核桃砧木对树体影响的DNA甲基化调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嫁接一方面保持了品种性状相对一致性,另一方面不同砧木也会明显改变树体的表型。砧木如何影响接穗表型性状,其分子机制有待深入研究。本研究将‘上宋-14’核桃品种分别嫁接到‘中宁奇’和‘宁优’砧木上,发现核桃嫁接苗树体在表型性状和生理特性(如生长量、光合特性等)发生明显改变,进而对基因组DNA甲基化研究发现,同为‘上宋-14’,嫁接到‘中宁奇’和‘宁优’砧木上,其基因组DNA甲基化水平和模式发生了变化,对甲基化模式差异位点进行测序发现,有些位点序列与光合作用和代谢密切相关。该研究证实了核桃砧木通过影响基因组DNA甲基化水平和模式,进而对树体生长发育产生影响,结果丰富了人们对砧木影响树体生长势的认识。
     本研究所取得的主要结果如下:
     (1)建立了优化的核桃基因组DNA甲基化研究实验体系。以核桃子叶为试材,比较了3种DNA提取方法,发现改良高盐CTAB法获得的基因组DNA质量最好,从90对引物组合中筛选出了43对多态性高、电泳谱带清晰、谱带分离状态好的MSAP引物组合,建立优化了核桃基因组DNA甲基化研究的MSAP实验体系。应用建立的优化MSAP实验体系对核桃叶片基因组DNA的甲基化修饰水平进行了分析,共扩增出1060条清晰可辨且可重复条带,对14个核桃基因组DNA甲基化修饰位点进行回收、克隆与测序,BLASTn分析表明核桃叶片包括转录因子在内的多种类型的DNA序列中均存在甲基化修饰现象;
     (2)利用MSAP技术对核桃同树龄同品种不同组织(成熟叶片组织、当年生嫩茎韧皮部组织、当年生根韧皮部组织、花粉组织、子叶组织和青皮组织)全基因组DNA甲基化进行分析,共扩增出972条清晰可辨的谱带,核桃同一品种不同组织之间基因组DNA甲基化水平差异不显著,其甲基化模式变异频率在0.199~2.493%之间(表3-5),其中,子叶组织相对于花粉组织的CG超甲基化(CG-hyper)变异频率最高(2.493%,表3-5),叶片组织相对于茎韧皮部组织的CHG超甲基化(CG-hyper)变异频率最低(0.199%,表3-5),表明相同树龄的同一核桃品种不同组织间基因组DNA甲基化水平相对稳定;
     (3)将‘上宋-14’核桃接穗分别嫁接到‘中宁奇’(‘上宋-14/中宁奇’)和‘宁优’(‘上宋-14/宁优’)砧木上,测定了3年生树体的树高、树径、冠幅、生长枝长、生长枝粗和发育枝长,不同砧木对树体生长具有显著影响。‘上宋-14/中宁奇’和‘上宋-14/宁优’树高平均值分别为5.33m和4.18m,‘上宋-14/中宁奇’明显优于‘上宋-14/宁优’,其它反应生长势的表型性状指标如树径、冠幅、生长枝长、生长枝粗和发育枝长,‘上宋-14/中宁奇’也明显高于‘上宋-14/宁优’(P<0.01,表4-2),表明‘中宁奇’和‘宁优’两种砧木对‘上宋-14’接穗的生长和发育具有显著影响;
     (4)采用Li-6400光合仪测量了分别嫁接在‘中宁奇’和‘宁优’砧木上的‘上宋-14’的光合特性。在相同立地条件和环境下,光合特性各项指标在两组砧穗组合上存在显著差异。‘上宋-14/中宁奇’最大净光合速率(21.52μmol m-2s-1)显著高于‘上宋-14/宁优’(19.96μmol m-2s-1),‘上宋-14/中宁奇’的光饱和点(LSP (B))、光补偿点(LCP (C))和暗呼吸速率(Rd(D))指标(平均1191.6μmol m-2s-1、8.03μmol m-2s-1和0.52μmol m-2s-1)显著低于‘上宋-14/宁优’核桃树数值(平均1257.87μmol m-2s-1、9.8μmol m-2s-1和0.64μmol m-2s-1,P<0.05,图4-2);
     (5)采用MSAP技术分析了嫁接到‘中宁奇’和‘宁优’砧木上的‘上宋-14’品种的新梢韧皮部组织全基因组DNA甲基化状态,共扩增出1607条清晰可辨的电泳谱带。‘上宋-14/中宁奇’组合的整体甲基化水平(25.39%)、CG全甲基化位点甲基化水平(17.67%)和CHG半甲基化位点甲基化水平(7.72%)虽然均略低于‘上宋-14/宁优’组合(分别为27.57%、18.73%和8.84%,表4-3),但差异不显著(Utotal=0.72,<1.96),甲基化模式变异频率在0.85-1.95%之间。因此,鉴定甲基化改变的特异位点,了解其生物学功能,成为更重要和实质性的研究。
     (6)对存在于两组砧穗组合的甲基化变异条带,进行克隆和测序,得到73条反应甲基化模式变异的变异条带序列, Blast分析表明,49.32%的条带序列与已知功能的蛋白编码基因具有同源性,12.33%的基因片段与光合作用相关基因同源,6.85%的片段序列与质体基因组序列同源,其余为假定蛋白编码基因(16.44%)和转座子/逆转座子(6.85%)同源序列,与NCBI数据库序列无明显相似性序列占20.55%。
     (7)本研究揭示出嫁接可以改变树体生理和代谢、影响树体生长,嫁接也会引起基因组DNA特异位点甲基化改变,而这些位点的基因序列又与树体生长和生理代谢密切相关。因此,砧木改变树体基因组甲基化模式可能是改变其生理和代谢进而影响生长发育的重要原因之一。
Graftingmaintains the relative consistency of characters in varieties, while the phenotypesof the tree are significantly changed through different rootstocks. However, how the rootstockaffects phenotypic traits of scions, and its molecular mechanism remains unclear. In thisresearch, the walnut variety ‘SHS’ were respectively grafted on the rootstocks ‘ZNQ’ and ‘NY’,and the results showed that the phenotypic traits and physiological characteristics of walnutgrafts (such as growth, photosynthetic characteristics, etc.) changed obviously. Also, thegenomic DNA methylation level and patterns of walnut grafts (SHS/ZNQ and SHS/NY) werechanged, and some sequences in variated sites showing methylation pattern were closelyrelated to photosynthesis and metabolism. The research confirmed that walnut scion growthwas affected by the rootstocks influencing the genomic DNA methylation levels and patterns,which would enrich the understanding of tree growth potential affected by rootstocks.
