掺硼细颗粒金刚石高温高压合成与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金刚石是超硬材料的代表性产品,具有许多优越的物理、化学性质,是一种极限功能材料。它被广泛地应用于工业、科技、国防、医疗卫生等领域,在促进工业发展方面起着举足轻重的作用。我国不是天然金刚石盛产国,因此独立地掌
     握高水平的金刚石合成技术是具有战略意义的。本文以合成金刚石的溶剂理论为指导,借鉴金刚石合成的一般规律,并根据国产六面顶压机的特点和铁基粉末触媒的特性,从组装设计到工艺调整均进行了科学合理的改进,找到了铁基粉末触媒合成高品级优质细颗粒(200—300目)金刚石单晶的工艺条件和方法,并在此基础上,研究了Fe_(80)Ni_(20)+C的体系和Fe_(70)Ni_(30)+C体系中添加硼粉对合成细颗粒金刚石条件的影响,考察了硼对细颗粒金刚石晶体的宏观特征(颜色、晶形和包裹体等)以及晶体表面形貌的改变。研究结果表明:随着硼添加量的增加,使得粉末触媒合成金刚石的合成温度和压力条件呈动态变化,先降低后升高,以及(100)和(111)晶面的生长区间发生改变。硼添加量较高时影响晶体生长的完整性,(100)晶面多出现圆形或椭圆形凹坑而(111)晶面多出现三角形凹坑。借助于扫描电子显微镜(SEM)观察到了金刚石表面的生长纹路,以及晶体表面形成的孔洞缺陷,并借助XRD衍射谱和拉曼光谱表征了硼对金刚石特征峰的变化。
Diamond is a representative production of superhard materials. It is a limiting functional material with many exceptional physical and chemical properties. Now, it has been applied in many fields such as industry, scientific research, national defense, medical treatment etc. Diamond plays an important part in the development of industry. China is not rich in natural diamond, so that independently holding high-level diamond synthesis technique is of realistic strategic significance.
     In this paper, using the solvent theory of sythesizing diamond as the guiding ideology and learning ideas from the general rules of synthetic diamond, according to the traits of Cubic anvil apparatus and the characteristics of iron-based catalyst powder,the technology and mathods of synthesizing high quality fine-grained (200-300 mesh)single-crystal diamond is finally found using iron-based powder catalyst through improving scientifically and rationally designing assembly as well as adjusting process. On that basis, the impacts of synthesizing fine-grained diamond was researched in the Fe80Ni20 + C system and Fe70Ni30 + C system added boron powder. The impacts of synthesizing condition, macro-characteristics (color, shape and inclusion, etc.) as well as the changes of crystal surface morphology were studied. The results show that: With the addition of boron, the conditon of temperature and pressure synthesizing diamond with powder catalyst took on dynamic changes and the growth rigion of (100) and (111) crystal plane was changed. With high boron added, the integrity of crystal was affected, (100) crystal plane appeared more round or oval pits and (111) crystal plane appeared more triangular pits. With scanning electron microscopy (SEM) , growth patterns on the surface of the diamond as well as the hole and defects on the surface of crystals were observed. Using XRD diffraction and Raman spectroscopy , the changes of diamond’s characteristic peaks were described.
引文
[1] A.A. Altukhov, M.S. Afanas’ev, V.B. Kvaskov, et al. Application of diamond in high technology[J]. Inorganic Materials, 2004, Suppl. 1 (40): S50-S70.
    [2] S. Koizumi, K. Watanabe, M. Hasegawa, et al. Ultraviolet Emission from a Diamond pn Junction[J]. Science, 2001, JUNE 8 (292):1899-1901.
    [3] Eric J. Lerner. Industrial diamonds gather strength[J]. The Industrial Physicist, 2002, August/September: 8-11.
    [4] H Liander. ASEA J. 1955, 28: 97-98.
