热风干燥、真空微波干燥和红外干燥对番茄片干燥动力学和品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干燥是农产品收获后保藏的最古老和最常见的方法之一。目前使用的干燥方式有很多,如热风干燥、真空微波干燥、红外干燥等,研究的重点集中在干燥工艺参数的优化及设备的研发上,而针对各种干燥方法的干燥动力学过程及其对产品品质影响的对比性研究较少。因此本研究进行了热风干燥、真空微波干燥和红外干燥三种干燥方式对番茄片的干燥动力学和品质影响的对比性研究。
     首先,本研究采用电热干燥方法对番茄片进行干燥处理,研究不同干燥温度(50℃、60℃、70℃和80℃)对干燥动力学参数和产品品质的影响,其中考察的产品品质指标包括非酶褐变指数、番茄红素含量、颜色和气味的变化。研究结果显示:随着干燥温度从50℃增加到80℃,干燥时间从1140min缩短到540min。在80℃下干燥后番茄片的非酶促褐化指数由新鲜番茄的0.051升高到1.40。在50℃、60℃、70℃和80℃下干燥后,番茄红素含量均显著增加(P<0.05),由新鲜番茄的11.46mg/100g(干基含量)分别上升至61.23mg/100g、59.10mg/100g、60.88mg/100g和65.28mg/100g(干基含量)。所有干燥样品的颜色值介于51.81°和61.95°之间,颜色均为黄色,由此推断干燥过程中样品均发生了褐变反应。采用电子鼻系统检测发现所有干燥样品的气味与新鲜番茄相比均有所下降;采用4个常见的干燥模型进行实验数据拟合,研究结果显示Page模型是预测番茄片电热干燥动力学过程的最佳模型。有效水分扩散系数随着干燥温度的增加而增加,在50℃、60℃、70℃和80℃下,分别为5.13×10-10m2s-1、6.45×10-10m2s-1、8.44×10-10m2s-1和10.26×10-10m2s-1,得出干燥活化能为22.28KJ/mol。
     其次,本研究采用真空微波干燥方法对番茄片进行干燥处理,研究不同微波功率(200W、300W、500W和700W)和不同真空度(0.04MPa、0.05MPa和0.06MPa)对干燥动力学参数和产品品质的影响,其中考察的产品品质指标包括非酶褐变指数、Vc含量、番茄红素含量、颜色和气味的变化。研究结果显示:随着微波功率从200W增加到700W,干燥速率不断提高,干燥时间从84min缩短到14min。非酶褐变指数随微波功率的增加而增加。在干燥实验中,Vc含量均显著降低(P<0.05),从新鲜番茄的2.744±0.29mg/g下降到最低值1.87±±0.13mg/g,与新鲜番茄相比,番茄干的Vc含量下降最大值为32%,样品在200W和0.06MPa的干燥条件下具有最大的Vc保留率。番茄红素含量均显著增加(P<0.05),在700W和0.04MPa下干燥后由新鲜番茄的11.46mg/100g(干基含量)上升至25.44mg/100g(干基含量)。观察发现,所有干燥样品的亮度和黄色度与新鲜番茄相比均有所增加,但是红色度有略微的减小。所有干燥样品的气味与新鲜番茄相比均有所下降,气味指标比新鲜番茄减少了18.99%-20.80%;采用13个常见的干燥模型进行实验数据拟合,研究结果显示Midilli模型是预测番茄片真空微波干燥动力学过程的最佳模型。有效水分扩散系数随着微波功率的增加而增加,在200W、300W、500W和700W下,分别为7.22×10-9m2s-1、9.10×10-9m2s-1、14.99×10-9m2s-1和25.19×10-9m2s-1。
     再次,本研究采用风机辅助的热风干燥方法对番茄片进行干燥处理,通过响应面优化实验研究热风温度(40~60℃)、风速(1~2m/s)和样品厚度(7~11mm)对产品品质的影响。研究确定的最佳热风干燥条件为:温度44℃、风速2m/s、样品厚度7.72mm。在此最佳条件下,干燥时间为527±76min,番茄红素含量为62.7±4.3mg/100g(干基含量),Vc含量为3.07±0.14mg/g(干基含量),亮度值为62.92±2.18,红色度值与黄色度值的比例为0.78±0.05,非酶褐变指数为0.55±0.06。最后,本研究采用催化式红外干燥方法对番茄片进行干燥处理,考察了样品厚度(7mm、mm、11mm)和红外辐射距离(38cm、44cm、50cm、56cm)对产品品质的影响。建立了随辐照距离(红外辐射板与样品之间的距离)与样品厚度之间的干燥动力学模型。随着番茄片厚度的减小和辐射距离的缩短番茄的水分有效扩散率增加,并呈现三次多项式的关系。只有催化式红外干燥番茄片干燥速率呈现下降趋势,而没有干燥速率稳定期。相对远红外干燥的样品与新鲜番茄相比,58.3%的干制品的风味有所提升,增加值为3.0%-36.6%之间,而41.7%的干制品风味有所下降,减少值为3.1%-14.1%。通过对薄层干燥模型与干燥数据进行拟合,Midilli模型能够最好的预测干燥过程中的水分变化。研究结果表明,真空微波和远红外辐射干燥是一种高效的干燥方法,其能够很好的保持产品颜色和维生素C含量,有效防止产品发生褐变,以及增加番茄红素的保留率。在真空微波干燥番茄过程中,应避免较高的微波功率(例700W)。本研究能够为工业化生产高品质产品提供有效信息及最优干燥条件。
Drying is one of the oldest and commonest methods of preserving agricultural produce after harvest. The study investigated the influence of hot air, microwave-vacuum, and far-infrared catalytic drying on drying kinetics and quality of dried tomato slices. In the first study, a conventional hot air dryer was used to investigate the effect of four temperatures (50,60,70, and80℃) on the drying kinetics and quality changes in the lycopene content, non-enzymatic browning, colour and flavour of dried tomatoes. As expected, the drying time reduced from1140mins to540mins as the air temperature increased from50to80℃. The non-enzymatic browning increased with temperature from0.051in the fresh tomatoes to1.40after drying at80℃. The lycopene levels of the fresh tomatoes significantly (p=0.05) increased from11.46mg/100g dry matter to61.23,59.10,60.88, and65.28mg/100g dry matter when dried at50,60,70, and80℃respectively. Eleven out of the twelve sensors used in the electronic nose system indicated flavour degradation of all dried samples compared with the fresh tomatoes. The values of the hue angles recorded for the dried tomatoes ranged between51.81°and61.95°, revealing that the dried tomatoes were yellow hued, thus indicating less browning. The drying characteristics curves were evaluated against the Page, Henderson and Pabis, and the Logarithmic mathematical models but the Page model best described the drying of tomato slices. The effective moisture diffusivity coefficient increased with increasing air temperature and was5.13×10-10m2s-1,6.45×10-10m2s-1,8.44×10-10m2s-1, and10.26×10-10m2s-1at respective air temperatures of50,60,70, and80℃with activation energy for moisture removal of22.28KJ/mol.
     In the second study, a microwave-vacuum dryer was used to investigate the influence of four microwave powers (200,300,500,700W) and three vacuum pressures (0.04,0.05and0.06MPa) on drying kinetics and quality of dried tomato slices. The results showed that increase in microwave-vacuum drying conditions increased drying rates and resulted in decreased drying time from84to14min. The non-enzymatic browning index increased with microwave power whereas the overall flavour degradation was between18.99and20.80%. The brightness and the yellowness of the dried tomatoes generally increased but there was a slight reduction in redness when compared with the fresh. The effective moisture diffusivity increased with microwave power and was7.22×10-9m2s-1,9.10×10-9m2s-1,14.99×10-9m2s-1, and25.19×10-9m2s-1at respective microwave powers of200,300,500, and700W.
     Among the thirteen thin layer drying models that were used to fit the experimental data, the Midilli et al model gave the highest correlation coefficient, lowest residual sum of squares, root mean square error, and reduced chi-square, thus indicating that the model of Middilli et al best described the micro wave-vacuum drying of tomato slices. The highest ascorbic acid retention occurred in the samples dried at200W and0.06MPa, with a significant decrease (p<0.05) from an initial average value of2.74±0.29mg/g to1.87±0.13mg/g dry matter, representing a decrease of about32%in relation to the fresh tomato. On the other hand, the average lycopene content of the dried tomatoes significantly (p<0.05) increased from11.46mg/100g dry matter to a maximum value of25.44mg/100g dry matter after microwave-vacuum drying at700W and0.04MPa.
     In the third study, another hot air dryer assisted with a blower was used to dry tomato slices. In this study, the response surface method was used to investigate the results of experiment designed with the Box-Behken approach to make known the effects of air temperature, air velocity, and sample thickness, on drying time, lycopene content, ascorbic acid content, non-enzymatic browning, and colour of dried tomato slices. Three levels of temperature (40to60℃), air velocity (1.0to2.0m/s) and sample thickness (7to11mm) were used for the experiment. The desirability index technique was used to predict the ideal drying condition. At the best conditions of44℃air temperature,2.0m/s air velocity, and7.72mm sample thickness, drying time was527±76min, lycopene content was62.7±4.3mg/100g dry matter, ascorbic acid content was3.07±0.14mg/g dry matter, brightness value was62.92±2.18, ratio of redness to yellowness was,0.78±0.05, and the non-enzymatic browning index was0.55±0.06absorbance unit.
     In the fourth study, a catalytic far-infrared radiation (FIR) dryer was designed by us and used co dry the tomato slices. The three-level factorial response surface method was used to investigate the effects of distance between FIR emitter and the surface of tomato slices, and sample thickness on drying time, non-enzymatic browning, colour brightness, ratio of redness to yellowness, ascorbic acid content, and lycopene content of the dried tomato slices. Three levels of distance (38to50cm), sample thickness (7to11mm) were used for the experiment. The desirability index technique was used to determine the ideal drying conditions that yield minimum drying time and nonenzymatic browning and maximum brightness colour, redness to yellowness ratio, lycopene content, and ascorbic acid of drying of tomato slices. At the best conditions of40.29cm distance and9.04mm sample thickness, the drying time was108±4min, the non-enzymatic browning index was0.338±0.12Abs unit, the brightness colour was40.43±2.29, the ratio of redness to yellowness was0.92±0.13, the ascorbic acid content was3.76±0.27mg/g dry matter, and the lycopene content was72.34±19.87mg/100g dry matter. The second part of the fourth study investigated the effect of four levels of distances (i.e.38,44,50to56cm) and three-levels of sample thickness (7,9,11mm) on the drying kinetics and flavour of dried tomatoes. The drying kinetics was dependent on the distance between FIR emitters and the heat-irradiated surface, and thickness of the samples as well. The effective moisture diffusivity from the tomatoes increased and correlated to a third order polynomial relationship with decreasing sample thickness and distance between FIR emitter and surface of tomatoes. Only the falling drying rate period was observed with catalytic FIR drying of tomato slices without the constant drying rate period. Relativity's of far-infrared energy dried samples to the fresh tomatoes revealed that,58.3%of the dried products had flavour enhancement between3.0to36.6%whereas41.7%had flavour degradation between3.1and14.1%. Among the thin-layer drying models fitted to the FIR drying data, the Midilli et al model gave the best fit. These results demonstrate that microwave-vacuum and FIR should be considered as efficient drying methods for tomato with respect to colour and ascorbic acid preservation, minimization of brown pigment formation and increment in lycopene content. Higher microwave powers (i.e.700W) should be avoided in microwave-vacuum drying of tomatoes. The study thus provides useful information for optimization of drying conditions for industrial processing of quality products.
