ZnS:Mn~(2+)量子点应用于环境中离子的检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子识别是超分子化学研究的核心内容之一,它包括对中性分子、阳离子和阴离子的识别。由于无机离子在生物催化、生命科学、电子与信号的传递、环境保护等方面起着重要作用,因此建立高灵敏和高选择性、操作简便且成本低廉的识别离子新方法十分必要。量子点作为一种新型的荧光探针颇受关注,将其表面进行功能化,可有效改善识别客体离子的灵敏度和选择性,建立不同离子的荧光传感器。相关领域的研究已经引起了科研工作者的广泛关注。本论文分为五部分,介绍量子点作为荧光探针用于识别分子的发展状况、各类分子光化学传感体系及相关的作用机理,详细阐述了本论文所提出的各类离子传感新体系。
     第一章简要介绍量子点的概念及组成体系、光学性质及发光优势、制备方法的发展进程、特殊功能化修饰及在化学传感器方面的应用,对近几年来国内外相关研究成果进行了简要评述。
     第二章以巯基乙酸为稳定剂,在常温常压下合成了Mn掺杂ZnS的半导体纳米晶(ZnS:Mn2+),利用红外光谱、X-射线衍射谱(XRD)、荧光光谱、紫外可见吸收光谱和粒度分布曲线等手段对纳米晶进行了结构表征。结果表明:该纳米晶呈现闪锌矿结构,粒径小而均匀,表面修饰有巯基乙酸分子后具有良好的水溶性。在室温下,硫离子(S2-)的存在使纳米溶胶体系的荧光产生显著的猝灭现象,而其它阴离子如:NO3-、CH3COO-、CO32-、Br-、F-、NO2-、SO42-、S2O32-、I-、SO32-等在一定浓度范围内不干扰S2-的测定,据此建立了水相中识别S2-的新体系。实验结果显示:纳米溶胶在590 nm处发光强度的变化与S2-浓度(在2.5-37.5μmol·L-1范围内)呈良好的线性关系,方法检测下限为1.5×10-7 mol·L-用于废水中S2-的测定,其回收率为103%。
     第三章采用与第二章相似的方法,以巯基乙酸为表面修饰剂制备了未经陈化的Mn掺杂ZnS量子点(ZnS:Mn2+)应用于金属镉离子(Cd2+)的识别。在pH 7.7的Tris-HCl缓冲介质中,Cd2+的加入能有效地增强体系发光,同时荧光强度的增量与Cd2+浓度呈良好的线性关系,其线性范围为5.0×10-7-8.9×10-5mol·L-1,方法检测下限为3.08×10-8 mol·L-1。该方法用于湖水中Cd2+的检测,回收率为93.7-97.4%。同时利用荧光光谱、紫外可见吸收光谱及XRD谱研究了ZnS:Mn2+量子点结构特点和发光性能,并对可能机理进行了初步探讨。
     第四章利用硼氢化钠将牛血清白蛋白(BSA)的二硫键还原,将其修饰于ZnS:Mn2+量子点表面,以提高量子点的发光效率和稳定性。在优化实验条件下,Cu2+对ZnS:Mn2+-BSA体系的荧光具有强烈猝灭作用,据此建立了测定Cu2+的新方法,其线性范围为2.0×10-6-7.8×10-5 mol·L-1线性校正方程为F0/F=1.01+0.06 CCu2+,方法检测下限为2.87×10-7 mol·L-1,应用于自来水中Cu2+的测定,回收率为98.8%。
     第五章通过二硫化碳(CS2)将亚氨基二乙酸零距离修饰于ZnS:Mn2+/ZnS核壳结构半导体纳米晶表面上,该修饰不仅解决了纳米晶水溶性问题,而且使纳米晶本身在590 nm处橙黄色发光增强且稳定性提高。以紫外可见吸收光谱、荧光光谱、电感耦合等离子体-发射光谱(ICP-AES)、粒度分布曲线及核磁共振谱为手段对合成的纳米晶进行了结构表征。在优化的实验条件下,发现Ag+能够非常灵敏地使体系荧光发生明显猝灭,而其它离子无显著干扰,表现出良好的选择性。紫外可见吸收光谱结果表明:Ag+与纳米晶表面的配体形成了稳定的配合物,在光诱导下发生了电子转移,导致了荧光信号猝灭。
Molecular recognition is an important area of supramolecular chemistry, which includes sensing of neutral molecular, cations and anions. The recognition and sensing of anions and cations have received considerable attention for their important roles in biological, industrial and environmental process. As a new type of fluorescent sensors, quantum dot (QDs) offer a number of attractive features, including high photobleaching threshold, good chemical stability, narrow and symmetric luminescence bands, which are expected to remedy the deficiencies of the organic dyes. In the thesis, several highly selective and sensitive sensors for anions or cations were constructed. The sensors (modified QDs) were characterized, and the assays for sensing sulfide anion, cadium (Ⅱ) ion, cupper (Ⅱ) ion and silver (Ⅰ) ion were introduced.
     In Chapter 1, the concept, the nature and the preparation methods development of quantum dots were briefly reviewed. Then the special functional and chemical sensors are emphatically introduced.