     The main results are as follows:
     1. The optimized experiment system of walnut genomic DNA methylation was established.The walnut cotyledons were adopted as materials to compare three methods for extraction ofgonomic DNA, and the DNA isolated by modified high-salt CTAB protocol showed bestquality. After that, forty-three pairs of primer combinations, with clear and reproducible bands,were screened out in ninty pairs of primer combinations.The modifed MSAP experimentalsystem was established for walnut genomic DNA methylation analyses. Using modified MSAPexperimental system, the methylation level of genomic DNA in walnut leaves were analyzedand1060clear and reproducible bands were amplified. What is more, fourteen methylated siteswere recycled, cloned and sequenced, and BLASTn analysis showed that many types of DNAsequences, including transcription factors, presented methylation phenomenon in walnutleaves.
     2. Genomic DNA methylation was analyzed using MSAP technology in various tissues ofthe same walnut variety (mature leaf, stem, root, pollen, cotyledon and husk), and972clearand reproducible bands were amplified. The methyltion levels of genomic DNA variedbetween different tissues of the same variety of walnut with nonsignificance, and themethylation patterns of variation ranged from0.199%~2.493%, with the highest CG-hyperrate (2.493%) in cotyledon tissue compaired with pollen tissue, and the lowest CG-hyper rate(0.199%) in leaf tissue compaired with steem tissue. Which demonstrated that the genomicDNA methylation levels kept relatively stable between different tissues in the same walnutvariety.
     3. Variances of growth vigour in walnut were assessed by measuring tree height, diameterat breast height, crown diameter, shoot length, shoot diameter and developing branch length of3-year-old SHS scions grafted on ZNQ and NY. The average height of SHS/ZNQ was5.33m,which was significantly higher than SHS/NY (4.18m). Other phenotypic traits of growthpotential (diameter at breast height, crown diameter, shoot length, shoot diameter anddeveloping branch length) of SHS/ZNQ were as well significantly higher than that of SHS/NY(P<0.01). The result showed that rootstocks had a significant impact on growth anddevelopment of the scions grafted on them.
     4. The photosynthetic characteristics were measured by Li-6400portable gas exchangesystem. At the same site conditions and the environment, the variations of photosyntheticcharacteristics between two scion combinations were different significantly. The light-saturatedrate of photosynthesis of SHS/ZNQ (21.52μmol m-2s-1) was significantly higher than that ofSHS/NY(19.96μmol m-2s-1). However, the photosynthetic parameters of LSP (B), LCP (C),and Rd(D) of SHS/ZNQ were significantly lower than that of SHS/NY(P<0.05).
     5. Genomic DNA methylation was analyzed using MSAP technology in phloem tissues ofSHS/ZNQ and SHS/NY, and1607clear and reproducible bands were amplified. The relativetotal methylation levels, CG and CHG on SHS/ZNQ (25.39%,17.67%, and7.72%respectively) were slightly lower than that on SHS/NY (27.57%,18.73%, and8.84% respectively. Nevertheless, the difference detected between SHS/ZNQ and SHS/NY was notsignificant (Utotal=0.72,<1.96), and the variation of methylation patterns ranged from0.85%to1.95%. Hence, it would be an important and substantive research for identifing specific sites ofmethylation changes and understanding its biological functions.
     6. In order to explore possible functional relevance of the loci with DNA methylationalterations, we isolated and sequenced a subset of variant MSAP bands from SHS walnutscions grafted on ZNQ and NY rootstocks. Based on BlastX analysis, we found that of the73variant MSAP bands that gave quality sequencing,49.32%showed significant homology toprotein-coding genes with known functions,12.33%fragments were homologous tophotosynthesis related genes and6.85%fragments were homologous to plastid sequences.
     7. This research demonstrated that the grafting can change the physiology and metabolismof the tree and affect tree growth. Also, grafting can cause genomic DNA methylation changesin specific sites, which were closely related to the growth and physiological metabolism.Therefore, the change of genomic DNA methylation patterns induced by rootstocks may be animportant reason to change its physiological and metabolic characteristics, which affected thegrowth and development of the grafts.
引文
Abousalim A, Mantell SH. A practical method for alleviating shoot-tip necrosis symptoms in in vitro shootcultures of Pistacia vera cv. Mateur. Journal of horticultural science,1994,69(2):357-366
    Ahlert D, Stegemann S, Kahlau S, et al. Insensitivity of chloroplast gene expression to DNA methylation.Molecular Genetics and Genomics,2009,282(1):17-24
    Ahloowalia BS, Maluszynski M. Induced mutations–A new paradigm in plant breeding. Euphytica,2001,118(2):167-173
    Aina R, Sgorbati S, Santagostino A, et al. Specific hypomethylation of DNA is induced by heavy metals inwhite clover and industrial hemp. Physiologia Plantarum,2004,121(3):472-480
    Al-Ghamdi A. Rooting of date palm offshoots as affected by offshoot size, cultivar and indole butyric acidinjection. In: International Symposium on Propagation of Ornamental Plants226.1987,379-388
    Aljanabi SM, Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-basedtechniques. Nucleic acids research,1997,25(22):4692-4693
    Aloni B, Cohen R, Karni L, et al. Hormonal signaling in rootstock–scion interactions. Scientia Horticulturae,2010,127(2):119-126
    Anil VS, Harmon AC, Rao KS. Spatio-temporal accumulation and activity of calcium-dependent proteinkinases during embryogenesis, seed development, and germination in sandalwood. Plant Physiology,2000,122(4):1035-1044
    Aufsatz W, Mette M, Matzke A, et al. The role of MET1in RNA-directed de novo and maintenancemethylation of CG dinucleotides. Plant molecular biology,2004,54(6):793-804
    Banuls J, Legaz F, Primo-Millo E. Salinity-calcium interactions on growth and ionic concentration of citrusplants. Plant and Soil,1991,133(1):39-46