引文
Abano, E.E., & Sam-Amoah, L.K. (2011). Effects of different pretreatments on drying characteristics of banana slices. J. Eng. Appld Sci.6(3),121-129
    Afzal, T.M. & Abe, T.1998. Diffusion in potato during far infrared radiation drying. J Food Eng, 37:353-365.
    Afzal, T.M. & Abe, T.2000. Simulation of moisture changes in barley during far infrared radiation drying. Computers and Electr in Agric,26 (2):137-145.
    Alibas, I., Akbudak, B., & Akbudak, N. (2005). Microwave drying characteristics of spinach. J Food Eng,78 (2),577-583.
    Arab, L., & Steck, S. (2000). Lycopene and cardiovascular disease, Am. J. Clin. Nutr.,71, (Suppl.) 1691S-1695S.
    Bai-Ngew, S., Therdthai, N., & Dhamvithee, P. (2011). Characterization of microwave vacuum-dried durian chips. J Food Eng,,104,114-122
    Cantuti-Castelvetri, I., Shukitt-Hale, B., & Joseph, J. (2000).Neurobehavioral aspects of antioxidants in aging, Intern J. Dev. Neurosci.18,367-381
    Celma, A.R.,Cuadros, F. & Lopez-Rodriguez, F. (2009). Characterization of industrial tomato by-products from infrared drying process. Food Bioprod. Process.87,282-291.
    Cernisev, S. (2010). Effects of conventional and multistage drying processing on non-enzymatic browning in tomato. J. Food Eng.96,114-118.
    Contreras, C., Martin, M. E., Martinez-Navarrete, N., & Chiralt, A., (2008). Influence of microwave application on drying kinetics, and optical mechanical properties of apple and strawberry. J Food Eng,,88,55-64.
    Cui, Z-W., Sun, L-J., Chen, W., & Sun, D-W. (2008). Preparation of dry honey by microwave-vacuum drying. J Food Eng,84 (4),582-590.
    Dadali G, Dilek Kilic A, & Ozbek B (2007). Estimatioin of Effective Moisture Diffusivity of Okra for Microwave Drying, Dry. Technol,25,1445-1450
    Di Mascio, P., Kaiser, S., & Sies, H (1989). Lycopene as the most efficient biological carotenoid singlet oxygen quencher, Arch. Biochem. Biophys,274,532-538.
    Doymaz I (2010). Drying of thyme (Thymus Vulgaris L.) and Selection of a suitable thin-layer drying model. J. Food Proc and Preserv.35,458-465.
    Egydio, J. A., Moraes, A. M., & Rosa, P.T.V. (2010). Supercritical fluid extraction of lycopene from tomato juice and characterization of its antioxidant activity, J. Supercrit Fluids,54,159-164. FAOSTAT (2010). FAO Statistics Database. Food and Agriculture Organization Available from http://faostat. fao.org
    Ferguson, L. R. (1997). Micronutrients, dietary questionnaires and cancer, Biomed. Pharcother. 51,337-344.
    Figiel, A. (2009). Drying kinetics and quality of vacuum-microwave dehydrated garlic cloves and slices. J Food Eng,94 (1),98-104.
    Ginzburg, A. S. (1969). Application of infrared radiation in food processing. Chemical process eng. series. London:Leonard Hill.
    Harvard School of Public Health, HSPH (2012). Lycopene-rich tomatoes linked to lower stroke risk. Harvard Health Publications. October 10, Boston. Available at www.health.harvard.edu (Accessed on December 26,2012)
    Hebbar, H. U. & Rastogi, N.K.2001. Mass transfer during infrared drying of cashew kernel. J Food Eng,47:1-5.
    Kardum J P, Sander A, & Skansi D (2001). Comparison of convective, vacuum, and microwave drying chlorpropamide. Dry. Technol,19(1),167-183
    Levelli, V. & Torresani, M. C. (2011). Modelling of lycopene-rich by-products of tomato processing. Food Chem.125,529-535.
    McMinn WAM (2006). Thin-layer modeling of the convective, microwave, microwave-convective and microwave-vacuum drying of lactose powder. J. Food Eng,72,113-123
    Nowak, D., Lewicki, P.P.2004. Infrared drying of apple slices. Innovative Food Sci and Emerg. Technols,5,353-360.
    Olmos, A., Trelea, I. C., Bonazzi, C., & Trystram, G. (2002). Dynamic optimal control of bath rice drying process. Dry. Technol.20 (7):1319-1345.
    Pere C, & Rodier E (2002). Microwave vacuum drying of porous media:experimental study and qualitative considerations of internal transfers. Chem. Eng. and Process.,41,427-436.
    Piotrowski, D., Lenart, A., & Wardzynski, A. (2004). Influence of osmotic dehydration on microwave-convective drying of frozen strawberries. J Food Eng,,65 (4),519-525.
    Porretta, S., & Sandei, L., (1991). Determination of 5-hydroxymethyl-2-furfural (HMF) in tomato products:proposal of a rapid HPLC method and its comparison with the colorimetric method. Food Chem,39,51-57.
    Prabhanjan D G, Ramaswamy H S, & Raghavan G S V (1995). Microwave-assisted convective air drying of thin layer carrots. J. Food Eng,25,283-293.
    Prothon, F., Ahrne, L., Funebo, T., Kidman, S., Langton, M., & Sjoholm, I. (2001). Effects of combined osmotic and microwave dehydration of apple on texture, microstructure, and rehydration characteristics. Leben Wissen Technol,34,95-101.
    Rao, A.V., & Agarwal, S. (2000). Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases:A review. Nutr. Res.,19 (2),305-323
    Ruiz Celma, A., Rogas, S. & Lopez-Rodriguez, F. (2008). Mathematical modeling of thin-layer infrared drying of wet olive husk. Chem Eng. Process, Process Intensification,47:1810-1818.
    Sacilik K., Keskin R., & Elicin A K (2006). Mathematical modeling of solar tunnel drying of thin layer organic tomato. J. Food Eng,73 231-238
    Santos, P.H.S., & Silva, M.A. (2010). Retention of Vitamin C in Drying Processes of Fruits and Vegetables-A Review, Dry. Technol,26 (12),1421-1437.
    Schiffmann, R. (2001). Microwave processes for the food industry. In Handbook of Microwave Technology for Food Application (A. Datta and R. Anantheswaran, eds.) pp.299-352,Marcel Dekker,New York, NY.
    Sch5ssler K, Jager H, & Knorr D (2012). Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper. J. Food Eng,108,103-110.
    Sharma, G.P., Verma, R.C., & Pathare, P.B. (2005). Thin-layer infrared radiation drying of onion slices. J. Food Eng,67,361-366.
    Shi, J., Yi, C., Xue, S.J., Jiang, Y., Ma, Y., & Li, D. (2009). Effect of modifiers on the profile of lycopene extracted from tomato skins by supercritical CO2. J. Food Eng.,93,431-436.
    Therdthai, N., & Zhou, W. (2009). Mathematical modeling of solar drying of apricot in thin layers. J. Food Eng,,91 (3),482-489.
    Togrul, H. (2005). Simple modeling of infrared drying of apple slices. J. Food Eng,71:311-323.
    Togrul, H. (2006). Suitable drying model for infrared drying of carrot. J. Food Eng,77:610-619. Vadivambal, R., & Jayas, D.S. (2007). Changes in quality of microwave-treated agricultural products-a review. J. Biosyst Eng,98:1-16.
    Vagi, E., Simandi, B., Vasarhelyine, K. P., Daood, H., Kery, A., & Doleschall-Nagy, B. (2007). Supercritical carbon dioxide extraction of caroteniods, tocopherols, and sitosterols from industrial tomato by-products, J. Supercrit Fluids,40,218-226.
    Venkatachalapathy K., & Raghavan G.S.V. (2000). Microwave drying of whole, sliced and pureed strawberries. Agri. Eng. J,9(1). pp.29-39.
    Walde S. G., Velu V., Jyothirmayi T., Math R. G. (2006). Effects of pretreatments and drying methods on dehydration of mushroom. J. Food Eng,74,108-115.
    Yamaguchi, M. & Uchiyama, S. (2003).Effect of carotenoids on calcium content and alkaline phosphate activity in rat femoral tissues in vitro:the unique anabolic effect of beta-cryptoxanthin, Biol. Pharm. Bull.26,1188-1191.
    Zanoni, B., Peri, C., Nani, R., & Lavelli, V. (1999). Oxidative heat damage of tomato halves as affected by drying. Food Res Intern,31,395-401.
    Zhang, M., Tang, J., Mujumdar, A., & Wang, S. (2006). Trends in microwave related drying of fruits and vegetables. Trends in Food Sci. Technol,17,524-534.
    Adam, E., Mu'hlbauer, W., Esper, A., Wolf, W., Spiess, W. (2000). Quality changes of anion by drying. Nahrung,44 (1),32-37.
    Adom, K.K., Dzogbefia, V.P.; Ellis, W.O. (1997). Combined effect of drying time and slice thickness on the solar drying of okra. J. Sci. of Food and Agric,73,315-320.
    Adu B, & Otten L (1996). Microwave heating and mass transfer characteristics of white beans. J. Agric. Eng. Res,64(1),71-78
    Afzal, T.M. & Abe, T. (1998). Diffusion in potato during far infrared radiation drying. J. Food Eng,37:353-365.
    Afzal, T.M., & Abe, T. (2000). Simulation of moisture changes in barley during far infrared radiation drying. Computers and Electr in Agric,26 (2):137-145.
    Antonelli, A., Chinnici, F., Masino, F. (2004). Heat-induced chemical modification of grape must as related to its concentration during the production of traditional balsamic vinegar:a preliminary approach. Food Chem,88,63-68.
    Arab, L., & Steck, S. (2000). Lycopene and cardiovascular disease, Am. J. Clin. Nutr.,71, (Suppl.) 1691S-1695S.
    Blaszczak W., Gralik J., Klockiewicz-kaminska E., Fornal J, Warchalewski J R. (2002). Effect of g-radiation and microwave heating on endosperm microstructure in relation to some technological properties of wheat grain. Nahrung/Food,46(2),122-129
    Bohm, V., Ku'hnert, H.R., Scholze, G. (2006). Improving the nutritional quality of microwave-vacuum dried strawberries:Apreliminary study. Food Sci. Technol Intern,12(1),67-75.
    Cantuti-Castelvetri, I., Shukitt-Hale, B., & Joseph, J. (2000).Neurobehavioral aspects of antioxidants in aging, Intern. J. Dev. Neurosci.18,367-381.
    Carroll, M. B., & Churchill, S. W. (1986). A numerical study of periodic on-off versus continuous heating by conduction. Numerical Heat Transfer,10,297-310.
    Celma, A.R., Cuadros, F., & Lopez-Rodriguez, F. (2009). Characterization of industrial tomato by-products from infrared drying process. Food Bioprod. Process.87,282-291.