     In Chapter 2, water-soluble Mn2+-doped ZnS quantum dots (QDs) were prepared using mercaptoacetic acid as the stabilizer. The optical properties and structure features were characterized by X-Ray diffraction, absorption spectrum, IR spectrum and fluorescence spectrum. In pH 7.8 Tris-HCl buffer, the QDs emitted strong fluorescence peaked at 590 nm with excitation wavelength at 300 nm. The presence of sulfide anion resulted in the quenching of fluorescence and the intensity decrease was proportional to the S2- concentration. The linear range was from 2.5×10-6 to 3.8×10-5 mol L-1. Most anions such as F-, Cl-, Br-, I-, CH3CO2-, ClO4-, CO32-, NO2-, NO3-, S2O32-, SO32- and SO42- did not interfere with the determination. A highly selective assay was introduced and applied to determine S2- in discharged water with recovery of ca.103%.
     In Chapter 3, ZnS:Mn2+quantum dots with good dispersity and fluorescent characteristics were synthesized in aqueous solution with thioglycolic acid as a stabilizing agent, which were proposed for the determination of cadmium ions (Ⅱ). In the Tris-HCl buffer with pH 7.7, it was found that the fluorescent intensity of thiol-capped ZnS:Mn2+ was enhanced by the presence of Cd2+. The fluorescence intensity of ZnS:Mn2+ increased linearly with the concentration of Cd2+ in the rang of 5.0×10-7-8.9×10-5 mol·L-1. The detection limit was 3.08×10-8 mol·L-1. This method was used to the determination of Cd2+ in discharged water, and the recovery was 93.7-97.4%. The properties of above ZnS:Mn2+ quantum dots were studied by the fluorescence spectra, UV-vis absorption spectra and X-ray diffraction(XRD). The possible mechanism was discussed as well.
     In Chapter 4, ZnS:Mn2+ quantum dots with peculiar spectral properties were synthesized in an aqueous solution using thioglycolic acid as a stabilizing agent. To improve their fluorescence properities in water solution, bovine serum albumin (BSA) was absorbed on their surface. Under the optimal conditions, the fluorescence intensity of the ZnS:Mn2+ decreased linearly with the concentration of copper(II) ions in the rang of 2×10-6-7.8×10-5 mol·L-1. The liner calibration equation was following: Fo/F= 1.01+0.06 CCu2+ and the detection limit was 2.87×10-7 mol×L-1. The proposed method was successfully applied to determine copper (Ⅱ) ions in tap water samples with recovery of ca.98.8%.
     In Chapter 5, the probe consisted of fluorescent ZnS:Mn2+/ZnS core/shell quantum dots (QDs) were properly conjugated to iminodiacetic acid through CS2-assisted zero-length covalent coupling. The functionalized nanoparticles not only improve water-soluble, but also exhibit a strong fluorescent emission at ca.590 nm. Their optical and structural properties have been characterized by UV-vis spectroscopy, fluorescent spectroscopy and 1H NMR spectroscopy. In pH 7.3 phosphate buffer, the calibration plot between intensity ratio (Fo/F) and the concentration of Ag+ was linear in the range of 1.5-10.5×10-6 mol·L-1 with correlation coefficient of 0.992. The limit of detection was 2.65×10-7 mol·L-1. The effect of the other ions (including alkali metal ions, alkali earth metal ions, Pb2+, Cd2+, Zn2+, Ba2+ Al3+, Ca2+, Mg2+, Na+, K+ and anions such as NO3-, SO42-, CO32- was negligible even at a very high concentration. The possible mechanism was proposed.
引文
[1]侯博,刘拥军,袁波,等.半导体纳米晶在生物标记领域的应用[J].化学通报,2008,20(4):272-280.
    [2]邹明强,杨蕊,李锦丰,等.量子点的光学特征及其在生命科学中的应用[J].分析测试学报.2005,24(6):133-137.
    [3]陈光华.邓金祥.纳米薄膜技术与应用[M].北京:化学工业出版社.2004.
    [4]Wang B Z, Zhao F H, Peng Y H, et al. Self-organized InAs quantum dots formation by As/P exchange reaction on InP substrate [J]. Appl. Phys. Lett.,1998,72(19):2433-2435.
    [5]Nyman M, Jenkins K, Hampden-Smith M J, et al. Feed-rate-limited aerosol-assisted chemical vapor deposition of CdxZn1-x S and ZnS:Mn with Composition Control [J]. Chem. Mater.,1998,10(3):914-921.
    [6]Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE(E=sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. J. Am. Chem. Soc.,1993,115(19):8706-8715.
    [7]Manna L, Scher E C, Alivisatos A P. Synthesis of soluble and processable rod-, arrow-teardrop-, and tetrapod-shaped CdSe nanocrystals [J]. J. Am. Chem. Soc.,2000,122(51): 12700-12706.
    [8]Manna L, Scher E C, Li L, et al. Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods. J. Am. Chem. Soc.,2002.124(24):7136-7145.
    [9]Nakamura H, Yamaguchi Y, Miyazaki M, et al. Preparation of CdSe nanocrystals in a micro-flow-reactor [J]. Chem. Commun.,2002, (23):2844-2845.
    [10]Peng X G. Green chemical approaches toward high-quality semiconductor nanocrystals [J]. Chem. Eur. J.,2002,8(2):334-339.
    [11]Pradhan N, Peng X G. Efficient and color-tunable Mn-Doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry [J]. J. Am. Chem. Soc.,2007, 129(11):3339-3347.
    [12]Ehlert O, Bucking W. Riegler J, et al. Organometallic synthesis and electrophoretic charac-terization of high-quality ZnS:Mn/ZnS core/shell nanoparticles for bioanalytical applications [J]. Microchim. Acta,2008,160(3):351-356.