    Bartee L, Malagnac F, Bender J. Arabidopsis cmt3chromomethylase mutations block non-CG methylationand silencing of an endogenous gene. Genes&development,2001,15(14):1753-1758
    Barton NH, Keightley PD. Understanding quantitative genetic variation. Nature Reviews Genetics,2002,3(1):11-21
    Baurens F, Nicolleau J, Legavre T, et al. Genomic DNA methylation of juvenile and mature Acacia mangiummicropropagated in vitro with reference to leaf morphology as a phase change marker. Tree physiology,2004,24(4):401-407
    Beckman TG, Okie WR, Nyczepir AP. Influence of scion and rootstock on incidence of peach tree short life.Acta horticulturae,2002,2645-648
    Bell JT, Pai AA, Pickrell JK, et al. DNA methylation patterns associate with genetic and gene expressionvariation in HapMap cell lines. Genome biology,2011,12(1): R10
    Bhargava UC, Westfall BA. Antitumor activity of Juglans nigra (black walnut) extractives. Journal ofpharmaceutical sciences,1968,57(10):1674-1677
    Bird AP. CpG-rich islands and the function of DNA methylation. Nature,1985,321(6067):209-213
    Bird AP, Wolffe AP. Methylation-induced repression-belts, braces, and chromatin. Cell,1999,99(5):451-454
    Bouquet A. Differences observed in the graft compatibility between some cultivars of Muscadine grape (Vitisrotundifolia Michx.) and European grape (Vitis vinifera L. cv. Cabernet Sauvignon). Vitis,1980,19(2):99-104
    Brooks RA, Bell SS. A multivariate study of mangrove morphology (Rhizophora mangle) using both aboveand below-water plant architecture. Estuarine, Coastal and Shelf Science,2005,65(3):440-448
    Brown P. DNA methylation in plants and its role in tissue culture. Genome,1989,31(2):717-729
    Browne GT, Grant JA, Schmidt LS, et al. Resistance to Phytophthora and graft compatibility with Persianwalnut among selections of Chinese wingnut. HortScience,2011,46(3):371-376
    Burn JE, Bagnall DJ, Metzger JD, et al. DNA methylation, vernalization, and the initiation of flowering.Proceedings of the National Academy of Sciences,1993,90(1):287-291a lar rmak N. Biochemical and physical properties of some walnut genotypes (Juglans regia, L.).Molecular Nutrition Food Research,2003,47(1):28-32
    Cao D, Gao X, Liu J, et al. Root-specific DNA methylation in Chloris virgata, a natural alkaline-resistanthalophyte, in response to salt and alkaline stresses. Plant Molecular Biology Reporter,2012,30(5):1102-1109
    Cao DH, Gao X, Liu J, et al. Methylation sensitive amplified polymorphism (MSAP) reveals that alkalistress triggers more DNA hypomethylation levels in cotton (Gossypium hirsutum L.) roots than saltstress. African Journal of Biotechnology,2013,10(82):18971-18980
    Cao X, Aufsatz W, Zilberman D, et al. Role of the DRM and CMT3Methyltransferases in RNA-DirectedDNA Methylation. Current biology,2003,13(24):2212-2217
    Cao X, Jacobsen SE. Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3methyltransferase genes. Proceedings of the National Academy of Sciences,2002,99(S4):16491-16498
    Carter-Su C, King AP, Smit LS, et al. Molecular mechanisms of growth hormone action. Journal of AnimalScience,1997,75(S2):1-10
    Cervera M, Ruiz-Garcia L, Martinez-Zapater J. Analysis of DNA methylation in Arabidopsis thaliana basedon methylation-sensitive AFLP markers. Molecular Genetics and Genomics,2002,268(4):543-552
    Chan SW, Henderson IR, Jacobsen SE. Gardening the genome: DNA methylation in Arabidopsis thaliana.Nature Reviews Genetics,2005,6(5):351-360
    Chan SW, Zilberman D, Xie Z, et al. RNA silencing genes control de novo DNA methylation. Science,2004,303(5662):1336
    Chang C, Chang WC. Plant regeneration from callus culture of Cymbidium ensifolium var. misericors. Plantcell reports,1998,17(4):251-255
    Chen W, Jiang C, Wu W, et al. Effects of different cutting treatments on rooting rate of olive cuttingseedlings in hotbed. Nonwood Forest Research,2012,30(4):60-63
    Chinnusamy V, Zhu J. Epigenetic regulation of stress responses in plants. Current opinion in plant biology,2009,12(2):133-139
    Clark SJ, Harrison J, Frommer M. CpNpG methylation in mammalian cells. Nature genetics,1995,10(1):20-27
    Cokus SJ, Feng S, Zhang X, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNAmethylation patterning. Nature,2008,452(7184):215-219
    Cortijo S, Wardenaar R, Colomé-Tatché M, et al. Genome-wide analysis of DNA methylation in Arabidopsisusing MeDIP-chip. In: Plant Epigenetics and Epigenomics. Springer,2014
    Creelman RA, Mullet JE. Jasmonic acid distribution and action in plants: regulation during development andresponse to biotic and abiotic stress. Proceedings of the National Academy of Sciences,1995,92(10):4114-4119
    Cross SH, Charlton JA, Nan X, et al. Purification of CpG islands using a methylated DNA binding column.Nature genetics,1994,6(3):236-244
    Dakora FD, Phillips DA. Root exudates as mediators of mineral acquisition in low-nutrient environments.Plant and Soil,2002,245(1):35-47
    Davis AR, Perkins-Veazie P, Hassell R, et al. Grafting effects on vegetable quality. HortScience,2008,43(6):1670-1672
    Demeulemeester M, Van Stallen N, De Proft MP. Degree of DNA methylation in chicory (Cichoriumintybus L.): influence of plant age and vernalization. Plant science,1999,142(1):101-108
    Dong ZY, Wang YM, Zhang ZJ, et al. Extent and pattern of DNA methylation alteration in rice lines derivedfrom introgressive hybridization of rice and Zizania latifolia Griseb. Theoretical and Applied Genetics,2006,113(2):196-205
    Driver R, Child D, Gott R, et al. Science in Schools at age15: Report No:2Report to the DES, DENI, andthe Welsh Office on the1981survey of15year olds. In:1984
    Duan Y, Qian J, Sun Y, et al. Construction of methylation linkage map based on MSAP and SSR markers inSorghum bicolor (L.). IUBMB life,2009,61(6):663-669
    Eads CA, Danenberg KD, Kawakami K, et al. MethyLight: a high-throughput assay to measure DNAmethylation. Nucleic acids research,2000,28(8): e32