    Cernisev, S. (2010). Effect of conventional and multistage drying processing on non-enzymatic browning in tomato. J. Food Eng.,96,114-118.
    Chou, S.K., & Chua, K.J. (2001). New hybrid drying technologies for heat sensitive foodstuffs. Trends in Food Sci. Technol,12,359-369.
    Chua, K. J., Chou, S. K., Mujumdar, A. S., Ho, J. C., & Hon, C. K. (2004). Radiant-convective drying of osmotic treated agro-products:Effect on drying kinetics and product quality. Food Contr,15,145-158.
    Dewanto, V., Wu, X., Adom, K. K., & Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chem,50,3010-3014.
    Di Mascio, P., Kaiser, S., Sies, H. (1989). Lycopene as the most efficient biological carotenoid singlet oxygen quencher, Arch. Biochem. Biophys,274,532-538.
    Dostie, M., Seguin, J. N., Maure, D., Ton That, Q. A., Chatingy, R. (1989). Preliminary measurements on the drying of thick porous materials by combinations of intermittent IR and continuous convection heating. In A. S. Mujumdar, & M. A. Roques (Eds.), Drying 89 (pp.513-520). New York:Hemisphere.
    Drouzas, A E., & Schubert, H. (1996). Microwave application in vacuum drying of fruits. J. Food Eng,28(2),203-209
    Drouzas, A. E., Tsami E., Saravacos G D. (1999). Microwave/vacuum drying of model fruit gels. J. Food Eng,39(2),117-122
    Eagerman, B. A. (1978). Orange juice colour measurement using general purpose tristimulus colorimeters. J. Food Sci.,43(2),428-431
    Egydio, J. A., Moraes, A. M., Rosa, P.T.V. (2010). Supercritical fluid extraction of lycopene from tomato juice and characterization of its antioxidant activity, J. Supercrit Fluids, 54,159-164.
    Fakhouri, M O., & Ramaswamy H S (1993). Temperature uniformity of microwave heated foods as influenced by product type and composition. Food Res. Intern,26(2),89-95
    Fathima, A., Begum K., Rajalaksmi, D. (2001). Microwave drying of selected greens and their sensory characteristics. Plant Foods for Human Nutr,56(4),303-311
    Feng, H., & Tang, J. (1998). Microwave finish drying of diced apples in a spouted bed. J. Food Sci,63(4),679-683
    Ferguson, L. R.(1997). Micronutrients, dietry questionnaires and cancer, Biomed. Pharcother.51, 337-344.
    Funebo T; & Ohlsson T (1998). Microwave assisted air dehydration of apple and mushroom. J. Food Eng,38(3),353-367.
    Ginzburg, A. S. (1969). Application of infrared radiation in food processing. Chem. Process Eng. Series. London:Leonard Hill.
    Goksoy, E.O., James, C., & James S. J. (1999). Non-uniformity of surface temperatures after microwave heating of poultry meat. J. Microwave Power and Electromagnetic Energy, 34(3),149-160.
    Goula A M, Adamopoulos K G, Chatzitakis P C, Nikas V A. (2006). Prediction of lycopene degradation during a drying process of tomato pulp. J. Food Eng,74,37-46.
    Goula, A.M., & Adamopoulos, K.G. (2006). Retention of ascorbic acid during drying of tomato halves and tomato pulp. Dry Technol,24 (1),57-64.
    Gowen A., Abu-Ghannam, N., Frias J., Oliveira, J. (2006). Optimisation of dehydration and rehydration properties of cooked chickpeas (Cicer arietinum L.) undergoing microwave—hot air combination drying. Trends in Food Sci. and Technol,17(4),177-183.
    Gregory Ⅲ, J.F. (1996). Vitamins. In Food Chemistry; Fennema, O.R., Ed.; Marcel Dekker: New York,; 559-567.
    Handwerk, R.L., & Coleman, R.L. (1988). Approaches to the citrus browning problem. A review. J. Agric. Food Chem.36,231-236.
    Harbourne, N., Marete, E., Jacquier, J. C., & O' Riordan, D. (2009). Effect of drying methods on the phenolic constituents of meadowsweet (Filipendula ulmaria) and willow (Salix alba). LWT-Food Sci. Technol,42,1468-1473.
    Harvard School of Public Health, HSPH (2012). Lycopene-rich tomatoes linked to lower stroke risk. Harvard Health Publications. October 10, Boston. Available at www.health.harvard.edu (Accessed on December 26,2012)
    Hebbar, H. U., & Rastogi, N.K. (2001). Mass transfer during infrared drying of cashew kernel. J. Food Eng,47:1-5.
    Hodge, J.E. (1953). Chemistry of browning reactions in model systems. J. Agric. Food Chem,1, 928-943.
    IEA (1996). Energy Prices and Taxes. The International Energy Agency.
    Jiang, H., Zhang, M., Mujumdar, A.S., Duan, X (2011). Microwave vacuum freeze drying of fruit and vegetables. In Drying of Foods, Vegetables and Fruits-Volume 3, Ed. Jangam, S.V., Law, C.L. and Mujumdar, A.S.,, ISBN-978-981-08-9426-9, Published in Singapore, pp.1-16.
    Jones, P. (1992). Electromagnetic wave energy in drying processes, In A. S. Mujumdar (Ed.), Drying 92 (pp.114-136). Amsterdam:Elsevier Science.
    Karatas, F., & Kamis.li, F. (2007). Variations of vitamins (A, C and E) and MDA in apricots dried in IR and microwave. J. Food Eng.,78,662-668.
    Kathirvel, K., Naik, K. R., Gariepy, Y., Orsat, V., Raghavan, G. S. V. (2006). Microwave drying-A promising alternative for the herb processing industry. Canadian Society for Bioengineering, Paper No.06-212, Edmonton, Alberta, July 16-19
    Kelen, A., Ress, S., Nagy, T., Pallai, E., Pintye-Hodi, K. (2006). Mapping of temperature distribution in pharmaceutical microwave vacuum drying. Powder Technol,162(2),133-137
    Khraisheh, M. A. M, Cooper, T. J. R., Magee, T. R. A. (1997). Microwave and air drying. Fundamental considerations and assumptions for the simplified thermal calculations of volumetric power absorption. J. Food Eng,33(2),207-219
    Khraisheh, M.A.M., McMinn, W.A.M., Magee, T.R.A. (2004). Quality and structural changes in starchy foods during microwave and convective drying. Food Res. Intern.,37,497-503.
    Kirk, J., Dennison, D.; Kokoczka, P., Heldman, D. (1977). Degradation of ascorbic acid in a dehydrated food system. J. Food Sci,42 (5),1274-1279.
    Krokida M. K., & Maroulis Z. B. (2001a). Quality changes during drying of food materials. In: Drying Technology in Agriculture and Food Sciences (Mujumdar A S, ed). Oxford IBH, Delhi, India
    Krokida, M. K; Maroulis, Z. B, Saravacos, G, D, (2001). The effect of the method of drying on the color of dehydrated products. Intern. J. Food Sci. and Technol.,36(1),53-59
    Krokida, M. K., Tsami, E., & Maroulis, Z. B. (1998). Kinetics on colour changes during drying of some fruits and vegetables. Dry. Technol,16(3-5),667-685.
    Labuza, T.P., & Baiser, W.M. (1992). The kinetics of non-enzymatic browning. In: Schwartzberg, H.G., Hartel, R.W. (Eds.), Physical Chemistry of Foods. Marcel Dekker, New York, USA, pp.595-649.
    Labuza, T.P., Reineccius, C.A., Monnier, V.M., O'Brien, J., Baynes, J.W. (Eds.) (1994). Maillard Reactions in Chemistry, Food and Health. Royal Society of Chemistry, Cambridge, UK.
    Lampinen, M. J., Ojala, K. T., & Koski, E. (1991). Modeling and measurements of dryers for coated paper. Dry Technol,9(4),973-1017.
    Lavelli, V. & Torresani, M. C. (2011). Modelling of lycopene-rich by-products of tomato processing. Food Chem.125,529-535.
    Lavelli, V., Hippeli, S., Peri, C., Elstner, E.F. (1999). Evaluation of radical scavenging activity of fresh and air-dried tomatoes by three model reactions. Journal of Agricultural and Food Chemistry,47,3826-3831.
    Lee, S.H.; Labuza, T.P. (1975). Destruction of ascorbic acid as a function of water activity. J. Food Sci,40,370-373.
    Lee, Y.C.; Kirk, J.R.; Bedford, C.L.; Heldman, D.R. (1977). Kinetics and computer simulation of ascorbic acid stability of tomato juice as functions of temperature, pH and metal catalyst. J. Food Sci,42 (3),640-644.
    Lin, T. M., Durance, T. D., Scaman, C. H. (1998). Characterization of vacuum microwave, air and freeze dried carrot slices. Food Res Intern,31(2),111-117
    Little, A. C. (1976). Physical measurements as predictors of visual appearance. Food Technol,30, 74-82.
    Livingston, G.E. (1953). Malic acid-fructose reaction. J. Ameri. Chem. Soc,75,1342-1344.
    Lozano, J. E., & Ibarz, A. (1997). Colour changes in concentrated fruit pulp during heating at high temperature. J. Food Eng,31,365-373.
    Manickavasagan, A., Jayas D. S., White, N. D. G. (2006). Nonuniformity of surface temperatures of grain after microwave treatment in an industrial microwave dryer. Dry. Technol, 24(12),1559-1567
    Marques, L.G.; Ferreira, M.C.; Freire, J.T. (2007). Freeze-drying of acerola (Malpighia glabra L.). Chem. Eng. and Proc.,46,451-457.
    Martins, S.I.F.S., Jongen, W.M.F., van Boekel, M.A.J.S. (2001). A review of Maillard reaction in food and implications to kinetic modelling. Trends in Food Sci. Technol,11,364-373.
    Maskan, M. (2000). Microwave/air and microwave finish drying of banana. J. Food Eng,44(2), 71-78
    Maskan, M. (2001). Drying, shrinkage and rehydration characteristics of kiwi fruits during hot air and microwave drying. J. Food Eng,48(2),177-182
    Mullin, J. (1995). Microwave processing. In:New Methods of Food Preservation (Gould G W, ed), pp 112-134. Blackie Academic and Professional, Bishopbriggs, Glasgow
    Mullin, J., & Bows J (1993). Temperature measurements during microwave cooking. Food Additives Contamination,10(6),663-672
    Murthy, Z.V.P., & Joshi, D. (2007). Fluidized bed drying of aonla (Emblica officinalis). Dry Technol,25 (5),883-889.
    Nakamura, T., Tagaw,a A., Orikasa, T., & Limoto, M. (2005). Vacuum drying of cooked tomatoes. J. Japanese Soc. of Agric. Mach.,67(6).105-112
    Nguyen, M. L., & Schwartz, S. J. (1998). Lycopene stability during food processing. Proceedings of the Society for Experimental Biology and Medicine,218,101-105.
    Nijhuis, H. H., Torringa, H. M., Muresan, S., Yuksel, D., Leguijt, C., Kloek, W. (1998). Approaches to improving the quality of dried fruit and vegetables. Trends in Food Sci. Technol, 9(1),13-20
    Nowak, D., & Lewicki, P.P. (2004). Infrared drying of apple slices. Innov Food Sci and Emerg Technols,5,353-360.