    [13]Sohling U. Jung G, Saenger D U, et al. Synthesis and optical properties of Mn2+-Doped ZnS nanoparticles in solutions and coatings [J]. J. Sol-Gel Sci. Technol.,1998,13(1-3):685-689.
    [14]Jiang W, Mardyani S, Fischer H, et al. Design and characterization of lysine cross-linked mercapto-acid biocompatible quantum dots [J]. Chem. Mater.,2006,18(4):872-878.
    [15]Clarke S J, Hollmann C A, Aldaye F A. Effect of ligand density on the spectral, physical, and biological characteristics of CdSe/ZnS quantum dots [J]. Bioconjugate Chem.,2008,19(2): 562-568.
    [16]Pradhan N, Battaglia D M, Liu Y C, et al. Efficient, Stable. Small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels [J]. Nano. Lett.,2007,7(2): 312-317.
    [17]Nag A, Chakraborty S, Sarma D D. To dope Mn2+ in a semiconducting nanocrystal [J]. J. Am. Chem. Soc.,2008,130(32):10605-10611.
    [18]Dubois F, Mahler B, Dubertret B, et al. A versatile strategy for quantum dot ligand exchange [J]. J. Am. Chem. Soc.,2007,129(3):482-483.
    [19]Gan L M, Liu B, Chew C H, et al. Enhanced photoluminescence and characterization of Mn-doped ZnS nanocrystallites synthesized in microemulsion [J]. Langmuir,1997,13(24): 6427-6431.
    [20]Cao L X, Zhang J H, Ren S L, et al. Luminescence enhancement of core-shell ZnS:Mn/ZnS nanoparticles [J]. Appl. Phys. Lett.,2002,80(23):4300-4302.
    [21]Jiang D X, Cao L X, Su G, et al. Shell thickness dependence of luminescence intensity in core/shell ZnS:Mn/ZnS nanoparticles [J]. Mater. Chem. Phys.,2009,115(2-3):795-798.
    [22]Xu S J, Chua S J. Luminescence characteristics of impurities-activated ZnS nanocrystals prepared in microemulsion with hydrothermal treatment [J]. Appl. Phys. Lett.,1998,73(4): 478-480.
    [23]张韵慧,李磊,邵晓芬.等.微乳液法制备ZnS:Mn纳米晶及性能的表征[J].功能材料,2004,32(4):405-409.
    [24]Yang H S, Holloway P H. Enhanced photoluminescence from CdS:Mn/ZnS core/shell quantum dots [J]. Appl. Phys. Lett.,2003,82(12):1965-1967.
    [25]Santra S, Yang H, Holloway P H, et al. Synthesis of water-dispersible fluorescent, radio-opaque, and paramagnetic CdS:Mn/ZnS quantum dots:a multifunctional probe for bioimaging [J]. J. Am. Chem. Soc.,2005,127 (6):1656-1657.
    [26]Gaponik N, Talapin D V, Rogach A L, et al. Thiol-capping of CdTe nanocrystals:an alternative to organometallic synthetic routes [J]. J. Phys. Chem. B,2002,106(29): 7177-7185.
    [27]Zhang H, Wang L, Xiong H, et al. Hydrothermal synthesis for high-quality CdTe nanocrystals [J]. Adv. Mater.,2003,15(20):1712-1715.
    [28]Li H, Shih W Y, Shih W H. Synthesis and characterization of aqueous carboxyl-capped CdS quantum dots for bioapplications [J]. Ind. Eng. Chem. Res.,2007,46(7):2013-2019.
    [29]邓大伟,于俊生.柠檬酸稳定的水溶性CdSe和CdSe/CdS量子点的荧光特性[J].无机化学学报,2008,24(5):701-707.
    [30]文立群,吕鉴泉.吕汉清.等.氨基酸对CdTe量子点荧光性质的影响[J].物理化学学报.2008,24(4):725-728.
    [31]韩旭.李岚,张晓松.等.硫化锌掺锰量子点的制备与光谱性能分析[J].稀有金属,2007.31(S2):40-44.
    [32]曹立新,吕艳玲,孙大可.制备条件对ZnS:Mn纳米晶晶体结构和发光性质的影响[J].功能材料,2008.39(2):194-196.
    [33]张琼瑶,田家华.Mn2+、Pb2+共掺杂的ZnS纳米晶的制备及光致发光性的研究[J].郧阳师范高等专科学校学报,2007.27(3):51-54.
    [34]黄风华.硫脲表面修饰的ZnS:Cd纳米晶的合成及表征[J].分子科学学报.2006,22(1):63-66.
    [35]Wang X F. Xu J J, Chen H Y. A new electrochemiluminescence emission of Mn2+-dopped ZnS nanocrystals in aqueous solution [J]. J. Phys. Chem. C,2008,112(45):17581-17585.
    [36]Yi G S, Sun B Q, Yang F Z, et al. Bionic synthesis of ZnS:Mn nanocrystals and their optical properties [J]. J. Mater. Chem.,2001,11(12):2928-2929.
    [37]Liu X F, Ni X Y, Wang J, et al. A novel route to photoluminescent, water-soluble Mn-doped ZnS quantum dots via photopolymerization initiated by the quantum dots [J]. Nanotechnology,2008,19:485602.
    [38]Hines M A, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals [J]. J. Phys. Chem.,1996,100(2):468-471.
    [39]Dabbousi B O. RodriguezViejo J, Mikulec F V, et al. (CdSe)ZnS Core-Shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites [J]. J. Phys. Chem. B,1997,101(46):9463-9475.