    Eichten SR, Vaughn MW, Hermanson PJ, et al. Variation in DNA methylation patterns is more commonamong maize inbreds than among tissues. The Plant Genome,2013,6(2):1-10
    Fang G, Hammar S, Grumet R. A quick and inexpensive method for removing polysaccharides from plantgenomic DNA. Biotechniques,1992,13(1):52-56
    Fang JG, Chao CT. Methylation‐Sensitive Amplification Polymorphism in Date Palms (Phoenix dactyliferaL.) and their Off‐Shoots. Plant Biology,2007,9(4):526-533
    Finnegan EJ, Dennis ES. Isolation and identification by sequence homology of a putative cytosinemethyltransferase from Arabidopsis thaliana. Nucleic acids research,1993,21(10):2383-2388
    Finnegan EJ, Genger RK, Kovac K, et al. DNA methylation and the promotion of flowering by vernalization.Proceedings of the National Academy of Sciences,1998,95(10):5824-5829
    Finnegan EJ, Genger RK, Peacock WJ, et al. DNA methylation in plants. Annual review of plant biology,1998,49(1):223-247
    Finnegan EJ, Kovac KA. Plant DNA methyltransferases. Plant molecular biology,2000,43(2-3):189-201
    Finnegan EJ, Peacock WJ, Dennis ES. Reduced DNA methylation in Arabidopsis thaliana results inabnormal plant development. Proceedings of the National Academy of Sciences,1996,93(16):8449-8454
    Finnegan EJ, Peacock WJ, Dennis ES. DNA methylation, a key regulator of plant development and otherprocesses. Current opinion in genetics&development,2000,10(2):217-223
    Flachowsky H, Tr nkner C, Szankowski I, et al. RNA-Mediated Gene Silencing Signals Are Not GraftTransmissible from the Rootstock to the Scion in Greenhouse-Grown Apple Plants Malus sp.International journal of molecular sciences,2012,13(8):9992-10009
    Fraga MF, Ca al M, Rodríguez R. Phase-change related epigenetic and physiological changes in Pinusradiata D. Don. Planta,2002,215(4):672-678
    Fraga MF, Rodríguez R, Ca al MJ. Genomic DNA methylation–demethylation during aging andreinvigoration of Pinus radiata. Tree physiology,2002,22(11):813-816
    Frommer M, McDonald LE, Millar DS, et al. A genomic sequencing protocol that yields a positive displayof5-methylcytosine residues in individual DNA strands. Proceedings of the National Academy ofSciences,1992,89(5):1827-1831
    Gandev S. Budding and grafting of the walnut (Juglans regia L.) and their effectiveness in Bulgaria.Bulgarian Journal of Agricultural Science,2007,13(6):683-689
    Garcia-Perez JL, Morell M, Scheys JO, et al. Epigenetic silencing of engineered L1retrotransposition eventsin human embryonic carcinoma cells. Nature,2010,466(7307):769-773
    Gazin C, Wajapeyee N, Gobeil S, et al. An elaborate pathway required for Ras-mediated epigenetic silencing.Nature,2007,449(7165):1073-1077
    Ge C, Fang Z, Chen J, et al. A simple colorimetric detection of DNA methylation. Analyst,2012,137(9):2032-2035
    Gillis K, Gielis J, Peeters H, et al. Somatic embryogenesis from mature Bambusa balcooa Roxburgh as basisfor mass production of elite forestry bamboos. Plant Cell, Tissue and Organ Culture,2007,91(2):115-123
    Goldberg RB. Plants: novel developmental processes. Science,1988,240(4858):1460-1467
    Goldenberger D, Perschil I, Ritzler M, et al. A simple" universal" DNA extraction procedure using SDS andproteinase K is compatible with direct PCR amplification. Genome Research,1995,4(6):368-370
    Goodrich J, Tweedie S. Remembrance of things past: chromatin remodeling in plant development. Annualreview of cell and developmental biology,2002,18(1):707-746
    Gr ff J, Rei D, Guan J, et al. An epigenetic blockade of cognitive functions in the neurodegenerating brain.Nature,2012,483(7388):222-226
    Greenwood MS, Hopper CA, Hutchison KW. Maturation in larch I. Effect of age on shoot growth, foliarcharacteristics, and DNA methylation. Plant physiology,1989,90(2):406-412
    Greer EL, Maures TJ, Ucar D, et al. Transgenerational epigenetic inheritance of longevity in Caenorhabditiselegans. Nature,2011,479(7373):365-371
    Guevara A, Sáez E, Díaz L, et al. DNA methylation and adaptive response in forest tree species. In: BMCProceedings. BioMed Central Ltd,2011, P86
    Guo WL, Wu R, Zhang YF, et al. Tissue culture-induced locus-specific alteration in DNA methylation andits correlation with genetic variation in Codonopsis lanceolata Benth. et Hook. f. Plant cell reports,2007,26(8):1297-1307
    Hackett WP. Juvenility, maturation, and rejuvenation in woody plants. Horticultural Reviews,1985,7109-155
    Hackett WP, Murray JR. Maturation and rejuvenation in woody species. In: Micropropagation of woodyplants. Springer,1993
    Haroldsen VM, Szczerba MW, Aktas H, et al. Mobility of transgenic nucleic acids and proteins withingrafted rootstocks for agricultural improvement. Frontiers in plant science,2012,39(3):1-12
    Harris G. Molecular biology of DNA methylation. In: Wiley Online Library,1987,
    Hayashi K, Yoshida K, Matsui Y. A histone H3methyltransferase controls epigenetic events required formeiotic prophase. Nature,2005,438(7066):374-378
    He SP, Sun JL, Du XM. Genetic and epigenetic status of triple exotic consanguinity cotton introgressionlines. Genetics and Molecular Research,2011,10(4):4063-4072
    He X, Chen T, Zhu J. Regulation and function of DNA methylation in plants and animals. Cell research,2011,21(3):442-465
    He Y, Zhu Z, Yang J, et al. Grafting increases the salt tolerance of tomato by improvement of photosynthesisand enhancement of antioxidant enzymes activity. Environmental and Experimental Botany,2009,66(2):270-278
    Henderson IR, Jacobsen SE. Epigenetic inheritance in plants. Nature,2007,447(7143):418-424
    Hirose N, Makita N, Kojima M, et al. Overexpression of a type-A response regulator alters rice morphologyand cytokinin metabolism. Plant and Cell Physiology,2007,48(3):523-539
    Hoelzel AR, Goldsworthy SD, Fleischer RC. Population genetic structure. In: Marine mammal biology,2002,325-354
    Hsieh T, Ibarra CA, Silva P, et al. Genome-wide demethylation of Arabidopsis endosperm. Science,2009,324(5933):1451-1454
    Hsieh T, Shin J, Uzawa R, et al. Regulation of imprinted gene expression in Arabidopsis endosperm.Proceedings of the National Academy of Sciences,2011,108(5):1755-1762