    Oduro, I., & Clarke, B. (1999). The quality assessment of gari produced by using microwave energy. Intern. J. Food Sci. Technol,34(4),365-370
    Ozkan, I.A.; Akbudak, B.; Akbudak, N. (2007). Microwave drying characteristics of spinach. J. Food Eng.,78,577-583.
    Pischetsrieder, M., Larisch, B., Severin, T. (1998). The Maillard reaction of ascorbic acid with amino acids and proteins-identification of products. In:O'Brien, J., Nursten, H.E., Crabbe, M.J.C., Ames, J.M. (Eds.), The Maillard Reaction in Foods and Medicine. The Royal Society of Chemistry, Cambridge, England, pp.107-112.
    Porretta, S., & Sandei, L. (1991). Determination of 5-hydroxymethyl-2-furfural (HMF) in tomato products:proposal of a rapid HPLC method and its comparison with the colorimetric method. FoodChem.,39,51-57.
    Prabhanjan, D G., Ramaswamy, H S., Raghavan G.S. V. (1995). Microwave assisted convective air drying of thin layer carrots. J. Food Eng.,25(2),283-293
    Qing-guo, H., Min, Z., Mujumdar, A.S., Wei-hua, D., Jin-cai, S. (2006). Effects of different drying methods on the quality changes of granular edamame. Dry. Technol,24 (8),1025-1032.
    Rao, A.V., & Agarwal, S. (1999). Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases:A review. Nutr. Res.,19 (2),305-323
    Rao, M.A., Syed S.H., Rizvi, A., & Datta, K. (2005), Engineering properties of foods (3rd). Taylor & Francis Group, London, U.K.
    Ren G; & Chen F (1998). Drying of American gingseng (Panax quinquefolium) roots by microwave-hot air combination. J. Food Eng.,35(4),433-445
    Riemer, J., & Karel, M. (1977). Shelf-life of vitamin C during food storage:prediction of L-ascorbic acid retention in dehydrated tomato juice. J. Food Process Preserv,1 (4),293-312.
    Sakai, N., & Hanzawa, T. (1994). Application and advances in farinfrared heating in Japan. Trends in Food Sci. Technol,5(11),357-362.
    Santos, P.H.S., & Silva, M.A. (2010). Retention of Vitamin C in Drying Processes of Fruits and Vegetables-A Review, Dry. Technol,26 (12),1421-1437.
    Sharma G P., & Prasad S (2001). Drying of garlic (Allium sativum) cloves by microwave-hot air combination. J. Food Eng,50(2),99-105
    Sharma, S. K., & LeMaguer, M. (1996). Kinetics of lycopene degradation in tomato pulp solids under different processing and storage conditions. Food Res. Intern.,29 (3-4),309-315.
    Sharma, G.P., Verma, R.C., & Pathare, P.B. (2005). Thin-layer infrared radiation drying of onion slices. J. Food Eng,67,361-366.
    Sharma, G.P., & Prasad, S. (2006). Optimization of process parameters for microwave drying of garlic cloves. J. Food Eng.,75,441-446.
    Shi, J., LeMaguer, M., Kakuda, Y., Liptay, A., & Niekamp, F. (1999). Lycopene degradation and isomerization in tomato dehydration. Food Res Intern,32,15-21.
    Shi, J., Yi, C, Xue, S.J. Jiang, Yueming, Ma, Y. Li, D. (2009). Effect of modifiers on the profile of lycopene extracted from tomato tomato skins by supercritical CO2. J. Food Eng,93,431-436.
    Siriamornpuna, S., Kaisoona,O., & Meesoc, N. (2012). Changes in colour, antioxidant activities and carotenoids (lycopene, b-carotene, lutein) of marigold flower (Tagetes erecta L.) resulting from different drying processes. J. Funct. Foods,4,757-766
    Smith, F. J. (1979). Microwave-hot air drying of pasta, onions, and bacon. Microwave Energy Applications Newsletter,12(6),6-12
    Takeoka, G. R., Dao, L., Flessa, S., Gillespie, D. M, Jewell, W. T., Huebner, B., Bertow, D., & Susan, E. E. (2001). Processing Effects on Lycopene Content and Antioxidant Activity of Tomatoes. J. Agric. Food Chem.49,3713-3717
    Thuery, J. (1992). Microwaves:Industrial, Scientific and Medical Applications. Artech House, Norwood, MA
    Timoumia, S., Mihoubi, D., & Zagrouba, F. (2007). Shrinkage, vitamin C degradation and aroma losses during infra-red drying of apple slices. LWT-Food Sci. and Technol,40,1648-1654.
    Togrul, H. (2005). Simple modeling of infrared drying of apple slices. J. Food Eng,71:311-323.
    Togrul, H. (2006). Suitable drying model for infrared drying of carrot. J. Food Eng,77:610-619.
    Tonucci, L. H., Holden, J. M., Beecher, G. R., Khachik, F., Davis, C. S., & Mulokozi, G. (1995). Carotenoid content of thermally processed tomato-based food products. J. Agric. and Food Chem, 43,579-586.
    Tripathi, R.N., & Nath, N. (1989). Effect of starch dipping on quality of dehydrated tomato slices. J. Food Sci. and Technol, India,26; 137-141
    Vadivambal, R. & Jayas,D.S. (2007). Changes in quality of microwave-treated agricultural products-a review. Biosyst. Eng,98,1-16.
    Vagi, E., Simandi, B., Vasarhelyine, K. P., Daood, H., Kery, A., Doleschall, F., Nagy, B. (2007). Supercritical carbon dioxide extraction of carotenoids, tocopherols and sitosterols from industrial tomato by-products. J. Supercrit. Fluids.40(2),218-226.
    Velu, V., Nagender, A., Prabhakara, R. P. G., Rao, D. G. (2006). Dry milling characteristics of microwave dried maize grains. J. Food Eng,74(1),30-36
    Wanyo, P., Siriamornpun, S., Meeso, N. (2011). Improvement of quality and antioxidant properties of dried mulberry leaves with combined far-infrared radiation and air convection in Thai tea process. Food and Bioprod. Process.,89,22-30.
    Warchalewski, J. R., Gralik, J., Wojtasiak, R. Z., Zabielski, J., Kusnnierz, R. (1998). The evaluation of wheat grain odour and colour after gamma and microwave irradiation. Electr. J. Polish Agric. Universities,1(1),1-11
    Yamaguchi, M., & Uchiyama, S. (2003).Effect of carotenoids on calcium content and alkaline phosphate activity in rat femoral tissues in vitro:the unique anabolic effect of beta-cryptoxanthin, Biol. Pharm. Bull.26,1188-1191.
    Yaylayan, V.A., (1997). Classification of the Maillard reaction:a conceptual approach. Trends in Food Sci. and Technol.,8,13-18.
    Yongsawatdigul, J., & Gunasekaran, S. (1996a). Microwave vacuum drying of cranberries, part I: energy use and efficiency. J. Food Process Preserv,20(1),121-143
    Yongsawatdigul, J., & Gunasekaran, S. (1996). Microwave-vacuum drying of cranberries:Part II. quality evaluation. J. Food Process Preserv,20,145-156.
    Yurdugul, S. (2008). An evaluation of the retention of quality characteristics in fresh and freeze-dried alpine strawberries. Intern. J. Food Sci. Technol.,43,865-870.
    Zanoni, B., Peri, C., Nani, R., & Lavelli, V. (1999). Oxidative heat damage of tomato halves as affected by drying. Food Res. Intern.31,395-401.
    Abano, E.E., and Sam-Amoah, L.K. (2011). Effects of different pretreatments on drying characteristics of banana slices. Journal of Engineering and Applied Science. Issue 3, Article.
    Akpinar, E. K. (2006). Mathematical modeling of thin layer drying process under open sun of some aromatic plants. J. Food Engineering.11,864-870.
    Alibas, I., Akbudak, B., and Akbudak, N. (2005). Microwave drying characteristics of spinach. J. Food Engineering 78 (2),577-583.
    Al-Muhtaseb, A. H., Al-Harahsheh, M., Hararah, M., and Magee, T.R.A. (2010). Drying characterisitics and quality change of unutilized-protein rich tomato pomace with and without osmotoic pre-treatment. J. Industrial Crops and Products,31,171-177
    Arab, L. and Steck, S. (2000). Lycopene and cardiovascular disease, Am. J. Clin. Nutr.,71, (Suppl.) 1691S-1695S.
    Arslan, D., and Ozcan, M. M. (2008). Evaluation of drying methods with respect to drying kinetics, mineral content, and colour characteristics of rosemary leaves. Energy Conversion. Manage.49(5),1258-1264.
    Bai-Ngew, S., Therdthai, N., and Dhamvithee, P. (2011). Characterization of microwave vacuum-dried durian chips. J. Food Eng,104,114-122
    Cantuti-Castelvetri, I., Shukitt-Hale, B., and Joseph, J. (2000).Neurobehavioral aspects of antioxidants in aging, Intern. J. Dev. Neurosci.18,367-381.
    Celma, A. R., Cuadros, F., Lopez-Rodriguez, F. (2009). Characterisation of industrial tomato by-products from infrared drying process. J. Food and Bioprod. Process.87,282-291.
    Cernisev, S. (2010). Effects of conventional and multistage drying processing on non-enzymatic browning in tomato. J. Food Eng,96,114-118.
    Chodake, H.M., Goswami, T.K., and Chakraverty, A. (2006). Mathematical modeling of withering characteristics of tea leaves. Dry Technol.24,159-164.
    Contreras, C., Martin, M. E., Martinez-Navarrete, N., and Chiralt, A., (2008). Influence of microwave application on drying kinetics, and optical mechanical properties of apple and strawberry.J. Food Eng,88,55-64.
    Crank, J.1975. The Mathematics of Diffusion,2 nd Ed., Clarendon Press, Oxford, UK
    Dewanto, V., Wu, X., Adom, K. K., & Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem,50, 3010-3014.
    Di Mascio, P., Kaiser, S. Sies, H (1989). Lycopene as the most efficient biological carotenoid singlet oxygen quencher, Arch. Biochem. Biophys,274,532-538.
    Doymaz, I (2011). Drying of thyme (Thymus Vulgaris L.) and Selection of a suitable thin-layer drying model. J. Food Process. Preserv.35,458-465.
    Doymaz, I. (2005). Drying characteristics and kinetics of okra. J. Food Eng.,69,275-279.
    Egydio, J. A., Moraes, A. M., and Rosa, P.T.V. (2010). Supercritical fluid extraction of lycopene from tomato juice and characterization of its antioxidant activity, J. Supercrit Fluids,54,159-164.
    Erbay, Z. and Icier, F. (2010). Thin-layer drying behaviors of Olive leaves(Olea Europaea L.). J. Food Process Eng,33,287-308.
    FAO (2010). Food and Agriculture Organization. FAO Water Development and Management Unit.
    FAOSTAT (2009). FAO Statistics Database. Food and Agriculture Organization Available from http://faostat.fao.org
    Ferguson, L. R.(1997). Micronutrients, dietry questionnaires and cancer, Biomed. Pharcother. 51,337-344.
    Figiel, A. (2009). Drying kinetics and quality of vacuum-microwave dehydrated garlic cloves and slices. J. Food Eng,94 (1),98-104.