    [40]Talapin D V, Rogach A L, Kornowski A, et al. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture [J]. Nano. Lett.,2001,1(4):207-211.
    [41]Kudera S, Zanella M, Giannini C, et al. Sequential growth of magic-size CdSe nanocrystals [J]. Adv. Mater.,2007,19(4):548-551.
    [42]Mews A, Eychmuller A, Giersig M, et al. Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide [J]. J. Phys. Chem.,1994,98(3):934-941.
    [43]Pan D C, Wang Q, Jiang S C, et al. Synthesis of extremely small cdse and highly luminescent CdSe/CdS core-shell nanocrystals via a novel two-phase thermal approach [J]. Adv. Mater.,2005,17(2):176-178.
    [44]Reiss P. Bleuse J, Pron A. Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion [J]. Nano. Lett.,2002,2(7):781-784.
    [45]Reiss P, Carayon S, Bleuse J. Large fluorescence quantum yield and low size dispersion from CdSe/ZnSe core/shell nanocrystals [J]. Physica. E,2003,17(1-4):95-96.
    [46]Spanhel L, Haase M, Weller H, et al. Photochemistry of colloidal semiconductors.20. Surface modification and stability of strong luminescing CdS particles [J]. J. Am. Chem. Soc.,1987,109(19):5649-5655.
    [47]Thakar R, Chen Y C. Snee P T. Efficient emission from core/(Doped) shell nanoparticles: applications for chemical sensing [J]. Nano. Lett.,2007,7(11):3429-3432.
    [48]Zhang W J, Chen G J, Wang J, et al. Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots [J]. Inorg. Chem.,2009,48(20):9723-9731.
    [49]Chan W, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science,1998,281(5385):2016-2018.
    [50]Chen J L, Zhu C Q. Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination [J]. Anal.Chim.Acta,2005,546(2):147-153.
    [51]Koneswaran M, Narayanaswamy R. L-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion [J]. Sens. Actuators, B,2009,139(1):104-109.
    [52]Zhang Y, Zhang H, Guo X, et al. L-Cysteine-coated CdSe/CdS core-shell quantum dots as selective fluorescence probe for copper (Ⅱ) determination [J]. Microchem. J.,2008,89: 142-147.
    [53]Fernandez-Arguelles M T, Wei J J, Costa-Fernandez J M, et al. A surface-modified CdSe quantum dots for the sensitive and selective determination of Cu(II) in aqueous solutions by luminescent measurements [J]. Anal.Chim. Acta.,2005,549(1-2):20-25.
    [54]Gonzalez-Bejar M, Frenette M, Jorge L.7-Mercapto-4-methylcoumarin as a reporter of thiol binding to the CdSe quantum dot surface [J]. Chem. Commun.,2009, (22):3202-3204.
    [55]Ruedas-Rama M J, Hall E A. Azamacrocycle activated quantum dot for zinc ion detection [J]. Anal. Chem.,2008,80(21):8260-8268.
    [56]Wang Q, Kuo Y C, Wang Y W, et al. Luminescent properties of water-soluble denatured bovine serum albumin-coated CdTe quantum dots [J]. J. Phys. Chem. B.,2006,110(34): 16860-16866.
    [57]Susumu K, Uyeda H T, Medint I L, et al. Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands [J]. J. Am. Chem. Soc., 2007,129(45):13987-13996.
    [58]Blum A S, Moore M H, Ratna B R. Quantum dot fluorescence as a function of alkyl chain length in aqueous environments [J]. Langmuir,2008,24(17):9194-9197.
    [59]Choi H S, Liu W H, Misra P. Renal clearance of quantum dots [J].2007,25(10):1165-1170.
    [60]Palaniappan K, Xue C, Arumugam G, et al. Water-soluble, cyclodextrin-modified CdSe/CdS core/shell structured quantum dots [J]. Chem. Mater.,2006,18(5):1275-1280.
    [61]Kikkeri R, Lepenies B, Adibekian A, et al. In vitro imaging and in vivo liver targeting with carbohydrate capped quantum dots [J]. J. Am. Chem. Soc.,2009,131 (6):2110-2112.
    [62]Banerjee S, Kara S, Santra S. A simple strategy for quantum dot assisted selective detection of cadmium ions [J]. Chem. Commun.,2008, (26):3037-3039.
    [63]Yang Y H, Jing L H, Yu X L, et al. Coating aqueous quantum dots with silica via reverse microemulsion method:toward size-controllable and robust fluorescent nanoparticles [J]. Chem. Mater.,2007,19(17):4123-4128.
    [64]Wolcott A, Gerion D, Visconte M. et al. Silica-Coated CdTe quantum dots functionalized with thiols for bioconjugation to igg proteins [J]. J. Phys. Chem. B,2006,110(11): 5779-5789.
    [65]Cavaliere-Jaricot S. Darbandi M, Nann T, et al. Silica coated quantum dots:a new tool for electrochemical and optical glucose detection [J]. Microchim. Acta,2008,160(3):375-383.
    [66]Wang H F, He Y, Ji T R, et al. Surface molecular imprinting on Mn-Doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in Water [J]. Anal. Chem.,2009,81(4):1615-1621.
    [67]华瑞年.田跃.ZnS:Tb/SiO2核壳结构纳米晶的光学性质[J].大连民族学院学报,2008.10(1):6-9.
    [68]李德娜.张兵波,马贵平.等.水溶性量子点纳米微球的制备、表征及其在生物检测中的应用[J].高等学校化学学报.2008,29(1):4649.
