of polyphosphate fillers on biodegradability. Journal of Polymer and Environment, 2001,9,19-23.
    [230] Mohanty, A. K., Tummala, P., Liu, W., Misra, M., Mulukutla, P. V. and Drzal, L. T. Injection molded biocomposites from soy protein based bioplastic and short industrial hemp fiber. Journal of Polymer and Environment, 2005,13,279-285.
    [231] Wang, Y, Cao, X. and Zhang, L. Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromolecule Bioscience, 2006, 6, 524-531.
    [232] Liu, W., Mohanty, A. K., Askeland, P. and Drzal, L. T., Misra, M. Influence of fiber surface treatment on properties of Indian grass fiber reinforced soy protein based biocomposites. Polymer, 2004,45, 7589-7596.
    [233] Olabarrieta, I., Gallstedt, M., Ispizua, I., Sarasua, J. R. and Hedenqvist, M. S. Properties of aged montmorillonite-wheat gluten composite films. Journal of Agriculture and Food Chemistry, 2006, 54,1283-1288.
    
    [234] Domenek, S., Feuilloley, P., Gratraud, J., Morel, M. H. and Guilbert, S. Biodegradability of wheat gluten based bioplastics. Chemosphere, 2004,54,551-559.
    [235] Fan, J., Raghavan, S. R., Yu, X. Y, Khan, S. A., Fedkiw, P. S., Hou, J. and Baker, G. L. Composite polymer electrolytes using surface-modified fumed silicas: conductivity and rheology. Solid State Ionics, 1998, 111, 117-123.
    [236] Kovacs, M. I. P, Fu, B. X, Woods, S. M and Khan, K. Thermal stability of wheat gluten protein: its effect on the dough properties and noodle texture. Journal of Cereal Science, 2004,39,9-19.
    [237] Shewry, P. R., Tatham, A. S., Forde, J., Kreis, M. and Miflin, B. J. The classification and nomenclature of wheat gluten proteins: A reassessment. Journal of Cereal Science, 1986, 4, 97-106.
    
    [238] Wieser, H. Chemistry of gluten proteins. Food Microbiology, 2007, 24,115-119.
    [239] MacRichie, F. Evaluation of contributions from wheat protein fractions to dough mixing and breadmaking. Journal of Cereal Science, 1987,6,259-268.
    [240] Hernandez-Munoz, P., Kanavouras, A., Villalobos, R, and Chiralt, A. Characterization of biodegradable films obtained from cysteine-mediated polymerized gliadins. Journal of Agriculture and Food Chemistry, 2004,52, 7897-7904.
    [241] Ikeda, S., Foegeding, E. A. Dynamic viscoelastic properties of the thermally induced whey protein isolate gels with added lecithin. Food Hydrocolloids, 1999,13,245-254.
    [242] Hernandez-Munoz, P., Kanavouras, A., Villalobos, R. and Chiralt, A. Characterization of biodegradable films obtained from cysteine-mediated polymerized gliadins. Journal of Agricultural and Food Chemistry, 2004, 52, 7897-7904.
    [243] Sanchez, A. C, Popineau, Y, Mangavel, C, Larre, C. and Gueguen, J. ffect of different plasticizers on the mechanical and surface properties of wheat gliadin films. Journal of Agricultural and Food Chemistry, 1998,46,4539-4544.
    [244] Hernandez-Munoz, P., Lopez-Rubio, A., Lagaron, J. M. and Gavara, R. Formaldhyde. cross-linking of gliadin films: Effects on mechanical and water barrier properties. Biomacromolecules, 2004, 5,415-421.
    [245] Gennadios, A., Brandenburg, A. H., Weller, C. L. and Testin, R. F. J. Effect of pH on Properties of wheat gluten and soy protein isolate films. Journal of agriculture and food chemistry, 1993,41, 1835-1839.
    [246] Kayserilioglu, B. S., Stevels, W. M., Mulder, W. J. and Akkas, N. Mechanical and biochemical characterisation of wheat gluten films as a function of pH and co-solvent. Starch, 2001,53,381-386.
    [247] Roy, S., Gennadios, A., Weller, C. L., Zeece, M. G. and Testin, R. F. J. Physical and molecular properties of wheat gluten films cast from heated film-forming solutions. Journal of Food Science, 1999, 64,57-60.
    [248] McClements, D. J. and Bryant, C. M. Influence of NaCl and CaCl2 on cold-set gelation of heat-denatured whey protein. Journal of food Science, 2000, 65, 801-804.
    [249] Hongsprabhas, P. and Barbut, S. Protein and salt effects on Ca2+-induced cold gelation of whey protein isolate. Journal of food science, 1997, 62, 382-385.
    [250] Sun, S., Song, Y, Chen, Y., Zhang, Q. and Zheng, Q. Study on rheological properties of wheat gliadin solution. Shipin Kexue, 2007,28, 34-37.
    [251] Hongsprabhas, P. and Barbut, S. Protein and salt effects on Ca2+-induced cold gelation of whey protein isolate. Journal of food science, 1997, 62, 382-385.
    [252] Lin, M. Y, Lindsay, H. M., Weitz, D. A., Ball, R. C, Klein, R. and Meakin, P. Universal reaction-limited colloid aggregation. Physical Review A, 1990,41, 2005-2020.
    [253] Ikeda, S., Foegeding, E. A. and Hagiwara, T. Rheological study on the fractal nature of the protein gel structure. Langmuir, 1999,15,8584-8589.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700