    Harvard school of public health, HSPH (2012). Lycopene-rich tomatoes linked to lower stroke risk. Harvard Health Publications. October 10, Boston. Available at www.health.harvard.edu (Accessed on December 26,2012)
    Hawlader, M.N.A., Perera, C.O., and Tian, M., (2006). Properties of modified atmosphere heat pump dried foods. J. Food Eng.74,392-401. Karaaslan, S.N., and Tuncer, I, K. (2008). Development of a drying model for combined microwave-fan-assisted convection drying of spinach. J. Biosystems Engineering,100,44-52.
    Khazaei, J., Arabhosseini, A. and Khosrobeyg, Z. (2008). Alication of superposition technique for modeling behaviour of avishan (Zataria multiflora) leaves. Trans. ASABE 51,1383-1393.
    Kose, B. and Erenturk S. (2010).Drying Characteristics of mistletoe (Viscum album L.) in convective and UV combined convective type dryers. Industrial Crops and Products 32. Pp 394-399.
    Lavelli, V. and Torresani, M. C. (2011). Modelling of lycopene-rich by-products of tomato processing. Food Chemistry.125,529-535.
    Lee, J.H. and Kim, H.J.2008. Drying kinetics of onion slices in a hot-air dryer. J.Food Sci. Nutr. 13,225-230.
    Maskan, M. (2001). Drying, shrinkage, and rehydration characteristics of kiwi fruits hot air and microwave drying. Journal of Food Engineering,48 (2),177-182.
    Mota, C.L., Luciano, C., Dias, A., Barroca, M.J., and Gine, R.P.F. (2010). Convective drying of onion:Kinetics and nutrional evaluation. Food and Bioproducts Procesing 88. Pp 115-123
    Muratore, G., Rizzo, V., Licciardello, F., and Maccarone, E., (2008). Partial dehydration of cherry tomato at different temperature, and nutritional quality of the products. Food Chemistry 111,887-891.
    Nguyen, M. L., & Schwartz, S. J. (1998). Lycopene stability during food processing. Proceedings of the Society for Experimental Biol. and Medicine,218,101-105.
    Page, G.E. (1949). Factors influencing the maximum rate of air drying shelled corn in thin layers. MS Thesis, Purdue University, West Lafayette, IN.
    Ranganna, S (1976) In:Manual of Analysis of Fruits and Vegetable Products McGraw Hill New Delhi p 77.
    Rao, A. V. and Agarwal, S. (2000). Role of antioxidant lycopene in cancer and heart diseases, J. Am. Coll. Nutr.19,563-569.
    Rhim, J.W., Kim, J.H. and Jeong, W.C.2007. Dehydration kinetics of rehmannia (Rehmannia glutinosa Liboschitz). Food Sci. Biotechnol.16,771-777.
    Roberts, J.S., Kidd, D.R., and Padilla-Zakour, O. (2008). Drying kinetics of grape seeds. Journal of Food Engineering.89,460-465.
    Shi, J., Le Maguer, M., Kakuda, Y., Liptay, A., & Niekamp, F. (1999). Lycopene degradation and isomerization in tomato dehydration. Food Research International,32,15-21.
    Shi, J., Yi, C., Xue, S.J. Jiang, Yueming, Ma, Y. Li, D. (2009). Effect of modifiers on the profile of lycopene extracted from tomato tomato skins by supercritical CO2 Journal of Food Engineering,93,431-436.
    Simal, S., Garau, M.C., Femenia, A. and Rossello, C. (2006). A diffusional model with a moisture-dependent diffuision coefficient. Dry Technol.24,1365-1372.
    Singh, U.,. Jain, S.K., Doshi, A., Jain, K.H. and Chahar, K.V. (2008). Effects of Pretreatments on Drying Characteristics of Button Mushroom. Intern. J. Food Eng,4(4). The Berkeley Electronic Press.
    Siriamornpuna,S., Kaisoona,O., Meesoc, N. (2012). Changes in colour, antioxidant activities and carotenoids (lycopene, b-carotene, lutein) of marigold flower (Tagetes erecta L.) resulting from different drying processes. J. functional foods,4,757-766
    SPSS. (2007). SPSS 16.0 for Windows SPSS Inc., Chicago, IL.
    Takeoka, G. R., Lan Dao,Stephan Flessa, David M. Gillespie, William T. Jewell, Britta Huebner, Daniel Bertow, and Susan E. E. (2001).Processing Effects on Lycopene Content and Antioxidant Activity of Tomatoes. J. Agric. Food Chem.49,3713-3717
    Tikk, K., Haugen, J-E, Andersen, H.J., and Aaslyng, M.D. (2008). Monitoring of warmed-over flavour in pork using the electronic nose-correlation to sensory attributes and secondary lipid oxidation products. Journal Meat Science,80,4,1254-1263
    Togrul, H., (2006). Suitable drying model for infrared drying of carrot. Journal of food Engineering,77:610-619.
    Tonucci, L. H., Holden, J. M., Beecher, G. R., Khachik, F., Davis, C. S., & Mulokozi, G. (1995). Carotenoid content of thermally processed tomato-based food products. J. Agric. and Food Chem, 43,579-586.
    Vadivambal, R., and Jayson, D.S. (2007). Changes in quality of microwave-treated agricultural products-a review. Journal of Biosystems Engineering,98:1-16.
    Vagi, E., Simandi, B., Vasarhelyine, K. P., Daood, H., Kery, A., Doleschall-Nagy, B. (2007). Supercritical carbon dioxide extraction of caroteniods, tocopherols, and sitosterols from industrial tomato by-products, J. Supercritical Fluids,40,218-226.
    Vega-Galvez, A., Uribe, E., Lemus, R., and Miranda, M. (2007). Hot air drying characteristics of aloe vera (Aloe barbadensis Miller) and influence of temperature on kinetic parameters. Lebensm.-Wiss. Technol.40,1698-1707.
    Xiaobo, Z., and Jiewen, Z. (2008). Comparative analyses of apple aroma by a tin-oxide gas sensor array device and GC/MS. J. Food Chemistry,107,120-128
    Yamaguchi, M. and Uchiyama, S. (2003).Effect of carotenoids on calcium content and alkaline phosphate activity in rat femoral tissues in vitro:the unique anabolic effect of beta-cryptoxanthin, Biol. Pharm. Bull.26,1188-1191.
    Zanoni, B., Peri, C., Nani, R., and Lavelli, V.,1999. Oxidative heat damage of tomato halves as affected by drying. Food Research International,31,395-401
    Zogzas, N.P., Maroulis, Z.B. and Marinos-Kouris, D. (1996). Moisture diffusivity data compilation in foodstuffs. Dry Technol.14,2225-2253.
    ABANO, E.E. and SAM-AMOAH, L.K.2011. Effects of different pretreatments on drying characteristics of banana slices. Journal of Engineering and Applied Science.6,121-129
    AKANBI, C.T.R. ADEYEMI, S. and OJO, A.2006. Drying characteristics and sorption isotherm of tomato slices. J. Food Eng.73,157-163.
    AKPINAR, E. K. (2006). Mathematical modeling of thin layer drying process under open sun of some aromatic plants. J. Food Eng.,11,864-870.
    ALIBAS, I. AKBUDAK, B. and AKBUDAK, N.2005. Microwave drying characteristics of spinach. J. Food Eng.,78 (2),577-583.
    AL-MUHTASEB, A. H. AL-HARAHSHEH, M., HARARAH, M. and MAGEE, T.R.A.2010. Drying characteristics and quality change of unutilized-protein rich tomato pomace with and without osmotic pre-treatment. J. Industrial Crops and Products,31,171-177
    ARSLAN, D. and OZCAN, M. M.2008. Evaluation of drying methods with respect to drying kinetics, mineral content, and colour characteristics of rosemary leaves. Energy Conversion. Manage.49 (5),1258-1264.
    BAI-NGEW, S. THERDTHAI, N. and DHAMVITHEE, P.2011. Characterization of microwave vacuum-dried durian chips. J. Food Eng.,104,114-122
    BONDARUK, J. MARKOWSKI, M. and BLASZCZAK, W.2007. Effect of drying conditions on the quality of vacuum-microwave dried potato cubes. J. Food Eng.,81(2),306-312.
    CELMA, A.R. CUADROS, F. and LOPEZ-RODRIGUEZ, F.2009. Characterization of industrial tomato by-products from infrared drying process. J. Food and Bioproducts Processing 87,282-291.
    CERNISEV, S.2010. Effects of conventional and multistage drying processing on non-enzymatic browning in tomato. J. Food Eng.,96,114-118.
    CONTRERAS, C. MARTIN, M.E. MARTINEZ-NAVARRETE, N. and CHIRALT, A.2008. Influence of microwave application on drying kinetics, and optical mechanical properties of apple and strawberry. J. Food Eng.,88,55-64.
    CRANK, J.1975. The Mathematics of Diffusion,2nd Ed., Clarendon Press, Oxford, UK
    CUI, Z.W. SUN, L.J. CHEN, W. and SUN, D.W.2008. Preparation of dry honey by microwave-vacuum drying. J. Food Eng.,84 (4),582-590.
    DADALI, G. DILEK, K. and APAR, B.2007. Estimatioin of Effective Moisture Diffusivity of Okra for Microwave Drying, Drying Technology,25,1445-1450
    DOYMAZ, I.2007. Air-drying characteristics of tomatoes. J. Food Eng.,.78,1291-1297.
    DOYMAZ, I.2011. Drying of thyme (Thymus Vulgaris L.) and Selection of a suitable thin-layer drying model.J. Food Process Preserv.35,458-465.
    FAO,2010. Food and Agriculture Organization. FAO Water Development and Management Unit.
    FAOSTAT,2008. FAO Statistics Database. Food and Agriculture Organization Available from http://faostat.fao.org, (accessed on November,2011)
    FIGIEL, A.2009. Drying kinetics and quality of vacuum-microwave dehydrated garlic cloves and slices. J. Food Eng.,94 (1),98-104.
    GIRI, S.K. and PRASAD S.2007. Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. J. Food Eng.,78 (2),512-521.
    GOODMAN, C. FAWCETT, S. BARRINGER, S.A.2002. Flavour, viscosity, and colour analysis of hot and cold break tomato juices. J. Food Sci.67 (1):404-408.
    HAWLADER, M.N.A., PERERA, C.O., and TIAN, M.2006. Properties of modified atmosphere heat pump dried foods. J. Food Eng.,74,392-401.
    HUI, Y.H. CLARK, S.2007. Quality of dried tomatoes:In Handbook of Food Products Manufacturing, Marcel Dekker, Inc:New York, NY. pp 623-626
    MASKAN, M.2001. Drying, shrinkage, and rehydration characteristics of kiwi fruits hot air and microwave drying. J. Food Eng.,48 (2),177-182.
    MURATORE, G. RIZZO, V. LICCIARDELLO, F. and MACCARONE, E.2008. Partial dehydration of cherry tomato at different temperature, and nutritional quality of the products. Food Chem.111,887-891.
    PERE, C. and RODIER, E.2002. Microwave vacuum drying of porous media:experimental study and qualitative considerations of internal transfers. Chem. Eng. Process,41,427-436.
    PILLAI, M.G. REGUPATHI, I. MIRANDA, L.R. and MURUGESAN, T.2010. Moisture diffusivity and energy consumption during microwave drying of plaster of Paris. Chem prod. Process Modeling.5(1). Article 4.