    [69]Celebi S, Erdamar A K, Sennaroglu A, et al. Synthesis and characterization of poly(acrylic acid) stabilized cadmium sulfide quantum dots [J]. J. Phys. Chem. B,2007,111(44): 12668-12675.
    [70]Duan H W, Nie S M. Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings [J]. J. Am. Chem. Soc.,2007,129(11):3333-3338.
    [71]Yang J, Dave R S. Gao X H. Quantum dot nanobarcodes:epitaxial assembly of nanoparticle-polymer complexes in homogeneous solution [J]. J. Am. Chem. Soc.,2008, 130(15):5286-5292.
    [72]Ye J, Hou Y, Zhang G Z. Temperature-induced aggregation of poly (n-isopropylacry-lamide)-stabilized CdS quantum dots in water [J]. Langmuir,2008,24(6):2727-2731.
    [73]Campos B B, Algarra M. Mercury (Ⅱ) sensing based on the quenching of fluorescence of CdS-dendrimer nanocomposites [J]. Analyst,2009,134(12):2447-2452.
    [74]Chen Y, Rosenzweig Z. Luminescent CdS quantum dots as selective ion probes [J]. Anal. Chem.,2002,74(19):5132-5138.
    [75]Xia Y S, Zhu C Q. Aqueous synthesis of type-Ⅱ core/shell CdTe/CdSe quantum dots for near-infrared fluorescent sensing of copper(Ⅱ) [J]. Analyst,2008,133(7):928-932.
    [76]Ali E M, Zheng Y G, Yu H H, et al. Ultrasensitive Pb2+ detection by glutathione-capped quantum dots [J]. Anal. Chem.,2007,79(24):9452-9458.
    [77]Chen J L, Gao Y C, Guo C, et al. Facile synthesis of water-soluble and size-homogeneous cadmium selenide nanoparticles and their application as a long-wavelength fluorescent probe for detection of Hg(Ⅱ) in aqueous solution [J]. Spectrochim. Acta, Part A,2008,69(2): 572-579.
    [78]Flink S, Vanveggel F C J M, Reinhoudt D N. Recognition of cations by self-assembled monolayers of crown ethers [J]. J. Phys. Chem. B,1999,103(31):6515-6520.
    [79]Toupance T, Benoit H. Sarazin D, et al. Ionoelectronics pillarlike aggregates formed via highly nonlinear complexation processes [J]. J. Am. Chem. Soc.,1997,119(39):9191-9197.
    [80]Li H H, Zhang Y, Wang X Q, et al. Calixarene capped quantum dots as luminescent probes for Hg2+ ions [J]. Mater. Lett.,2007,61(7):1474-1477.
    [81]Shang Z B, Wang Y, Jin W J. Triethanolamine-capped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury (Ⅱ) and iodide in aqueous solution [J].Talanta, 2009,78(2):364-369.
    [82]Jin W J, Fernandez-Arguelles M T, Costa-Fernandez J M. Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions [J]. Chem.Commun.,2005. (7):883-885.
    [83]Jin W J, Costa-Fernandez J M, Pereiro R. Surface-modified CdSe quantum dots as luminescent probes for cyanide determination [J]. Anal. Chim. Acta,2004,522(1):1-8.
    [84]Liu X, Guo L, Cheng L X, et al. Determination of nitrite based on its quenching effect on anodic electrochemiluminescence of CdSe quantum dots [J]. Talanta,2009,78(3):691-694.
    [85]Wu C L. Zhao Y B. CdS quantum dots as fluorescence probes for the sensitive and selective detection of highly reactive HSe-ions in aqueous solution [J]. Anal. Bioanal. Chem.,2007, 388(3):717-722.
    [86]Li H H, Han C P, Zhang L. Synthesis of cadmium selenide quantum dots modified with thiourea type ligands as fluorescent probes for iodide ions [J]. J. Mater. Chem.,2008,18(38): 4543-4548.
    [87]Ruedas-Rama M J, Hall E A. A quantum dot-lucigenin probe for Cl [J]. Analyst,2008. 133(11):1556-1566.
    [88]Qu F, Li H. Selective molecular recognition of polycyclic aromatic hydrocarbons using CdTe quantum dots with cyclodextrin as supramolecular nano-sensitizers in water [J]. Sensors Actuat B-Chem.,2009,135(2):499-505.
    [89]田建袅.韦盛志.赵彦春,等.CdSe/CdS量子点荧光猝灭法测定芹黄素的研究[J].分析试验室.2008,27(10):19-22.
    [90]Tu R Y. Liu B H, Wang Z Y, et al. Amine-capped ZnS:Mn2+ nanocrystals for fluorescence detection of trace TNT explosive [J]. Anal. Chem.,2008,80(9):3458-3465.
    [91]He Y, Wang H F, Yan X P. Exploring Mn-doped ZnS quantum dots for the room-temperature phosphorescence detection of enoxacin in biological fluids [J]. Anal. Chem., 2008,80(10):3832-3837.
    [92]Li H H. Han C P. Sonochemical Synthesis of Cyclodextrin-Coated Quantum Dots for Optical Detection of Pollutant Phenols in Water [J]. Chem. Mater.,2008,20(19):6053-6059.
    [93]Liu M M, Xu L, Cheng W Q, Surface-modified CdS quantum dots as luminescent probes for sulfadiazine determination [J]. Spectrochim. Acta, Part A,2008,70(5):1198-1202.
    [94]Zhang C Y, Johnson W L. Single Quantum-Dot-Based Aptameric Nanosensor for Cocaine [J]. Anal. Chem.,2009,81(8):3051-3055.
