竹粉/PVC复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然纤维具有价格低廉、低密度、高韧性、生物降解性等优点,使得天然纤维能被用于纤维增强材料。但是由于亲水的天然纤维与疏水的塑料之间的不相容,导致复合材料的强度的下降。针对这些问题,本文采用偶联剂改性竹粉来改善与聚氯乙烯(PVC)间的相容性,在微波条件下竹纤维接枝甲基丙烯酸甲酯(MMA)也是改善竹粉与PVC相容性的有效的方法之一,同时研究了纳米Ti02对复合材料抗菌性能的影响。主要结论如下:
     1.确定钛酸酯偶联剂的最佳用量为2%,DOP的最佳用量为10%,CPE的最佳用量为12%。
     竹粉经过偶联剂改性后,吸潮率低于未改性竹粉的吸潮率,且竹粉经钛酸酯偶联剂改性后的竹粉/PVC复合材料力学性能得到改善,拉伸强度和冲击强度明显提高。随着钛酸酯含量的增加,复合材料的拉伸强度和拉伸强度均升高,当钛酸酯含量为2%时,拉伸和冲击强度达到最大值,之后随偶联剂用量增加而降低。竹粉改性前后的红外光谱显示,钛酸酯、铝酸酯均可以对竹粉进行改性;SEM分析表明,钛酸酯对竹粉进行处理,改善了竹粉与PVC的相容性。
     2.采用响应面正交设计优化了微波接枝反应条件,其最佳接枝反应条件为:微波功率133.6W,引发剂浓度3.67×10-3mol/L,微波时间8.01min。同时得到了关于微波功率(X1),引发剂浓度(X2),反应时间(X3)的三元二次回归方程:Y=46.79667+1.07375X1+1.00000X2+0.28875X3-3.68583X1X1+0.07250X1X2+ 1.66500X1X3-6.05833X2X2+0.70750X2X3-0.64583X3X3
     对接枝共聚物进行表征,红外光谱和SEM分析表明,竹纤维的结构已经发生变化,MMA已经成功接枝到竹纤维上,接枝后的竹纤维结晶度降低,热重分析表明接枝后的竹纤维热稳定性增强,接枝后的吸潮率低于未改性竹纤维的吸潮率。
     将竹纤维接枝MMA与竹粉、PVC复合制备复合材料,与未处理竹粉的复合材料相比,加入接枝共聚物的复合材料的力学性能增加,SEM分析表明,接枝共聚物复合材料PVC相容性好。
     3.加入纳米Ti02后的竹粉/PVC复合材料力学性能得到改善。随着纳米Ti02含量的增加,复合材料的拉伸强度和拉伸强度均升高,当纳米Ti02添加量为3.2%时,复合材料的拉伸强度达到最大值。
     纳米TiO2对大肠杆菌的最小抑菌浓度为400mg/L,对金黄色葡萄球菌的最小抑菌浓度为800mg/L。随着纳米TiO2添加量的增加,竹粉/PVC复合材料的抗菌性能随之增加,当纳米TiO2添加量为1.2%时,复合材料对大肠杆菌和金黄色葡萄球菌的抗菌率就大于90%,抗菌效果显著;当纳米TiO2添加量为1.6%时,对大肠杆菌和金黄色葡萄球菌的抗菌率均超过了99%,复合材料具有强抗菌性能。复合材料经紫外光照老化实验后,实验结果表明复合材料具有良好的抗菌长效性。
Natural cellulose has numerous advantages, such as low cost, low density, high toughness and biodegradability, and the cellulose can be used as reinforcements for thermoplastic matrix composites. But the incompatibility of the hydrophilic natural cellulose and the hydrophobic thermoplastic matrix can actually lead to a reduction in the strength of the composite material. Taking these aspects into account, the coupling agents are additives used in the cellulose reinforced thermoplastics, in order to increase the incompatibility of bamboo flour and PVC, grafting copolymerization of MMA onto cellulose under microwave irradiation is one of the most effective methods to improve the incompatibility of bamboo flour and PVC, and the effect of nano-TiO2 on the bactericidal activity of bamboo flour/PVC composites are investigated in this paper. The main contents and conclusions are as follows:
     1. The optimal level of DOP is 10%, the optimal level of CPE is 12%, the optimal level of titanate coupling agent is 2%.
     The tensile strength and impact strength have an increase with increasing titanate coupling agent content. The maximum tensile strength and impact strength are achieved at 2% titanate coupling agent, and then decrease. Treatment of bamboo flour with titanate coupling agent shows a decrease of the moisture absorption properties as compared to untreated bamboo flour. The modified bamboo flour is characterized by FTIR, and the result indicates that the surface of bamboo flour is modified successfully with titanate coupling agent. Scanning electron microscopy revealed good compatibility and adhesion between the plastic and the bamboo flour for crosslinked composites.
     2. The process of grafting is optimized by response surface methodology (RSM) to obtain the optimum conditions for grafting percentage. It is indicated that the optimum reaction condition is as follows:the microwave power,133.6 W; initiator concentration, 3.67×10-3mol/L; exposure time,8.01 min. The regression equation describing process of grafting is obtained by response surface methodology: Y= 46.79667+1.07375X1+1.00000X2+0.28875X3-3.68583X1X1+0.07250X1X2+ 1.66500X1X3-6.05833X2X2+0.70750X2X3-0.64583X3X3
     The graft copolymer is characterized by FTIR, SEM, which elucidated the structure changes in comparison with bamboo cellulose, these results indicate that the surface of bamboo cellulose was grafted successfully with MMA copolymer. The crystallinity of the graft copolymers decrease in comparison with that of bamboo cellulose, and TGA revealed that copolymer had more thermal stability. Furthermore, the moisture absorption capacity of the graft copolymers decreased significantly with the increase in grafting percentage.
     A comparison with the composites filled with the untreated bamboo flour showed that the tensile strength and impact strength increased, with the incorporation of the graft copolymers into the bamboo flour/PVC composites. Scanning electron microscopy revealed good compatibility and adhesion between the plastic and the bamboo flour with the incorporation of the graft copolymers into the bamboo flour/PVC composites.
     3. The results exhibit that nano-TiO2 can obviously improve the mechanical properties of the composites. The tensile strength and impact strength have an increase with increasing nano-TiO2 content. Tensile strength reached the maximum value when the content of nano-TiO2 is at 3.2 wt%.
     The minimum inhibitory concentration of nano-TiO2 to E. coli and S. aureus are 400mg/L and 800mg/L respectively. The composites possess excellent bactericidal activity on the E. coli and S. aureus. The bactericidal activity of the composites is more than 90% when the content of nano-TiO2 is at 1.2 wt%. When the content of nano-TiO2 is at 1.6 wt%, the bactericidal activity of the composites is more than 99%. The prepared PE was treated by means of accelerated aging, and the results showed the composites had good long-time bactericidal activity.