    PIOTROWSKI, D. LENART, A. and WARDZYNSKI, A.2004. Influence of osmotic dehydration on microwave-convective drying of frozen strawberries. J. Food Eng.,65 (4),519-525.
    PROTHON, F. AHRNE, L. FUNEBO, T. KIDMAN, S. LANGTON, M. and SJOHOLM, I. 2000. Effects of combined osmotic and microwave dehydration of apple on texture, microstructure, and rehydration characteristics. Lebensmittel Wissenschaft und Technologie,34, 95-101.
    RAO, A.V. AND AGARWAL, S.1999. Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases:A review. Nutrition Research,19 (2),305-323
    ROBERTS, J.S. KIDD, D.R. and PADILLA-ZAKOUR, O.2008. Drying kinetics of grape seeds. J. Food Eng.,89,460-465.
    SCHIFFMANN, R.2001. Microwave processes for the food industry. In:Datta, A. and Anantheswaran, R. (Eds.) Handbook of microwave technology for food application.299-352, New York:Marcel Dekker
    SHI, J. and MAGUER, M.L.2000. Lycopene in tomatoes:Chemical and physical properties affected by food processing. Crit Revs Food Sci. and Nutri,40,1-42
    SINGH, U. JAIN, S.K. DOSHI, A. JAIN, K.H. and CHAHAR, K.V.2008. Effects of Pretreatments on Drying Characteristics of Button Mushroom. Intern. J. Food Eng,4 (4). The Berkeley Electronic Press.
    SPSS.2007. SPSS 16.0 for Windows SPSS Inc., Chicago, IL.
    THERDTHAI, N., and ZHOU, W.2009. Mathematical modeling of solar drying of apricot in thin layers. J. Food Eng.,91 (3),482-489.
    VADIVAMBAL, R. and JAYSON, D.S.2007. Changes in quality of microwave-treated agricultural products-a review. J. Biosyst Eng.,98:1-16.
    VENKATACHALAPATHY, K. and RAGHAVAN G.S.V.2000. Microwave drying of whole, sliced and pureed strawberries. Agric. Eng. J.,9(1).pp.29-39.
    WALDE, S.G. VELU, V. JYOTHIRMAYI, T. and MATH, R.G.2006. Effects of pretreatments and drying methods on dehydration of mushroom. J. Food Eng.,74,108-115.
    ZANONI, B. PERI, C. NANI, R. and LAVELLI, V.1999. Oxidative heat damage of tomato halves as affected by drying. Food Res Intern.,31,395-401.
    ZHANG, M., TANG, J., MUJUMDAR, A., AND WANG, S.2006. Trends in microwave related drying of fruits and vegetables. Trends in Food Sci .Technol,17,524-534.
    Abano, E. E., Ma, H., & W, Q. (2011). Influence of Air Temperature on the Drying Kinetics and Quality of Tomato Slices. Journal of Food Processing & Technology,2 (5),2-9.
    Akpinar, E. K. (2006). Mathematical modeling of thin layer drying process under open sun of some aromatic plants. Journal of Food Engineering,77,864-870.
    Alibas Ozkan, I., Akbudak, B., & Akbudak, N. (2007). Microwave drying characteristics of spinach. Journal of Food Engineering,78,577-583.
    Bai-Ngew, S., Therdthai, N., & Dhamvithee, P. (2011). Characterization of microwave vacuum-dried durian chips. J. Food Engineering,104,114-122.
    Celma, A. R., Cuadros, F., & Lopez-Rodriguez, F. (2009). Characteristics of industrial tomato by-products from infrared drying process. J. Food and Bioproducts Processing (87),282-291.
    Contreras, C., Martin, M. E., Martinez-Navarrete, N., & Chiralt, A. (2008). Influence of microwave application on drying kinetics, and optical mechanical properties of apple and strawberry. Journal of Food Engineering,88,55-64.
    Dadali, G., Dilek Kilic, A., & Ozbek, B. (2007). Estimatioin of Effective Moisture Diffusivity of Okra for Microwave Drying. Drying Technology,25,1445-1450.
    Darvishi, H., Banakar, A., & Zarein, M. (2012). Mathematical modeling and thin layer drying kinetics of carrot slices. Global Journal of Fronteir Science Mathematics and Decision Science, 5(1),57-64.
    Demir, V., Gunhan, T., & Yagcioglu, A. K. (2007). Mathematical modeling of convection drying of green table olives. Biosyst. Eng.,98,47-53.
    Doymaz, I. (2005). Drying characteristics and kinetics of okra. Journal. Food Engineering,69, 275-279.
    Doymaz, I. (2010). Drying of thyme (Thymus Vulgaris L.) and Selection of a suitable thin-layer drying model. Journal of Food Processing and Preservation
    Erbay, Z., & Icier, F. (2008). Thin-layer drying behaviors of Olive leaves (Olea Europaea L.). Journal of Food Process Engineering,33,287-308.
    FAO. (2010). Food and Agriculture Organisation. Retrieved 10 12,2011, from Water Development and Management:http://fao.org/nr/water
    Figiel, A. (2009). Drying kinetics and quality of vacuum-microwave dehydrated garlic cloves and slices. Journal of Food Engineering,94 (1),98-104.
    Goula, A. M., Adamopoulos, K. G., Chatzitakis, P. C., & Nikas, V. A. (2006). Prediction of lycopene degradation during a drying process of tomato pulp. Journal of Food Engineering,74, 37-46.
    Henderson, S. M., & Pabis, S. (1961). Grain drying theory I:temperature effect on drying coefficient. Journal of Agriculture Research Engineering,6,169-174.
    HSPH. (2010). Health benefit of tomatoes. Harvard School of Public Health.
    Kardum, J. P., Sander, A., & Skansi, D. (2001). Comparison of convective, vacuum, and microwave drying of chloropropamide. Drying Technology,19(1),167-183.
    Kassem, A. S. (1998). Comparative studies on thin layer drying models for wheat.,,.6. Morocco:13th international congress on agricultural engineering.
    Khraisheh, M. A., McMinn, W. A., & Magee, T. R. (2004). Quality and structural changes in starchy foods during microwave and convective drying. Food Research International,37 (5), 497-503.
    Kose, B., & Erenturk, S. (2010). Drying Characteristics of mistletoe (Viscum album L.) in convective and UV combined convective type dryers. Industrial Crops and Products,32,394-399.
    Lewis, W. K. (1921). The rate of drying of solid materials. Journal of Industrial Engineering,13, 427-443.
    Lin, T. M., Durance, T. D., & Scaman, C. H. (1998). Characterization of vacuum microwave, air and freeze dried carrot slices. Food Research International,31 (2),111-117.
    Marfil, P. H., Santos, E. M., & N, T. V. (2008). Ascorbic acid degradation kinetics in tomatoes at different drying conditions. Food Science and Technology,41,1642-1647.
    McMinn, W. (2006). Thin-layer modeling of the convective, microwave, microwave-convective and microwave-vacuum drying of lactose powder. J. Food Engineering,72,113-123.
    Midilli, A., Kucuk, H., & Yapar, Z. (2002). A new model for single layer drying. Drying Technology,20(7),1503-1513.
    Minaei, S., Motevali, A., Ahmadi, E., & Azizi, M. H. (2012). Mathematical models of drying pomegranate arils in vacuum and microwave dryers. Journal of Agriculture Science and Technology,74,311-325.
    Mota, C. L., Luciano, C., Dias, A., Barroca, M. J., & Gine, R. P. (2010). Convective drying of onion:Kinetics and nutrional evaluation. Food and Bioproducts Procesing,88,115-123.
    Overhults, D. D., White, G. M., Hamilton, M. E., & Ross, I. J. (1973). Drying soybeans with heated air. Transactions of the ASAE,16, pp.195-200.
    Page, G. E. (1949). Factors influencing the maximum rate of air drying shelled corn in thin layers. MS Thesis. West Lafayette IN:Purdue University.
    Pere, C., & Rodier, E. (2002). Microwave vacuum drying of porous media:experimental study and qualitative considerations of internal transfers. Chemical Engineering and Processing,41, 427-436.
    Pillai, M. G., Regupathi, I., Miranda, L. R., & Murugesan, T. (2010). Moisture diffusivity and energy consumption dring microwave drying of plaster of paris. International Journal of Food Engineering,5 (1), Article 4.
    Prabhanjan, D. G., Ramaswamy, H. S., & Raghavan, G. S. (1995). Microwave-assisted convective air drying of thin layer carrots. J. Food Engineering,25,283-293.
    Ranganna, S. (1976). In Manual of Analysis of Fruits and Vegetable Products (p.77). New Delhi: McGraw Hill.
    Sacilik, K., Keskin, R., & Elicin, A. K. (2006). Mathematical modeling of solar tunnel drying of thin layer organic tomato. J. Food Engineering,73,231-238.
    Sadasivam, S., & Balasubraminan, T. (1987). In Practical Manual in Biochemistry (p.14). Coimbatore:Tamil Nadu Agricultural University.
    Schossler, K., Jager, H., & Knorr, D. (2012). Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper. J. Food Engineering,108,103-110.
    Sharaf-Eldeen, O., Blaisdell, Y. I., & Spagna, G. (1980). A model for ear corn drying. Transactions of the ASAE,23, pp.1261-1271.
    Sharma, G. P., & Prasad, S. (2004). Effective moisture diffusivity of garlic cloves undergoing microwave-convective drying. J. Food Engineering,65,609-617.
    Sharma, S. K., & Le Maguer, M. (1996). Kinetics of lycopene degradation in tomato pulp solids under different processing and storage conditions. Food Research International,29 (3-4),309-315.
    SPSS. (2007). SPSS 16.0 for Windows. Chicago, IL.:Windows SPSS Inc.
    Takeoka, G. R., Dao, L., Flessa, S., Gillespie, D. M., Jewell, W. T., Huebner, B., et al. (2001). Processing Effects on Lycopene Content and Antioxidant Activity of Tomatoes. J. Agric. Food Chem,49,3713-3717.
    Therdthai, N., & Zhou, W. (2009). Characterization of microwave vacuum drying and hot air drying of mint leaves (Mentha cordifolia Opiz ex Fresen). J. Food Engineering,91 (3),482-489.
    Togrul, H. (2005).. Simple modeling of infrared drying of fresh apple slices. ,,,. Journal of Food Engineering,71,311-323.
    Vega, A., Uribe, E., Lemus, R., & Miranda, M. (2007). Hot air drying characteristics of aloe vera (Aloe barbadensis Miller) and influence of temperature on kinetic parameters. Lebensm.-Wiss. Technol.,40,1698-1707.
    Venkatachalapathy, K., & Raghavan, G. S. (2000). Microwave drying of whole, sliced, and pureed strawberries. Agricultural Engineering Journal,9 (1),29-39.
    Verma, L. R., Bucklin, R. A., Endan, J. B., & Wratten, F. T. (1985). Effects of drying air parameters on rice drying models. Transactions of the ASAE,28,296-301.
    Walde, S., Velu, V., Jyothirmayi, T., & Math, R. (2006). Effects of pretreatments and drying methods on dehydration of mushroom. J. Food Engineering,74,108-115.