    [95]Cordes D B, Gamsey S, Singaram B. Fluorescent quantum dots with boronic acid substituted viologens to sense glucose in aqueous solution [J]. Angew. Chem. Int. Ed.,2006,45(23): 3829-3832.
    [96]Wang Z P, Li J, Liu B. Chemiluminescence of CdTe nanocrystals induced by direct chemical oxidation and its size-dependent and surfactant-sensitized effect [J]. J. Phys. Chem. B.2005. 109(49):23304-23311.
    [97]Yuan J P, Guo W W. Yin J Y. Glutathione-capped CdTe quantum dots for the sensitive detection of glucose [J]. Talanta,2009,77(5):1858-1863.
    [98]Duong H D. Rhee J. Use of CdSe/ZnS core-shell quantum dots as energy transfer donors in sensing glucose [J]. Talanta,2007,73(5):899-905.
    [99]Huang C P, Liu S W, Chen T M, et al. A new approach for quantitative determination of glucose by using CdSe/ZnS quantum dots [J]. Sens. Actuat B-Chem.,2008,130(1):338-342.
    [100]Wu W T, Zhou T, Shen J, et al. Optical detection of glucose by CdS quantum dots immobilized in smart microgels [J]. Chem. Commun.,2009, (29):4390-4392.
    [101]Huang C. Liu S W, Chen T M, et al. A new approach for quantitative determination of glucose by using CdSe/ZnS quantum dots [J]. Sens. Actuators, B,2008,130(1):338-342.
    [102]Dyadyusha L, Yin H, Jaiswal S, et al. Quenching of CdSe quantum dot emission, a new approach for biosensing [J]. Chem. Commun.,2005, (25):3201-3203.
    [103]Zhao D, Chan W H. He Z K, et al. Quantum dot-ruthenium complex dyads:recognition of double-strand DNA through dual-color fluorescence detection [J]. Anal. Chem.,2009,81(9): 3537-3543.
    [104]Wang L Y, Wang L, Gao F, et al. Application of functionalized CdS nanoparticles as fluorescence probe in the determination of nucleic acids [J]. Analyst,2002,127(7):977-980.
    [105]Zhang C Y, Yeh H C, Kuroki M T, et al. Single-quantum-dot-based DNA nanosensor [J]. nature mater.,2005,4(11):826-831.
    [106]Wang J H, Wang H Q, Li Y Q, et al. Modification of CdTe quantum dots as temperature-insensitive bioprobes [J].Talanta,2008,74(4):724-729.
    [107]闫炜,张爱梅,梅艳丽,等.水溶性CdTe量子点的合成及其用于荧光猝灭法测定肌红蛋白[J].分析实验室,2008,27(12):1-5.
    [108]Wang L Y, Zhou Y Y, Wang L, et al. Synchronous fluorescence determination of protein with functionalized CdS nanoparticles as a flurenscence probe [J]. Anal. Chim. Acta.,2002, 466(1):87-92.
    [109]李平,刘梅川,张成林,等.聚乙烯吡咯烷酮/硫化镉量子点修饰电极的制备及其对血红蛋白的测定研究[J].化学学报,2005,63(12):1075-1080.
    [110]Mulrooney R C, Singh N, Kaur N, et al. An "off-on" sensor for fluoride using luminescent CdSe/ZnS quantum dots [J]. Chem. Commun.,2009, (6):686-688.
    [111]Banerjee S, Kar S, Perez J. M, et al. Quantum dot-based off/on probe for detection of glutathione [J]. J. Phys. Chem. C,2009,113(22):9659-9663.
    [112]Mandal A, Nakayama J, Tamai N, et al.Optical and dynamic-roperties of water-soluble highly luminescent CdTe quantum dots [J]. J. Phys. Chem. B,2007,111(44):12765-12771.
    [113]Touceda-Varela A, Stevenson E, Galve-Gasion J, et al. Selective turn-on fluorescence detection of cyanide in water using hydrophobic CdSe quantum dots [J]. Chem. Commun., 2008.(17):1998-2000.
    [114]Shang L, Zhang L H. Dong S J. Turn-on fluorescent cyanide sensor based on copper ion-modified CdTe quantum dots [J]. Analyst.2009.134 (1):107-113.
    [115]Narayanan S S, Sinha S S, Verma P K. et al. Ultrafast energy transfer from 3-mercaptopropionic acid-capped CdSe/ZnS QDs to dye-labelled DNA [J]. Chem. Phys. Lett.,2008,463(1-3):160-165.
    [116]Hering V R, Gibson G, Schumacher R, et al. Energy transfer between CdSe/ZnS core/shell quantum dots and fluorescent proteins [J]. Bioconjugate Chem,2007,18 (6):1705-1708.
    [117]Tsay J M, Trzoss M, Shi L X, et al. Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugate [J]. J. Am. Chem. Soc.,2007,129(21):6865-6871.
    [118]Sarkar S, Bose R, Jana S, et al. Doped semiconductor nanocrystals and organic dyes:an efficient and greener FRET system [J]. J. Phys. Chem. Lett.,2010,1(3):636-640.
    [119]Lu H C, Schops O, Woggon U, et al. Self-assembled donor comprising quantum Dots and fluorescent proteins for long-range fluorescence resonance energy transfer [J]. J. Am. Chem. Soc.,2008,130(14):4815-4827.