    Hu B, Han C, Wang B, et al. Cytosine methylation at CG and CNG sites is differential during thedevelopment of triploid black poplar. Journal of Plant Biochemistry and Biotechnology,2013,22(4):414-424
    Huang L, Lius S, Huang B, et al. Rejuvenation of Sequoia sempervirens by repeated grafting of shoot tipsonto juvenile rootstocks in vitro Model for phase reversal of trees. Plant Physiology,1992,98(1):166-173
    Huang Y, Li J, Hua B, et al. Grafting onto different rootstocks as a means to improve watermelon toleranceto low potassium stress. Scientia Horticulturae,2013,14980-85
    Husen A, Pal M. Effect of serial bud grafting and etiolation on rejuvenation and rooting of mature trees ofTectona grandis Linn. f. Silvae Genetica,2003,52(2):84-88
    Ibarra CA, Feng X, Schoft VK, et al. Active DNA demethylation in plant companion cells reinforcestransposon methylation in gametes. Science,2012,337(6100):1360-1364
    Jaligot E, Beulé T, Baurens FC, et al. Search for methylation-sensitive amplification polymorphismsassociated with the" mantled" variant phenotype in oil palm (Elaeis guineensis Jacq.). Genome,2004,47(1):224-228
    Janick J. The origins of fruits, fruit growing, and fruit breeding. Plant Breeding Reviews,2005,255-320
    Jaynes RA. Handbook of North American Nut Trees. Northern Nut Growers Association,1969
    Jenkins PE, Isaacs R. Cutting wild grapevines as a cultural control strategy for grape berry moth(Lepidoptera: Tortricidae). Environmental entomology,2007,36(1):187-194
    Jones OP. Endogenous growth regulators and rootstock/scion interactions in apple and cherry trees. In: VInternational Symposium on Growth Regulators in Fruit Production179.1985,177-184
    Joyce SM, Cassells AC. Variation in potato microplant morphology in vitro and DNA methylation. Plant Cell,Tissue and Organ Culture,2002,70(2):125-137
    Juniper BE, Mabberley DJ. The story of the apple. Timber Press Portland, Oregon,2006
    Kaeppler SM, Phillips RL. DNA methylation and tissue culture-induced variation in plants. In Vitro Cellular&Developmental Biology-Plant,1993,29(3):125-130
    Kanchanaketu T, Hongtrakul V, Sangduen N. Analysis of sex determination in some Cycads usingmethylation-sensitive amplification polymorphism (MSAP). Kasetsart J (Nat. Sci.),2007,(41):641-650
    Kanno T, Bucher E, Daxinger L, et al. RNA‐directed DNA methylation and plant development require anIWR1‐type transcription factor. EMBO reports,2010,11(1):65-71
    Kaslow DC, Migeon BR. DNA methylation stabilizes X chromosome inactivation in eutherians but not inmarsupials: evidence for multistep maintenance of mammalian X dosage compensation. Proceedings ofthe National Academy of Sciences,1987,84(17):6210-6214
    Kaur H, Halliwell B. Measurement of oxidized and methylated DNA bases by HPLC with electrochemicaldetection. Biochem journal,1996,31821-23
    Kawai J, Hirotsune S, Hirose K, et al. Methylation profiles of genomic DNA of mouse developmental braindetected by restriction landmark genomic scanning (RLGS) method. Nucleic acids research,1993,21(24):5604-5608
    Kazankaya A, Sen S, Ekmel Tekintas F. Relations between graft success and structural hormones on walnut(Juglans regia L.). In: III International Walnut Congress442.1995,295-298
    Kefeli VI, Kutacek M. Phenolic substances and their possible role in plant growth regulation. In: Plantgrowth regulation. Springer,1977
    Keyte AL, Percifield R, Liu B, et al. Infraspecific DNA methylation polymorphism in cotton (Gossypiumhirsutum L.). Journal of Heredity,2006,97(5):444-450
    Kiran Aithal B, Sunil Kumar MR, Nageshwar Rao B, et al. Juglone, a naphthoquinone from walnut, exertscytotoxic and genotoxic effects against cultured melanoma tumor cells. Cell biology international,2009,33(10):1039-1049
    Klimaszewska K, Noceda C, Pelletier G, et al. Biological characterization of young and aged embryogeniccultures of Pinus pinaster (Ait.). In Vitro Cellular&Developmental Biology-Plant,2009,45(1):20-33
    Kobayashi H, Ngernprasirtsiri J, Akazawa T. Transcriptional regulation and DNA methylation in plastidsduring transitional conversion of chloroplasts to chromoplasts. The EMBO journal,1990,9(2):307-313
    Kollmann R, Glockmann C. Studies on graft unions. I. Plasmodesmata between cells of plants belonging todifferent unrelated taxa. Protoplasma,1985,124(3):224-235
    Kotera E, Tasaka M, Shikanai T. A pentatricopeptide repeat protein is essential for RNA editing inchloroplasts. Nature,2005,433(7023):326-330
    Kotoda N, Iwanami H, Takahashi S, et al. Antisense expression of MdTFL1, a TFL1-like gene, reduces thejuvenile phase in apple. Journal of the American Society for Horticultural Science,2006,131(1):74-81
    Labra M, Ghiani A, Citterio S, et al. Analysis of cytosine methylation pattern in response to water deficit inpea root tips. Plant biology,2002,4(6):694-699
    Lambert C, Tepfer D. Use of Agrobacterium rhizogenes to create chimeric apple trees through geneticgrafting. Nature Biotechnology,1991,9(1):80-83
    Li A, Hu B, Xue Z, et al. DNA methylation in genomes of several annual herbaceous and woody perennialplants of varying ploidy as detected by MSAP. Plant Molecular Biology Reporter,2011,29(4):784-793
    Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature,1993,366(6453):362-365
    Li X, Xu M, Korban SS. DNA methylation profiles differ between field-and in vitro-grown leaves of apple.Journal of Plant Physiology,2002,159(11):1229-1234
    Li X, Yu X, Wang N, et al. Genetic and epigenetic instabilities induced by tissue culture in wild barley(Hordeum brevisubulatum (Trin.) Link). Plant Cell, Tissue and Organ Culture,2007,90(2):153-168
    Lindroth AM, Cao X, Jackson JP, et al. Requirement of CHROMOMETHYLASE3for maintenance ofCpXpG methylation. Science,2001,292(5524):2077-2080
    Liu H, Xiuxin D. Analysis of DNA methylation in navel oranges based on MSAP marker. Zhongguo nongyekexue,2004,38(11):2301-2307
    Lopez-Gomez R, Gomez-Lim MA. A method for extracting intact RNA from fruits rich in polysaccharidesusing ripe mango mesocarp. HortScience,1992,27(5):440-442