    Zhang, D., & Hamauzu, Y. (2004). Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chemistry,88, 503-509.
    Zheng, H., & Lu, H. (2011). Effect of microwave pretreatment on the kinetic of ascorbic acid degradation and peroxidase inactivation in different parts of asparagus (Asparagus officinalis L.) during water blanching. Food Chemistry,128,1087-1093.
    ABANO, E.E., MA H, QU W.2012. Influence of Combined Microwave-Vacuum Drying On Drying Kinetics and Quality of Dried Tomato Slices. J. Food Quality,35(3),159-168,
    ABANO, E.E., MA, H., QU, W.2011. Influence of Air Temperature on the Drying Kinetics and Quality of Tomato Slices. J Food Process Technol,2(5) 2-9.
    ADAM, E., MUHLBAUER, W., ESPER, A., WOLF, W., SPIESS, W.2000. Quality changes of anion by drying. Nahrung,44 (1),32-37.
    ADOM, K.K., DZOGBEFIA, V.P., ELLIS, W.O.1997. Combined effect of drying time and slice thickness on the solar drying of okra. J. Sci. of Food & Agric,73,315-320.
    AL-MUHTASEB, A.H., AL-HARAHSHEH, M., HARARAH, M. MAGEE, T.R.A.2010. Drying characteristics and quality change of unutilized-protein rich tomato pomace with and without osmotic pre-treatment. J. Indus. Crops & Prod.,31,171-177
    ARSLAN, D., OZCAN, M. M,2008. Evaluation of drying methods with respect to drying kinetics, mineral content, and colour characteristics of rosemary leaves. Energy Convers. Manage.49 (5),1258-1264.
    CELMA, A. R., CUADROS, F., LOPEZ-RODRIGUEZ, F.2009. Characterisation of industrial tomato by-products from infrared drying process. J. Food & Bioprod. Process,87,282-291
    CERNISEV, S.2010. Effects of conventional and multistage drying processing on non-enzymatic browning in tomato. J. Food Eng.,96,114-118.
    DI MASCIO, P., KAISER, S., SIES, H.1989. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys,214,532-538
    DOYMAZ, I 2010. Drying of thyme (Thymus Vulgaris L.) and Selection of a suitable thin-layer drying model. J. Food Process & Preserv.35,458-465. Doi:10.1111/j.1745-4549.2010.00488.x
    DROBY, S.2006. Improving quality and safety of fresh fruit and vegetables after harvest by the use of biocontrol agents and natural materials. Acta Horti,709,45-51.
    EGYDIO, J. A., MORAES, A. M., ROSA, P.T.V.2010. Supercritical fluid extraction of lycopene from tomato juice and characterization of its antioxidant activity, J. of Supercrit Fluids, 54,159-164.
    EL-GHAOUTH, A., WILSON, C.L., WISNIEWSKI, M.E.2004. Biologically based alternatives to synthetic fungicides for the postharvest diseases of fruit and vegetables. In:Naqvi, S.A.M.H.
    Applied Mycology and Biotechnology:Agriculture and Food Production. Elsevier Science, Amsterdam, The Netherlands, pp.11-27.
    ERBAY, Z. ICIER, F.2008. Thin-layer drying behaviors of Olive leaves (Olea Europaea L.).J. Food Process Eng.33,287-308.
    ERENTURK, S., GULABOGLU, M.S., GULTEKIN, S.2005. The effects of cutting and drying medium on the vitamin C content of rosehip during drying.J. Food Eng.,68 (4),513-518
    FAO.2010. Food and Agriculture Organization. FAO Water Development and Management Unit.
    HARVARD SCHOOL OF PUBLIC HEALTH.2010. Lycopene-rich tomatoes linked to lower stroke risk, Boston. Harvard University Press.
    KARAASLAN, S.N., TUNCER, I.K.2008. Development of a drying model for combined microwave-fan-assisted convection drying of spinach. J. Biosyst. Eng.,100,44-52.
    LEE, J.H. KIM, H.J.2008. Drying kinetics of onion slices in a hot-air dryer. J.Food Sci. Nutr. 13,225-230.
    LAVELLI, V., TORRESANI, M.C.2011. Modelling of lycopene-rich by-products of tomato processing. Food Chem.125,529-535.
    MARFIL, P.H.M., SANTOS, E.M., TELIS, V.R.N.2008. Ascorbic acid degradation kinetics in tomatoes at different drying conditions. Food Sci.&Technol,41,1642-1647.
    MASKAN, M.2001. Drying, shrinkage, and rehydration characteristics of kiwi fruits hot air and microwave drying. J. Food Eng.,48 (2),177-182.
    MONTGOMERY, D.C. RUNGER, G.C.2002. Applied Statistics and Probability for Engineers. 3rd Edition. John Wiley & Sons, Inc. New York, NY.
    MRAD, N.D., BOUDHRIOUA, N., KECHAOU, N., COURTOIS, F.2012. Influence of air drying temperature on kinetics, physiochemical properties, total phenolic content and ascorbic acid of pears. Food & Bioprod. Process.90(3),433-441.
    MURATORE, G. RIZZO, V. LICCIARDELLO, F. AND MACCARONE, E.2008. Partial dehydration of cherry tomato at different temperature, and nutritional quality of the products. Food Chem.111,887-891.
    MYERS, R.H. MONTGOMERY, D.C.2002. Response Surface Methodology:Process and Product Optimization Using Designed Experiments. John Wiley & Sons, New York, NY.
    NAKAMURA T, TAGAWA A, ORIKASA T, LIMOTO M (2005). Vacuum drying of cooked tomatoes. J. Japanese Soc. of Agric. Mach.,67(6).105-112
    OLMOS, A., TRELEA, I. C., BONAZZI, C., TRYSTRAM, G.2002. Dynamic optimal control of bath rice drying process. Dry. Technol.20 (7):1319-1345.
    PORRETTA, S., SANDEI, L.1991. Determination of 5-HMF in tomato products proposed of a rapid HPLC method and its comparison with the colorimetric method. Food Chem.,39,51-57.
    PRABHANJAN, D. G., RAMASWAMY, H. S., RAGHAVAN, G.S.V.1995. Microwave-assisted convective air drying of thin layer carrots. J. Food Eng.,25,283-293.
    RAO, A.V. AGARWAL, S.1999. Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases:A review. Nutr. Res.,19 (2),305-323.
    RHIM, J.W., KIM, J.H., JEONG, W.C.2007. Dehydration kinetics of rehmannia (Rehmannia glutinosa Liboschitz). Food Sci. Biotechnol.16,771-777.
    SANTOS, P.H.S., SILVA, M.A.2010. Retention of Vitamin C in Drying Processes of Fruits and Vegetables-A Review, Dry. Technol,26 (12),1421-1437.
    SHARMA, R.R., SINGH D., SINGH R.2009. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists:A review, Biol. Control,50,205-221.
    SHI, J.X., LEMANGUER, M.2000. Lycopene in tomatoes. Chemical and physical properties affected by processing. Crit. Rev. in Food Sci. and Nutr.,40(1),1-42
    SINGH, D., SHARMA, R.R.2007. Postharvest diseases of fruit and vegetables and their management. In:Prasad, D. (Ed.), Sustainable Pest Management. Daya Publishing House, New Delhi, India,243-260.
    TRIPATHI, R.N., NATH, N.1989. Effect of starch dipping on quality of dehydrated tomato slices. J. Food Sci. and Technol, India,26; 137-141
    VAGI, E., SIMANDI, B., VASARHELYINE, K. P., DAOOD, H., KERY, A., DOLESCHALL, F., NAGY, B.2007. Supercritical carbon dioxide extraction of carotenoids,tocopherols and sitosterols from industrial tomato by-products. J. Supercrit. Fluids.40(2),218-226.
    WANG, J. DU, Y.2005. The effect of c-ray irradiation on the drying characteristics and final quality of dried potato slices. Int. J. Food Sci. & Technol,40,75-82.
    WANG, J., CHAO, Y.2003. Effect of gamma irradiation on quality of dried potato. Rad. Phys. & Chem.,66,293-297.
    ZANONI, B., PERI, C., NANI, R., LAVELLI, V.1999. Oxidative heat damage of tomato halves as affected by drying. Food Res. Int.,31,395-401.
    ZHANG, D., SPADARO, D., GARIBALDI, A., GULLINO, M. L.2010. Efficacy of the antagonist Aureobasidium pullulans PL5 against postharvest pathogens of peach, apple and plum and its modes of action. Biol. Contr,54,172-180.
    ZHU, S.J.2006. Non-chemical approaches to decay control in postharvest fruit. In:Noureddine, B., Norio, S. (Eds.), Advances in Postharvest Technologies for Horticultural Crops. Research Signpost, Trivandrum, India, pp.297-313.
    Abano E E, Ma H, & Qu W. (2011). Influence of Air Temperature on the Drying Kinetics and Quality of Tomato Slices. J. Food Process Technol,2(5),1-9.
    Abano, E.E., Ma H, & Qu W. (2012). Influence of Combined Microwave-Vacuum Drying On Drying Kinetics and Quality of Dried Tomato Slices. J. Food Quality,35(3),159-168.
    Adam, E., Mu'Hlbauer, W., Esper, A., Wolf, W., & Spiess, W. (2000). Quality changes of anion by drying. Nahrung,44 (1),32-37.
    Afzal, T.M. & Abe, T. (1998). Diffusion in potato during far infrared radiation drying. J. Food Eng,37:353-365.
    Afzal, T.M. & Abe, T. (2000). Simulation of moisture changes in barley during far infrared radiation drying. Computers and Electr in Agric,26 (2):137-145.
    Al-Muhtaseb, A.H., Al-Harahsheh, M., Hararah, M. & Magee, T.R.A. (2010). Drying characteristics and quality change of unutilized-protein rich tomato pomace with and without osmotic pre-treatment. J. Indus. Crops & Prod.,31,171-177
    AOAC. (1990). Official methods of analysis of the association of official analytical chemists. Association of Official Analytical Chemists,1058-1059. Washington DC
    Arslan, D., & Ozcan, M. M, (2008). Evaluation of drying methods with respect to drying kinetics, mineral content, and colour characteristics of rosemary leaves. Energy Convers. Manage.49 (5), 1258-1264.
    Carroll, M. B., & Churchill, S. W. (1986). Anumerical study of periodic on-off versus continuous heating by conduction. Numerical Heat Transfer,10,297-310.
    Celma, A.R.,Cuadros, F. & Lopez-Rodriguez, F.2009. Characterization of industrial tomato by-products from infrared drying process. Food Bioprod. Process.87,282-291.
    Cernisev, S. (2010). Effects of conventional and multistage drying processing on non-enzymatic browning in tomato. J. Food Eng.96,114-118.
    Chua, K. J., Chou, S. K., Mujumdar, A. S., Ho, J. C., & Hon, C. K. (2004). Radiant-convective drying of osmotic treated agro-products:Effect on drying kinetics and product quality. Food Control,15,145-158.
    Design Expert. (2010). Design Expert 8.0.7.1. Stat-Ease, Inc. Minneapolis, MN
    Di Mascio, P., Kaiser, S., & Sies, H. (1989). Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys,274,532-538
    Dostie, M., Seguin, J. N., Maure, D., Ton That, Q. A., & Chatingy, R. (1989). Preliminary measurements on the drying of thick porous materials by combinations of intermittent IR and continuous convection heating. In A. S. Mujumdar, & M. A. Roques (Eds.), Drying 89 (pp.513-520). New York:Hemisphere.