    [120]Shi L F, Paoli V De, Rosenzweig N, et al. Synthesis and application of quantum dots FRET-based protease sensors [J]. J. Am. Chem. Soc.,2006,128(32):10378-10379.
    [121]张纪梅,代昭,郭宁,等,半导体纳米粒子与金纳米粒子间荧光共振能量转移研究[J].高等学校化学学报,2007,28(2):254-257.
    [122]Wang X, Guo X Q. Ultrasensitive Pb2+ detection based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles [J]. Analyst,2009,134(7): 1348-1354.
    [123]Li H B, Wang X Q. Single quantum dot-micelles coated with gemini surfactant for selective recognition of a cation and an anion in aqueous solutions [J]. Sens. Actuators B,2008. 134(1):238-244.
    [124]He J J,Quiocho F A. A nonconservative serine to cysteine mutation in the sulfate-binding protein, a transport receptor [J]. Science,1991,251(5000):1479-1481
    [125]Holloway J M, Dahlgren R A, Hansen B, et al. Contribution of bedrock nitrogen to high nitrate concentrations in stream water [J]. Nature,1998,395(6704):785-788
    [126]吴芳英.厦门大学博士论文[J].厦门大学,2003:1-2
    [127]Lakowicz J R, Gryczynski I, Gryczynski Z, et al. Luminescence spectral properties of CdS nanoparticles [J]. J. Phys. Chem. B,1999,103(36):7613-7620
    [128]Shirsat M D, Bangar M A, Deshusses M A, et al. Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor [J]. Appl. Phys. Lett.,2009. 94(8):083502-3
    [129]Zhuang J Q, Zhang X D, Wang G, et al. Synthesis of water-soluble ZnS:Mn2+ nanocrystals by using mercaptopropionic acid as stabilizer [J]. J. Mater. Chem.,2003,13(7):1853-1857.
    [130]Chen J L, Gao Y C. Xu Z B. et al. A novel fluorescent array for mercury (Ⅱ) ion in aqueous solution with functionalized cadmium selenide nanoclusters [J]. Anal. Chim. Acta.2006. 577(1):77-84
    [131]Brus L E. Elctron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state [J]. J. Chem. Phys.,1984,80(9): 4403-4409.
    [132]Althues H, Palkovits R. Rumplecker A, et al. Synthesis and characterization of transparent luminescent ZnS:Mn/PMMA nanocomposites [J]. Chem. Mater.,2006,18(4):1068-1072.
    [133]Sooklal K,Cullum B S, Angel S M, et al. Photo- physical properties of ZnS nanoclusters with spatially localized Mn2+[J]. J. Phys. Chem.,1996,100(11):4551-4555.
    [134]Lin T J, Chung M F. Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance [J]. Biosens. Bioelectron.,2009,24(5):1213-1218.
    [135]Gupta V K, Khayat M A, Singh A K, et al. Nano level detection of Cd(Ⅱ) using poly(vinyl chloride) based membranes of schiff bases [J]. Anal. Chim. Acta,2009,634(1):36-43.
    [136]Amorim F A C, Bezerra M A. Online preconcentration system for determining ultratrace amounts of Cd in vegetal samples using thermospray flame furnace atomic absorption spectrometry [J]. Microchim. Acta,2007,159(1-2):183-189.
    [137]Li L, Xia B H, Jiang Z C. Determination of trace Cd and Pb in environmental and biological samples by ETV-ICP-MS after single-drop microextraction [J]. Talanta,2006,70(2): 468-473.
    [138]Qu F, Lin J M, Chen Z L. Simultaneous separation of nine metal ions and ammonium with nonaqueous capillary electrophoresis [J]. J. Chromatogr. A,2004,1022(1-2):217-221.
    [139]Suteerapataranon S, Jakmunee J, Vaneesorn Y, et al. Exploiting flow injection and sequential injection anodic stripping voltammetric systems for simultaneous determination of some metals [J]. Talanta,2002,58(6):1235-1242.
    [140]张明英,宋娟.5-Br-DMPAP-OP双波长吸光光度法测定微量锌镉[J].理化检验(化学分册),1994,30(5):292-293.
    [141]Gunnlaugsson T, Lee T C, Parkesh R. Cd(Ⅱ) Sensing in water using novel aromatic Iminodiacetate based fluorescent chemosensors [J]. Org. Lett.,2003,5(22):4065-4068.
    [142]Gattas-Asfura K M, Leblanc R M. Peptide-coated CdS Quantum dots for the optical detection of copper and silver [J]. Chem. Commun.,2003, (21):1352-1354.
    [143]Li J, Mei F, Li W Y, et al. Study on the fluorescence resonance energy transfer between CdTe QDs and butyl-rhodamine B in the presence of CTMAB and its application on the detection of Hg(Ⅱ) [J]. Spectrochim. Acta, Part A,2008 70(4):811-817.
    [144]Wu H M, Liang J G, Han H Y. A novel method for the determination of Pb2+ based on the quenching of the fluorescence of CdTe quantum dots [J]. Microchim Acta,2008,161(1-2): 81-86
    [145]Ali E M,Zheng Y G,Yu H H, et al. Ultrasensitive Pb2- Detection by glutathione-capped quantum dots [J]. Anal. Chem.,2007,79(24):9452-9458.
    [146]Liang J G,Ai X P, He Z K, et al. Functionalized CdSe quantum dots as selective silver ion chemodosimeter [J]. Analyst,2004,129(7):619-622.
    [147]Li H B, Zhang Y, Wang X Q. L-Carnitine capped quantum dots as luminescent probes for cadmium ions [J]. Sens. Actuators B.2007,127(2):593-597.