    Loveless MD, Hamrick JL. Ecological determinants of genetic structure in plant populations. Annual reviewof ecology and systematics,1984,1565-95
    Lu G, Wu X, Chen B, et al. Detection of DNA methylation changes during seed germination in rapeseed(Brassica napus). Chinese Science Bulletin,2006,51(2):182-190
    Lucas WJ, Yoo B, Kragler F. RNA as a long-distance information macromolecule in plants. Nature ReviewsMolecular Cell Biology,2001,2(11):849-857
    Lukens LN, Zhan S. The plant genome's methylation status and response to stress: implications for plantimprovement. Current opinion in plant biology,2007,10(3):317-322
    Lund G, Ciceri P, Viotti A. Maternal‐specific demethylation and expression of specific alleles of zein genesin the endosperm of Zea mays L. The Plant Journal,1995,8(4):571-581
    Ma Q, Zhang J, Pei D. Genetic Analysis of Walnut Cultivars in China Using Fluorescent AmplifiedFragment Length Polymorphism. Journal of the American Society for Horticultural Science,2011,136(6):422-428
    Mahfouz MM. RNA-directed DNA methylation: mechanisms and functions. Plant signaling&behavior,2010,5(7):806-816
    Malagnac F, Bartee L, Bender J. An Arabidopsis SET domain protein required for maintenance but notestablishment of DNA methylation. The EMBO journal,2002,21(24):6842-6852
    Manning K, T r M, Poole M, et al. A naturally occurring epigenetic mutation in a gene encoding anSBP-box transcription factor inhibits tomato fruit ripening. Nature genetics,2006,38(8):948-952
    Marfil CF, Asurmendi S, Masuelli RW. Changes in micro RNA expression in a wild tuber-bearing Solanumspecies induced by5-Azacytidine treatment. Plant cell reports,2012,31(8):1449-1461
    Martínez-Ballesta MC, Alcaraz-López C, Muries B, et al. Physiological aspects of rootstock–scioninteractions. Scientia Horticulturae,2010,127(2):112-118
    Mason G, Noris E, Lanteri S, et al. Potentiality of methylation-sensitive amplification polymorphism (MSAP)in identifying genes involved in tomato response to tomato yellow leaf curl Sardinia virus. PlantMolecular Biology Reporter,2008,26(3):156-173
    Mastan SG, Rathore MS, Bhatt VD, et al. Assessment of changes in DNA methylation bymethylation-sensitive amplification polymorphism in Jatropha curcas L. subjected to salinity stress.Gene,2012,508(1):125-129
    Mathieu O, Bender J. RNA-directed DNA methylation. Journal of cell science,2004,117(21):4881-4888
    McClelland M, Nelson M, Raschke E. Effect of site-specific modification on restriction endonucleases andDNA modification methyltransferases. Nucleic acids research,1994,22(17):3640-3659
    McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes.Cell,1984,37(1):179-183
    Métivier R, Gallais R, Tiffoche C, et al. Cyclical DNA methylation of a transcriptionally active promoter.Nature,2008,452(7183):45-50
    Miura A, Yonebayashi S, Watanabe K, et al. Mobilization of transposons by a mutation abolishing full DNAmethylation in Arabidopsis. Nature,2001,411(6834):212-214
    Mol J, Grotewold E, Koes R. How genes paint flowers and seeds. Trends in Plant Science,1998,3(6):212-217
    Molnar A, Melnyk CW, Bassett A, et al. Small silencing RNAs in plants are mobile and direct epigeneticmodification in recipient cells. Science,2010,328(5980):872-875
    Monteuuis O, Doulbeau S, Verdeil J. DNA methylation in different origin clonal offspring from a matureSequoiadendron giganteum genotype. Trees,2008,22(6):779-784
    Moore R. Graft compatibility and incompatibility in higher plants. Developmental and comparativeimmunology,1980,5(3):377-389
    Moore R. A model for graft compatibility-incompatibility in higher plants. American Journal of Botany,1984,71(5):752-758
    Moore R. Graft incompatibility between pear and quince: the influence of metabolites of Cydonia oblongaon suspension cultures of Pyrus communis. American journal of botany,1986,73(1):1-4
    Morel J, Mourrain P, Béclin C, et al. DNA methylation and chromatin structure affect transcriptional andpost-transcriptional transgene silencing in Arabidopsis. Current Biology,2000,10(24):1591-1594
    Mudge K, Janick J, Scofield S, et al. A history of grafting. Horticultural Reviews,35,2009,437-493
    Nakao M. Epigenetics: interaction of DNA methylation and chromatin. Gene,2001,278(1):25-31
    Ng H, Adrian B. DNA methylation and chromatin modification. Current opinion in genetics&development,1999,9(2):158-163
    Ngernprasirtsiri J, Kobayashi H, Akazawa T. Transcriptional regulation and DNA methylation of nucleargenes for photosynthesis in nongreen plant cells. Proceedings of the National Academy of Sciences,1989,86(20):7919-7923
    Noda K, Okuda H, Iwagaki I. Indole acetic acid and abscisic acid levels in new shoots and fibrous roots ofcitrus scion-rootstock combinations. Scientia horticulturae,2000,84(3):245-254
    Noyer JL, Causse S, Tomekpe K, et al. A new image of plantain diversity assessed by SSR, AFLP and MSAPmarkers. Genetica,2005,124(1):61-69
    Papa CM, Springer NM, Muszynski MG, et al. Maize chromomethylase Zea methyltransferase2is requiredfor CpNpG methylation. The Plant Cell Online,2001,13(8):1919-1928
    Pasqual M, Norberto PM, Dutra LF, et al. Rooting of fig (Ficus carica L.) cuttings: cutting time and IBA. In:II International Symposium on Fig605.2001,137-140
    Peraza-Echeverria S, Herrera-Valencia VA, Kay AJ. Detection of DNA methylation changes inmicropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP). PlantScience,2001,161(2):359-367
    Pérez Figueroa A. msap: a tool for the statistical analysis of methylation‐sensitive amplified polymorphismdata. Molecular ecology resources,2013,13(3):522-527
    Pina A, Errea P. A review of new advances in mechanism of graft compatibility–incompatibility. Scientiahorticulturae,2005,106(1):1-11
    Porebski S, Bailey LG, Baum BR. Modification of a CTAB DNA extraction protocol for plants containinghigh polysaccharide and polyphenol components. Plant Molecular Biology Reporter,1997,15(1):8-15