引文
1. 蔡红珍,柏雪源,高巧春等.稻壳及硅烷添加量对木塑复合材料力学性能的影响.农业工程学报,2007,23(11):176-179
    2. 陈前林,吴建青,王龙现.TiO2光催化抗菌陶瓷的制备.功能材料,2009,40(9):1166-1168
    3. 冯莉,张兴,汪正伟.环保型纳米抗菌材料复合杀菌内墙乳胶漆的研究.新型建筑材料,2005(2):53-55
    4. 郭世宜,沈星灿, 郭俊怀等.超细纳米TiO2光催化灭菌的研究.南开大学学报(自然科学版),2005,38(3):78-82
    5. 胡彦涛.石英玻璃表面TiO2薄膜的制备及抗菌性能研究.天津大学硕士学位论文,2006
    6. 江海风,杨建忠,刘娜.纳米二氧化钛整理织物的自清洁和抗菌性能探讨.纺织科技进展,2007(1):14-15
    7. 江泽慧.以科学发展观为指导加快中国竹产业发展进程.绿色中国,2005(24):4-7
    8. 李娟红,雷闫盈,王小刚.半导体TiO2纳米微粒膜光催化杀菌机理与性能的研究.材料工程,2006(z1):222-224
    9. 李凯夫,戴东花,谢雪甜等.偶联剂对木塑复合材料界面相容性的影响.林产工业,2005,32(3):24-26
    10.廖双泉,马凤国,邵自强等. 椰衣纤维的蒸汽爆破处理技术. 热带作物学报,2003,24(1):17-20
    11.林建国,唐龙祥,何晓军.处理剂对木塑产品性能的影响.塑料工业,2006,34(2):52-54
    12.刘荣榕.PVC/木粉复合材料的制备及其性能的研究.上海交通大学硕士学位论文,2008
    13.刘涛,洪凤宏,武德珍.PVC/木粉复合体系加工方法与性能的关系.高分子材料科学与工程,2006,22(1):174-177
    14.彭静,张军,蹇锡高等.等离子体技术在CF/树脂基复合材料中的应用.材料导报,1999,13(2):48-50
    15.秦特夫.改善木塑复合材料界面相容性的途径.世界林业研究1998,11(3):46-51
    16.秦特夫,阎昊鹏.木材表面非极性化原理的研究Ⅲ.各化学组分在乙酰化过程中酯化能力的差异.木材工业,2000,14(4):13-15
    17.钱捷,吕亚萍,钟明强.稀土氧化物和硫酸盐对聚氯乙烯热稳定作用的研究.中国塑料,1999,13(1):85-89
    18.瞿金平,胡松喜,冯彦洪等.蒸汽爆破预处理对LDPE/棉皮纤维复合材料力学性能的影响.塑料工业,2009,37(2):32-35
    19.史载锋,包帆帆,晋茜等.TiO2/陶瓷光催化白洁杀菌性能研究.环境科学与技术,2008,31(8):109-112
    20.孙毅,许娟,蔡文斌等.纳米TiO2-免疫-电生孔复合技术光催化氧化杀伤LoVo肠癌细胞的机理.物理化学学报,2008,24(8):1359-1365
    21.王洪水.纳米银及载银纳米抗菌材料的研究.华中科技大学博士学位论文,2006
    22.王磊,曹金珍.偶联剂在木塑复合材料中的应用及研究.林产工业,2008,35(6):9-14
    23.王剑峰,吴作家,洪碧琼等.表面接枝改性木粉及其在PVC基木塑复合材料中的应用.化学工程与装备,2008(4):11-16
    24.王树东.中国竹业的回顾、展望与思考.竹子研究汇刊,2002,21(4):5-11
    25.王伟龙,陈文照.浙江省竹炭的加工利用现状和对策.竹子研究汇刊,2002,21(2):58-63
    26.王永忠,钟明强,杨晋涛等.纳米Ag+-TiO2/聚氯乙烯抗菌塑料制备及其性能.材料科学与工程学报,2009,27(6):862-864
    27.夏苏,王政,杨荆泉等.静电纺丝抗菌聚氨酯纳米纤维的结构与性能.合成纤维工业,2009,32(6):28-30
    28.徐瑞芬,许秀艳,付国柱.纳米YiO2在涂料中的抗菌性能研究.北京化工大学学报,2002,29(5):45-48
    29.杨庆贤,柯瑞荣,黄祖迹.复合新材料——木质塑料.化学世界1989(4):158-161
    30.殷小春,任鸿烈.对改善木塑复合材料表面相容性因素的探讨.塑料,2002,31(4):25-28
    31.曾炽涛,陈爱平,陈爱华等.负载型Ti02/玻璃弹簧的光催化杀菌作用.催化学报,2003,24(7):520-524
    32.赵浪.高活性纳米Ti02抗菌材料制备及应用研究.四川大学硕士学位论文,2004
    33.郑玉涛,陈就记,王东山等.偶联剂与甘蔗渣/PVC复合材料性能的研究.中国塑料,2005,19(6):94-98
    34.周聪,王美珍,吴智华.加工参数对PP/木粉复合材料结构和性能的影响.现代塑料加工应用,2009,21(1):1-4
    35. Adhikary K B, Pang S, Staiger M P. Dimensional stability and mechanical behaviour of wood-plastic composites based on recycled and virgin high-density polyethylene (HDPE). Composites Part B:Engineering,2008,39(5):807-815
    36. Bakar A A, Keat T B, Hassan A. Tensile properties of a poly(vinyl chloride) composite filled with poly(methyl methacrylate) grafted to oil palm empty fruit bunches. Journal of Applied Polymer Science,2010,115(1):91-98
    37. Bengtsson M, Oksman K. The use of silane technology in crosslinking polyethylene/wood flour composites. Composites Part A:Applied Science and Manufacturing,2006,37(5):752-765
    38. Bengtsson M, Stark N M, Oksman K. Durability and mechanical properties of silane cross-linked wood thermoplastic composites. Composites Science and Technology, 2007,67(13):2728-2738
    39. Bertoti A R, Luporini S, Esperidiao M C A. Effects of acetylation in vapor phase and mercerization on the properties of sugarcane fibers. Carbohydrate Polymers, 2009,77(1):20-24