    [148]Zhang B H,Wu F Y, Wu Y M,et al. Fluorescent method for the determination of sulfide anion with ZnS:Mn Quantum Dots [J]. J Fluoresc.,2010,20(1):243-250.
    [149]Spanhel L,Haase M, Weller H,et al. Photochemistry of colloidal semiconductors.20. Surface modification and stability of strong luminescing CdS particles [J]. J. Am. Chem. Soc.,1987,109(19):5649-5655.
    [150]Li H B, Zhang Y, Wang X Q, et al. A luminescent nanosensor for Hg (Ⅱ) based on functionalized CdSe/ZnS quantum dots [J]. Microchim. Acta.,2008,160(1-2):119-123.
    [151]吴东平,张勇,冯如朋,等.痕量铜的CdS/ZnS量子点荧光猝灭法测定[J].分析测试学报,2008,27(6):638-640.
    [152]Han S Q, Lu J L, Gan Z G, et al. Application of luminescent BSA-capped CdS quantum dots as a fluorescence probe for the detection of Cu2+ [J]. J. Chin. Chem. Soc.,2008,55(5): 1069-1073.
    [153]Derfus A M, Chan W C W, Bhatia S N. Probing the Cytotoxicity of Semiconductor Quantum Dots [J]. Nano Lett.,2004,4(1):11-18
    [154]徐扬子,胡鹤.Mn2+, Pb2+共掺杂ZnS纳米材料的制备及光致发光[J].发光学报,2007.28(4):589-593.
    [155]黄风华.硫脲表面修饰的ZnS:Cd纳米晶的合成及表征[J].分子科学学报.2006,22(1):63-66.
    [156]Bhargave R N, Callagher D. Optical properties of manganese-doped nanocrystals of ZnS [J]. Phys. Rev. Lett.,1994,72(3):416-419.
    [157]姜代旬,曹立新.核/壳结构的ZnS:Mn纳米粒子的制备及发光性质的研究[J].2008优秀硕士毕业论文.
    [158]王柯敏,王益林,李朝辉,等.CdTe量子点荧光猝灭法测定铜离子的研究[J].湖南大学学报(自然科学版),2005,32(3):1-5.
    [159]Xie H Y, Liang J G, Zhang Z P, et al. Luminescent CdSe-ZnS quantum dots as selective Cu2+ probe [J]. Spectrochim. Acta. A,2004,60(11):2527-2530.
    [160]Chen J L, Zheng A F, Gao Y C, et al. Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution [J]. Spectrochim. Acta. Part A,2008,69(3):1044-1052.
    [161]Wang J H, Wang H Q, Zhang H L, et al. Purification of denatured bovine serum albumin coated CdTe quantum dots for sensitive detection of silver(I) ions [J]. Anal. Bioanal. Chem.. 2007,388(4):969-974.
    [162]Hosoba M, Oshita K, Katarina R K, et al Synthesis of novel chitosan resin possessing histidine moiety and its application to the determination of trace silver by ICP-AES coupled with triplet automated-pretreatment system [J]. Anal. Chim. Acta,2009,639(1-2):51-56.
    [163]Li B L, Du Y, Dong S J. DNA based gold nanoparticles colorimetric sensors for sensitive and selective detection of Ag (I) ions [J]. Anal. Chim. Acta,2009,644(1-2):78-82.
    [164]Soylak M, Cay R S. Separation/preconcentration of silver(Ⅰ) and lead(Ⅱ) in environmental samples on cellulose nitrate membrane filter prior to their flame atomic absorption spectrometric determinations [J]. J. Hazard. Mater.,2007,146(1-2):142-147.
    [165]Leka Z B, Leovac V M, Lukic S, et al. Synthesis and physic-chemical characterization of new dithiocarabamato ligand and its complexes with copper (Ⅱ). nickel(Ⅱ) and palladium (Ⅱ) [J]. J. Therm. Anal. Calorim.,2006.83(3):687-691.
    [166]Yang H, Holloway P H. Water-soluble silica-overcoated CdS:Mn/ZnS semiconductor quantum dots [J]. J. Chem. Phys.,2004,12(15):7421-7426.
    [167]Bol A A. Meijerink A. Factors Influencing the luminescence quantum efficiency of nanocrystalline ZnS:Mn2+ [J]. Phys. Status Solidi B,2001,224(1):291-296.
    [168]Murase N, Jagannathan R, Kanematsu Y, et al. Fluorescence and EPR characteristics of Mn2--doped ZnS nanocrystals prepared by aqueous colloidal method [J]. J. Phys. Chem. B, 1999.103(5):754-760.
    [169]Wang Y Q, Ye C, Zhu Z H, et al. Cadmium telluride quantum dots as pH-sensitive probes for tiopronin determination [J]. Anal. Chim. Acta.,2008,610(1):50-56.
    [170]Gao M Y. Kirstein S, Mohwald H. Strongly photoluminescent CdTe nanocrystals by proper surface modification [J]. J. Phys. Chem. B,1998,102(43):8360-8363.
    [171]Liu Y S. Sun Y H, Vernier P T, et al. pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in Human Ovarian [J]. J. Phys. Chem. C,2007,111(7):2872-2878.
    [172]Lin X E, Cao R, Wang Y Q, et al. Synthesis and crystal structure of a Two-dimensional silver framework constructed by H2idc (H2idc= iminodiacetic acid) [J]. Chin. J. Struct. Chem., 2005,24(6):711-715.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700