    Portis E, Acquadro A, Comino C, et al. Analysis of DNA methylation during germination of pepper(Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). PlantScience,2004,166(1):169-178
    Putterill J, Laurie R, Macknight R. It's time to flower: the genetic control of flowering time. Bioessays,2004,26(4):363-373
    Rabinowicz PD, Citek R, Budiman MA, et al. Differential methylation of genes and repeats in land plants.Genome Research,2005,15(10):1431-1440
    Rabinowicz PD, Palmer LE, May BP, et al. Genes and transposons are differentially methylated in plants,but not in mammals. Genome research,2003,13(12):2658-2664
    Rangwala SH, Richards EJ. The value-added genome: building and maintaining genomic cytosinemethylation landscapes. Current opinion in genetics&development,2004,14(6):686-691
    Reyna-Lopez GE, Simpson J, Ruiz-Herrera J. Differences in DNA methylation patterns are detectable duringthe dimorphic transition of fungi by amplification of restriction polymorphisms. Molecular and GeneralGenetics,1997,253(6):703-710
    Rezaee R, Vahdati K. Introducing a simple and efficient procedure for topworking Persian walnut trees.Journal American Pomological Society,2008,62(1):21-26
    Rezaee R, Vahdati K, Grigoorian V, et al. Walnut grafting success and bleeding rate as affected by differentgrafting methods and seedling vigour. Journal of horticultural science&biotechnology,2008,83(1):94-99
    Richards EJ. DNA methylation and plant development. Trends in genetics,1997,13(8):319-323
    Rodrigues MG, Martins AB, Bertoni BW, et al. Search for methylation-sensitive amplificationpolymorphisms in mutant figs. Genetics and Molecular Research,2012,12(3):2267-2280
    Rohland N, Hofreiter M. Comparison and optimization of ancient DNA extraction. Biotechniques,2007,42(3):343-352
    Rugini E, Jacoboni A, Luppino M. Role of basal shoot darkening and exogenous putrescine treatments on invitro rooting and on endogenous polyamine changes in difficult-to-root woody species. ScientiaHorticulturae,1993,53(1):63-72
    Rusk N. Grafting as a potent molecular tool. Nature Methods,2009,6(7):484
    Sakakibara H, Takei K, Hirose N. Interactions between nitrogen and cytokinin in the regulation ofmetabolism and development. Trends in plant science,2006,11(9):440-448
    Salomé PA, To JP, Kieber JJ, et al. Arabidopsis response regulators ARR3and ARR4playcytokinin-independent roles in the control of circadian period. The Plant Cell Online,2006,18(1):55-69
    Saroj PL, Awasthi OP, Bhargava R, et al. Standardization of pomegranate propagation by cutting under mistsystem in hot arid region. Indian Journal of Horticulture,2008,65(1):25-30
    Schellenbaum P, Mohler V, Wenzel G, et al. Variation in DNA methylation patterns of grapevine somaclones(Vitis vinifera L.). BMC plant biology,2008,8(1):78
    Schwarz D, Rouphael Y, Colla G, et al. Grafting as a tool to improve tolerance of vegetables to abioticstresses: Thermal stress, water stress and organic pollutants. Scientia Horticulturae,2010,127(2):162-171
    Sha AH, Lin XH, Huang JB, et al. Analysis of DNA methylation related to rice adult plant resistance tobacterial blight based on methylation-sensitive AFLP (MSAP) analysis. Molecular genetics andgenomics,2005,273(6):484-490
    Sheldon CC, Finnegan EJ, Rouse DT, et al. The control of flowering by vernalization. Current Opinion inPlant Biology,2000,3(5):418-422
    Sherman JD, Talbert LE. Vernalization-induced changes of the DNA methylation pattern in winter wheat.Genome,2002,45(2):253-260imková H. Methylation of mitochondrial DNA in carrot (Daucus carota L.). Plant cell reports,1998,17(3):220-224
    Smykal P, Valledor L, Rodriguez R, et al. Assessment of genetic and epigenetic stability in long-term in vitroshoot culture of pea (Pisum sativum L.). Plant cell reports,2007,26(11):1985-1998
    Soleimani A, Rabiei V, Hassani D. Effect of different techniques on walnut (J. regia L.) grafting. Journal ofFood, Agriculture&Environment,2010,8(29):544-546
    Sonoda S, Mori M, Nishiguchi M. Homology-dependent virus resistance in transgenic plants with the coatprotein gene of sweet potato feathery mottle potyvirus: target specificity and transgene methylation.Phytopathology,1999,89(5):385-391
    Souza H, Muller L, Brand o RL, et al. Isolation of high quality and polysaccharide-free DNA from leaves ofDimorphandra mollis (Leguminosae), a tree from the Brazilian Cerrado. Genetics and MolecularResearch,2012,11(1):756-764
    Stegemann S, Bock R. Exchange of genetic material between cells in plant tissue grafts. Science,2009,324(5927):649-651
    Stegemann S, Keuthe M, Greiner S, et al. Horizontal transfer of chloroplast genomes between plant species.Proceedings of the National Academy of Sciences,2012,109(7):2434-2438
    Stokes TL, Kunkel BN, Richards EJ. Epigenetic variation in Arabidopsis disease resistance. Genes&development,2002,16(2):171-182
    Stower H. Epigenetics: Dynamic DNA methylation. Nature Reviews Genetics,2012,13(2):75
    Su X, Gibor A. A method for RNA isolation from marine macro-algae. Analytical biochemistry,1988,174(2):650-657
    Sui P, Jin J, Ye S, et al. H3K36methylation is critical for brassinosteroid‐regulated plant growth anddevelopment in rice. The Plant Journal,2012,70(2):340-347
    Tan M. Analysis of DNA methylation of maize in response to osmotic and salt stress based onmethylation-sensitive amplified polymorphism. Plant Physiology and Biochemistry,2010,48(1):21-26
    Tariq M, Paszkowski J. DNA and histone methylation in plants. Trends in Genetics,2004,20(6):244-251
    Thompson GA, Schulz A. Macromolecular trafficking in the phloem. Trends in plant science,1999,4(9):354-360
    Tsunoyama Y, Ishizaki Y, Morikawa K, et al. Blue light-induced transcription of plastid-encoded psbD geneis mediated by a nuclear-encoded transcription initiation factor, AtSig5. Proceedings of the NationalAcademy of Sciences of the United States of America,2004,101(9):3304-3309
    Tworkoski T, Miller S. Rootstock effect on growth of apple scions with different growth habits. Scientiahorticulturae,2007,111(4):335-343