    40. Bledzki A K, Gassan J. Composites reinforced with cellulose based fibres. Progress in Polymer Science,1999,24(2):221-274
    41. Canche-Escamilla G, Rodriguez-Trujillo G, Herrera-Franco P J, et al. Preparation and characterization of henequen cellulose grafted with methyl methacrylate and its application in composites. Journal of Applied Polymer Science,1997,66(2): 339-346
    42. Dominkovics Z, Danyadi L, Pukanszky B. Surface modification of wood flour and its effect on the properties of PP/wood composites. Composites Part A:Applied Science and Manufacturing,2007,38(8):1893-1901
    43. Dunford R, Salinaro A, Cai L, et al. Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Letters,1997,418(1-2):87-90
    44. Eichhorn S J, Young R J. Deformation micromechanics of natural cellulose fibre networks and composites. Composites Science and Technology,2003,63(9): 1225-1230
    45. Elvy S B, Dennis G. R, Ng L-T. Effects of coupling agent on the physical properties of wood-polymer composites. Journal of Materials Processing Technology,1995, 48(1-4):365-371
    46. Graupner N, Herrmann A S, Musig J. Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites:An overview about mechanical characteristics and application areas. Composites Part A:Applied Science and Manufacturing,2009,40(6-7):810-821
    47. Ichazo M N, Albano C, Gonzalez J, et al. Polypropylene/wood flour composites: treatments and properties. Composite Structures,2001,54(2-3):207-214
    48. Kaith B S, Jindal R, Jana A K, et al. Characterization and evaluation of methyl methacrylate-acetylated Saccharum spontaneum L. graft copolymers prepared under microwave. Carbohydrate Polymers,2009,78(4):987-996
    49. Khalil H P S A, Ismail H, Rozman H D, et al. The effect of acetylation on interfacial shear strength between plant fibres and various matrices. European Polymer Journal, 2001,37(5):1037-1045
    50. Kim S H, Ahn S-Y, Kwak S-Y. Suppression of dioxin emission in incineration of poly(vinyl chloride) (PVC) as hybridized with titanium dioxide (TiO2) nanoparticles. Applied Catalysis B:Environmental,2008,79(3):296-305
    51. Lee S-H, Wang S. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites Part A:Applied Science and Manufacturing, 2006,37(1):80-91
    52. Lee S-K, K J Robertson P, Mills A, et al. Modification and enhanced photocatalytic activity of TiO2 following exposure to non-linear irradiation sources. Journal of Photochemistry and Photobiology A:Chemistry,1999,122(1):69-71
    53. Liu H, Wu Q, Han G, et al. Compatibilizing and toughening bamboo flour-filled HDPE composites:Mechanical properties and morphologies. Composites Part A: Applied Science and Manufacturing,2008,39(12):1891-1900
    54. Luo Y-B, Li W-D, Wang X-L, et al. Preparation and properties of nanocomposites based on poly(lactic acid) and functionalized TiO2. Acta Materialia,2009,57(11): 3182-3191
    55. Maneerat C, Hayata Y. Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests. International Journal of Food Microbiology, 2006,107(2):99-103