    Egydio, J. A., Moraes, A. M., & Rosa, P.T.V. (2010). Supercritical fluid extraction of lycopene from tomato juice and characterization of its antioxidant activity, J. Supercrit Fluids,54,159-164.
    Erenturk, S., Gulaboglu, M.S., & Gultekin, S. (2005). The effects of cutting and drying medium on the vitamin C content of rosehip during drying. J. Food Eng.,68 (4),513-518
    Ginzburg, A. S. (1969). Application of infrared radiation in food processing. Chemical process engineering series. London:Leonard Hill.
    Goula A. M., Adamopoulos K. G., Chatzitakis P. C., & Nikas V A. (2006). Prediction of lycopene degradation during a drying process of tomato pulp. J. Food Eng,74,37-46.
    Hebbar, H. U., & Rastogi, N.K. (2001). Mass transfer during infrared drying of cashew kernel. J. Food Eng,47:1-5.
    Jones, P. (1992). Electromagnetic wave energy in drying processes. In A. S. Mujumdar (Ed.), Drying 92 (pp.114-136). Amsterdam:Elsevier Science.
    Karaaslan, S.N., & Tuncer, I.K. (2008). Development of a drying model for combined microwave-fan-assisted convection drying of spinach. Biosystem. Eng.100,44-52.
    Lavelli, V., & Torresani, M.C. (2011). Modelling of lycopene-rich by-products of tomato processing. Food Chem.125,529-535.
    Marfil, P.H.M., Santos, E.M., & Telis, V.R.N. (2008). Ascorbic acid degradation kinetics in tomatoes at different drying conditions. Food Sci. Technol,41,1642-1647
    Maskan, M. (2001). Drying, shrinkage, and rehydration characteristics of kiwi fruits hot air and microwave drying. J. Food Eng.,48 (2),177-182.
    Mrad, N.D., Boudhrioua, N., Kechaou, N., & Courtois, F. (2012). Influence of air drying temperature on kinetics, physiochemical properties, total phenolic content and ascorbic acid of pears. Food Bioprod. Process.90(3),433-441.
    Muratore, G. Rizzo, V. Licciardello, F. & Maccarone, E. (2008). Partial dehydration of cherry tomato at different temperature, and nutritional quality of the products. Food Chem. 111,887-891.
    Myers, R.H. & Montgomery, D.C. (2002). Response Surface Methodology:Process and Product Optimization Using Designed Experiments. John Wiley & Sons, New York, NY.
    Nowak, D., & Lewicki, P.P. (2004). Infrared drying of apple slices. Innovative Food Sci and Emerging Technologies,5,353-360.
    Porretta, S., & Sandei, L. (1991). Determination of 5-HMF in tomato products proposed of a rapid HPLC method and its comparison with the colorimetric method. Food Chem.,39,51-57.
    Ranganna, S. (1976). In:Manual of Analysis of Fruits and Vegetable Products McGraw Hill, New Delhi p 77.
    Rao, A.V., & Agarwal, S. (1999). Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases:A review. Nutr. Res.,19 (2),305-323.
    Ruiz Celma, A., Rogas, S. & Lopez-Rodriguez, F. (2008). Mathematical modeling of thin-layer infrared drying of wet olive husk. Chemical Engineering and Processing, Process Intensification, 47:1810-1818.
    Santos, P.H.S., & Silva, M.A. (2010). Retention of Vitamin C in Drying Processes of Fruits and Vegetables-A Review, Dry. Technol,26 (12),1421-1437.
    Sharma S K, & Le Maguer M. (1996). Kinetics of lycopene degradation in tomato pulp solids under different processing and storage conditions. Food Res. Intern.,29 (3-4),309-315.
    Sharma, G.P., Verma, R.C., & Pathare, P.B. (2005). Thin-layer infrared radiation drying of onion slices. J. Food Eng,67,361-366.
    Shi, J.X., & LeManguer, M.2000. Lycopene in tomatoes. Chemical and physical properties affected by processing. Crit. Rev. in Food Sci. and Nutr.,40(1),1-42
    Siriamornpuna,S., Kaisoona,O., & Meesoc, N. (2012). Changes in colour, antioxidant activities and carotenoids (lycopene, b-carotene, lutein) of marigold flower (Tagetes erecta L.) resulting from different drying processes. J. functional foods,4,757-766.
    Sokhansanj S, & Jayas D S. (1995). Drying of food stuffs. In A. S. Mujumdar (Ed.), Handbook of industrial drying (pp.589-625). New York:Marcel Dekker Inc.
    Takeoka G R., Dao L, Flessa S, Gillespie D M, Jewell W T, Huebner B, Bertow D, & Susan E E (2001). Processing Effects on Lycopene Content and Antioxidant Activity of Tomatoes. J. Agric. Food Chem.49,3713-3717
    Timoumia, S, Mihoubia D, & Zagroubab F. (2007). Shrinkage, vitamin C degradation and aroma losses during infra-red drying of apple slices. LWT 40,1648-1654
    Togrul, H. (2005). Simple modeling of infrared drying of apple slices. Journal of food Engineering,71:311-323.
    Togrul, H. (2006). Suitable drying model for infrared drying of carrot. Journal of food Engineering,77:610-619.
    Vadivambal, R. & Jayas,D.S.2007. Changes in quality of microwave-treated agricultural products-a review. Biosystems Eng.98,1-16.
    Vagi, E., Simandi, B., Vasarhelyine, K. P., Daood, H., Kery, A., Doleschall, F., & Nagy, B. (2007). Supercritical carbon dioxide extraction of carotenoids,tocopherols and sitosterols from industrial tomato by-products. J. Supercrit. Fluids.40(2),218-226.
    Wang, J.. & Du, Y. (2005). The effect of c-ray irradiation on the drying characteristics and final quality of dried potato slices. Int. J. Food Sci. Technol,40,75-82.
    Wang, J., & Chao, Y. (2003). Effect of gamma irradiation on quality of dried potato. Rad. Phys. & Chem.,66,293-297.
    Wanyo, P., Siriamornpun, S., & Meeso, N. (2011). Improvement of quality and antioxidant properties of dried mulberry leaves with combined far-infrared radiation and air convection in Thai tea process. Food and Bioproducts Process.,89,22-30.
    Zanoni, B., Peri, C., Nani, R., & Lavelli, V. (1999). Oxidative heat damage of tomato halves as affected by drying. Food Res. Int.,31,395-401.
    Abano, E.E., Ma H, & Qu W. (2012). Influence of Combined Microwave-Vacuum Drying On Drying Kinetics and Quality of Dried Tomato Slices. J. Food Quality,35(3),159-168.
    Abe, T., and Afzal, T. M. (1997). Thin-layer infrared radiation drying of rough rice. J. Agric Eng. Res,67,289-297.
    Alibas, I., Akbudak, B.,& Akbudak, N. (2005). Microwave drying characteristics of spinach. J. Food Eng,78(2),577-583.
    Bai-Ngew, S., Therdthai, N., & Dhamvithee, P. (2011). Characterization of microwave vacuum-dried durian chips. J. Food Eng,104,114-122
    Carroll, M. B., & Churchill, S. W. (1986). Anumerical study of periodic on-off versus continuous heating by conduction. Numerical Heat Transfer,10,297-310.
    Chua, K. J., Chou, S. K., Mujumdar, A. S., Ho, J. C., & Hon, C. K. (2004). Radiant-convective drying of osmotic treated agro-products:Effect on drying kinetics and product quality. Food Control,15,145-158.
    Contreras, C., Martin, M. E., Martinez-Navarrete, N., & Chiralt, A., (2008). Influence of microwave application on drying kinetics, and optical mechanical properties of apple and strawberry. J. Food Eng.,88,55-64.
    Crank, J.1975. The Mathematics of Diffusion,2 nd Ed., Clarendon Press, Oxford, UK
    Doymaz, I (2010). Drying of thyme (Thymus Vulgaris L.) and Selection of a suitable thin-layer drying model. J. Food Process. Preserv.35,458-465.
    Drouzas A E, Tsami E, & Saravacos G D (1999). Microwave/vacuum drying of model fruit gels. J. Food Eng.39(2),117-122.
    Erbay, Z. & Icier, F. (2010). Thin-layer drying behaviors of Olive leaves (Olea Europaea L.). J. Food Process Eng,33,287-308.
    Figiel, A. (2009). Drying kinetics and quality of vacuum-microwave dehydrated garlic cloves and slices. J. Food Eng,94 (1),98-104.
    Ginzburg, A. S. (1969). Application of infrared radiation in food processing. Chemical process engineering series. London:Leonard Hill.
    Goodman,C., Fawcett, S. & Barringer, S.A. (2002). Flavour, viscosity, and colour analysis of hot and cold break tomato juices. J. Food Sci.67,404-408.
    Hasatani, M., Itaya, Y., & Miura, K. (1988). Hybrid drying of granular materials by combined radiative and convective heating. Dry Technol,6(1),43-68.
    Hui, Y.H. & Clark, S. (2007). Quality of dried tomatoes. In Handbook of Food ProductsManufacturing (Y.H. Hui, ed.) pp.623-626,Marcel Dekker,New York, NY.
    Karaaslan, S.N., & Tuncer, I.K. (2008). Development of a drying model for combined microwave-fan-assisted convection drying of spinach. Biosyst. Eng.100,44-52.
    Karthanos, V. T., Villalobos, G., & Savacos, G. D. (1990). Comparison of methods of estimation of effective moisture diffusivity from drying data. J. Food Sci,55(1),218-231.
    Lampinen, M. J., Ojala, K. T., & Koski, E. (1991). Modeling and measurements of dryers for coated paper. Dry Technol,9(4),973-1017.
    McMinn, W. (2006). Thin-layer modeling of the convective, microwave, microwave-convective and microwave-vacuum drying of lactose powder. J. Food Eng,72,113-123.
    Midilli, A., Kucuk, H., & Yapar, Z. (2002). A new model for single layer drying. Dry Technol, 20(7),1503-1513.
    Nowak, D., & Lewicki, P.P. (2004). Infrared drying of apple slices. Innova. Food Sci and Emerg Technols,5,353-360.
    Page, G. E. (1949). Factors influencing the maximum rate of air drying shelled corn in thin layers. MS Thesis. West Lafayette IN:Purdue University.
    Sakai, N., & Hanzawa, T. (1994). Application and advances in farinfrared heating in Japan. Trends in Food Sci. Technol,5(11),357-362.
    Sharma, G.P., Verma, R.C., & Pathare, P.B. (2005). Thin-layer infrared radiation drying of onion slices. J. Food Eng,67,361-366.
    SPSS. (2007). SPSS 16.0 for Windows. Chicago, IL.:Windows SPSS Inc.
    Togrul, H. (2005). Simple modeling of infrared drying of apple slices. J. Food Eng,71:311-323.
    Togrul, H. (2006). Suitable drying model for infrared drying of carrot. J. Food Eng g,77:610-619.
    Vadivambal, R. & Jayas, D.S. (2007). Changes in quality of microwave-treated agricultural products-a review. Biosysts Eng.98,1-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700