    Usenik V, Stampar F. Influence of scion/rootstock interaction on seasonal changes of phenols. Phyton (Horn,Austia),2002,42(2):279-290
    Van Zyl LC. Grafting of Walnut (Juglans Regia L.) with Hot Callusing Techniques Under South AfricanConditions. University of the Free State,2008
    Vasil IK, Vasil V. Totipotency and embryogenesis in plant cell and tissue cultures. In vitro,1972,8(3):117-125
    Verdeil J, Alemanno L, Niemenak N, et al. Pluripotent versus totipotent plant stem cells: dependence versusautonomy. Trends in plant science,2007,12(6):245-252
    Vongs A, Kakutani T, Martienssen RA, et al. Arabidopsis thaliana DNA methylation mutants. Science,1993,260(5116):1926-1928
    Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting. Nucleic acids research,1995,23(21):4407-4414
    Wang H, Pei D, Gu R, et al. Genetic diversity and structure of walnut populations in central andsouthwestern China revealed by microsatellite markers. Journal of the American Society forHorticultural Science,2008,133(2):197-203
    Wang W, Pan Y, Zhao X, et al. Drought-induced site-specific DNA methylation and its association withdrought tolerance in rice (Oryza sativa L.). Journal of experimental botany,2011,62(6):1951-1960
    Wang Y, Lin X, Dong B, et al. DNA methylation polymorphism in a set of elite rice cultivars and its possiblecontribution to inter-cultivar differential gene expression. Cellular and Molecular Biology Letters,2004,9(3):543-556
    Whalley K. Dynamic DNA methylation. Nature Reviews Neuroscience,2007,8(5):323
    Wolffe AP, Matzke MA. Epigenetics: regulation through repression. science,1999,286(5439):481-486
    Wong IH, Lo YD, Yeo W, et al. Frequent p15promoter methylation in tumor and peripheral blood fromhepatocellular carcinoma patients. Clinical cancer research,2000,6(9):3516-3521
    Wu R, Wang X, Lin Y, et al. Inter-Species Grafting Caused Extensive and Heritable Alterations of DNAMethylation in Solanaceae Plants. PloS one,2013,8(4): e61995
    Wyatt GR. Occurrence of5-methyl-cytosine in nucleic acids. Nature,1950,05(166):237-238
    Xie Q, Frugis G, Colgan D, et al. Arabidopsis NAC1transduces auxin signal downstream of TIR1topromote lateral root development. Genes&Development,2000,14(23):3024-3036
    Xiong LZ, Xu CG, Maroof MS, et al. Patterns of cytosine methylation in an elite rice hybrid and its parentallines, detected by a methylation-sensitive amplification polymorphism technique. Molecular andGeneral Genetics,1999,261(3):439-446
    Xiong Z, Laird PW. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic acids research,1997,25(12):2532-2534
    Ye Z. A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa.Photosynthetica,2007,45(4):637-640
    Yee T, Inouye M. Two-dimensional DNA electrophoresis applied to the study of DNA methylation and theanalysis of genome size in Myxococcus xanthus. Journal of molecular biology,1982,154(2):181-196
    Yegnasubramanian S, Lin X, Haffner MC, et al. Combination of methylated-DNA precipitation andmethylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitativedetection of DNA methylation. Nucleic acids research,2006,34(3): e19
    Yoo SY, Kim Y, Kim SY, et al. Control of flowering time and cold response by a NAC-domain protein inArabidopsis. PLoS One,2007,2(7): e642
    Yu Y, Lashbrook CC, Hannapel DJ. Tissue integrity and RNA quality of laser microdissected phloem ofpotato. Planta,2007,226(3):797-803
    Zemach A, Grafi G. Methyl-CpG-binding domain proteins in plants: interpreters of DNA methylation.Trends in plant science,2007,12(2):80-85
    Zhang M, Xu C, von Wettstein D, et al. Tissue-specific differences in cytosine methylation and theirassociation with differential gene expression in sorghum. Plant physiology,2011,156(4):1955-1966
    Zhang MS, Yan HY, Zhao N, et al. Endosperm-specific hypomethylation, and meiotic inheritance andvariation of DNA methylation level and pattern in sorghum (Sorghum bicolor L.) inter-strain hybrids.Theoretical and Applied Genetics,2007,115(2):195-207
    Zhang X, Yazaki J, Sundaresan A, et al. Genome-wide High-Resolution Mapping and Functional Analysis ofDNA Methylation in Arabidopsis. Cell,2006,126(6):1189-1201
    Zhao X, Chai Y, Liu B. Epigenetic inheritance and variation of DNA methylation level and pattern in maizeintra-specific hybrids. Plant science,2007,172(5):930-938
    Zohary D, Spiegel-Roy P. Beginnings of fruit growing in the Old World. Science,1975,187(4174):319-327
    常月梅.核桃总DNA提取方法研究.经济林研究,2005,23(3):34-35
    陈庆山,刘春燕,吕东,等.大豆DNA提取基本原理的探讨.东北农业大学学报,2004,35(2):254-256
    段红喜,张志华.我国核桃生产概况,问题及发展途径.果农之友,2004,(1):4-5
    郭广平,顾小平,袁金玲,等.不同生理年龄毛竹DNA甲基化的MSAP分析.遗传,2011,33(7):134-140
    洪柳,邓秀新.应用MSAP技术对脐橙品种进行DNA甲基化分析.中国农业科学,2005,38(11):2301-2307
    洪舟,施季森,郑仁华,等.杉木亲本自交系及其杂交种DNA甲基化和表观遗传变异.分子植物育种,2009,7(3):591-598
    侯立群.中国核桃产业发展报告.中国林业出版社,2008
    华扬,陈学峰,熊建华,等.水稻冷胁迫诱导的甲基化差异片段CIDM7的分离和分析.遗传,2005,27(4):595-600
    黄荣峰,郭培懿.植物DNA甲基化.生物技术通报,2001,(5):1-3
    雷玲,王红霞,张志华,等.河北核桃叶片DNA提取方法的比较.华北农学报,2010,25(002):145-148
    李冰,樊金拴,李红娟.我国核桃产业现状及发展对策.防护林科技,2012,(1):76-78
    刘玉礼.核桃方块芽接技术研究.河南农业大学学报,2002,36(4):322-326
    娄进群,王燕来.影响核桃嫁接成活的因素及对策.河北果树,2006,(1):26-27
    裴东.核桃不定根发生调控机制与蛋白组学探讨.2004
    裴东,袁丽钗,谷瑞升,等.核桃子叶不定根发生调控的研究.林业科学,2003,39(6):33-39
    沈德绪.果树种质资源的研究利用进展.果树学报,1994,11(4):253-257
    沈佳尧,侯鹏,祭美菊,等. p16基因甲基化的芯片定量检测.高等学校化学学报,2005,26(3):449-451
    孙慧敏,顾小平,袁金玲,等.五月季竹开花及复壮过程中DNA甲基化的MSAP分析.植物研究,2013,33(6):723-730
    王红霞,张志华,王文江,等.田间条件下核桃光合特性的研究.华北农学报,2007,22(2):125-128
    郗荣庭,张毅萍.中国核桃.中国林业出版社,1992
    杨金兰,柳李旺,龚义勤,等.镉胁迫下萝卜基因组DNA甲基化敏感扩增多态性分析.植物生理与分子生物学学报,2007,33(3):219-226
    詹亚光,曾凡锁.富含多糖的白桦成熟叶片DNA的提取方法.东北林业大学学报,2005,33(3):24-25
    张丽,黄学琴,吴全忠,等.黑核桃叶片基因组DNA提取方法比较研究.中国农学通报,2011,27(28):125-129
    张晓申,范国强,赵振利,等.豫杂一号泡桐二倍体及其同源四倍体的AFLP和MSAP分析.林业科学,2013,49(10):167-172
    张毅平,郗荣庭.中国核桃.北京:中国林业出版社,1992,
    张勇,邓科君,张韬,等.黑麦基因组DNA甲基化修饰位点的MSAP分析.麦类作物学报,2009,29(4):559-564
    周贝贝,陈凌娜,王伟,等.适合MSAP分析的核桃子叶DNA提取方法研究.林业科学研究,2014,1(27):128-132
    周贝贝,马庆国,王滑,等.核桃亲子鉴定方法的建立.中国农业科学,2011,44(20):4258-4264
    周贝贝,张俊佩,王伟,等. Fe3+浓度对核桃成熟子叶离体生根培养的影响.经济林研究,2011,29(1):124-127
    周东蕊.5'CpG岛甲基化检测基因芯片的研究.南京农业大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700