    56. Matsunaga T, Tomaia R, Nakajima T, et al. Continuous-sterilization system that uses photosemiconductor powders. Applied and Environmental Microbiology, 1988,54(6):1330-1333
    57. Nachtigall S M B, Cerveira G. S, Rosa S M L. New polymeric-coupling agent for polypropylene/wood-flour composites. Polymer Testing,2007,26(5):619-628
    58. Ou B, Li D, Liu Y. Compatibilizing effect of maleated polypropylene on the mechanical properties of injection molded polypropylene/polyamide 6/functionalized-TiO2 nanocomposites. Composites Science and Technology,2009, 69(3-4):421-426
    59. Pekakis P A, Xekoukoulotakis N P, Mantzavinos D. Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Research,2006,40(6):1276-1286
    60. Rizzo L. Inactivation and injury of total coliform bacteria after primary disinfection of drinking water by TiO2 photocatalysis. Journal of Hazardous Materials,2009, 165(1-3):48-51
    61. Rocha N, Kazlauciunas A, Gil M H, et al. Poly(vinyl chloride)-wood flour press mould composites:The influence of raw materials on performance properties. Composites Part A:Applied Science and Manufacturing,2009,40(5):653-661
    62. Ruksakulpiwat Y, Sridee J, Suppakarn N, et al. Improvement of impact property of natural fiber-polypropylene composite by using natural rubber and EPDM rubber. Composites Part B:Engineering,2009,40(7):619-622
    63. Sang Y, Xiao H. Preparation and application of cationic cellulose fibers modified by in situ grafting of cationic PVA. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,335(1-3):121-127
    64. Stark N M, Matuana L M. Surface chemistry changes of weathered HDPE/wood-flour composites studied by XPS and FTIR spectroscopy. Polymer Degradation and Stability,2004,86(1):1-9
    65. Trivedi J H, Kalia K, Patel N K, et al. Ceric-induced grafting of acrylonitrile onto sodium salt of partially carboxymethylated guar gum. Carbohydrate Polymers,2005, 60(1):117-125
    66. Tungjitpornkull S, Sombatsompop N. Processing technique and fiber orientation angle affecting the mechanical properties of E-glass fiber reinforced wood/PVC composites. Journal of Materials Processing Technology,2009,209(6):3079-3088
    67. Wang X L, Huang Y, Zhu J, et al. Chitosan-graft poly(p-dioxanone) copolymers: preparation, characterization, and properties. Carbohydrate Research,2009,344(6): 801-807
    68. Zan L, Fa W, Peng T, et al. Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on Hepatitis B virus. Journal of Photochemistry and Photobiology B: Biology,2007,86(2):165-169
    69. Zhang Q, Peng H, Zhang Z. Antibacteria and Detoxification Function of Polystyrene/TiO2 Nanocomposites. Journal of Dispersion Science and Technology, 2007,28(6):937-941
    70. Zhao Y, Wang K, Zhu F, et al. Properties of poly(vinyl chloride)/wood flour/montmorillonite composites:Effects of coupling agents and layered silicate. Polymer Degradation and Stability,2006,91(12):2874-2883

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700