    [5] H. Kanda, T. Ohsawa. Effect of solvent metals upon the morphology of synthetic diamonds[J]. Journal of Crystal Growth, 1989, (94): 115-124.
    [6] I. Sunagawa. Growth and morphology of diamond crystals under stable and metastable conditions[J]. Journal of Crystal Growth, 1990, (99): 1156-1161.
    [7] L.J. Giling, W.J.P., Van Enckevort. On the influence of surface reconstruction on crystal growth processes[J]. Surface Science, 1985, (161):567-583.
    [8] H. Kanda, T. Ohsawa, O. Fukunaga, et al. In: Morphology and Growth unit of Crystals, I. Sunagawa, Eds. Terra, Tokyo, 1984.
    [9] M. Moore and A.R. Lang. On the origin of the rounded dodecahedral habit of natural diamond[J]. J. Crystal Growth, 1974, (26): 133-139.
    [10] A.R. Lang. Glimpses into the growth history of natural diamonds[J]. J. Crystal Growth, 1974, (24/25): 108-115.
    [11] S.Yamaoka, H. Komatsu, H. Kanda, et al. Growth of diamond with rhombic dodecahedral faces[J]. J. Crystal Growth, 1977, (37): 349-352.
    [12] K.E.Spear, J. Am. Ceram. Soc. 1989,72 (2): 171-191.
    [13] M.Kamo, Y.Sato, S.Matsumoto, et al. J. Cryst. Growth, 1983, (642): 62.
    [14] M. Wakatsuki. Diamond Handbook, Japan,1988,20-26.
    [15] R.Roy. The four revolutions in Diamond Synthesis In:The indication of Edisonian Chemistry, Chemical Aspects of Electronic Processing in MRS 1997.
    [16] James C.Sung. Diamond Synthesis in Perspective In:Superhard Materials & Diamond Technology, Dr. James C.Sung edit, 2000.
    [17]王光祖.粉状触媒的技术特性及其对金刚石合成的影响.王光祖论文集,浙江大学出版社,1999, 150-154.
    [18]韩勤,王治安.用粉末触媒和石墨合成锯片级金刚石的研究[J].工业金刚石,1999, 21-24.
    [19]王四清,喻国兵.用粉末触媒合成的金刚石特性分析[J].工业金刚石,1999,(4/5):37-39.
    [20]朱凤福.用粉状技术合成高品级金刚石的研究[J].人工晶体学报,2002,31(2): 169-172.
    [21]熊湘君,陈启武.粉末工艺金刚石合成及其动力学效应.二十一世纪中国超硬材料《会议论文集》.衡阳: 2001, 119-129.
    [22] C. M. Sung. A century of progress in the development of very high pressure apparatus for scientific research and diamond synthesis[J]. High Temperature-High Pressure, 1997, (29): 253-293.
    [23]李志宏,宜云雷,刘金昌.中国人造金刚石工业现状及发展展望,2003.
    [24] Bovenkerk H P, Bundy F P, Hall H T, et al. Preparation of diamond. Nature, 1959, (184): 1094.
    [25] Novirov N V, Shulzhenko A A. In: Saito S, Fukunaga O, Yoshikawa M, eds. Science and Technology of New Diamond. Tokyo, Japan: 1990, 217-221.
    [26] Kanda H, Akaishi M, Yamaoka S. New catalysts for diamond growth under high pressure and high temperature [J]. Appl Phys Lett, 1994, 65(8): 784.
    [27] Yamaoka S, Akaishi M, Kanda H, et al. Crystal growth of diamond in the system of carbon and water under very high pressure and temperature[J]. J Crys Growth, 1992, (125): 375-377.
    [28] M.N.Yoder. In: Diamond and Diamond-Like Films and Coatings, Eds R.E.Clausing, L.L.Horton, J.C.Angus, et al. Plenum Press, New York: 1991. 1-16.
    [29] Williams A.W.S. , Lightowlers E.C. , Collins A.T..Impurity conduction in synthetic semiconducting diamond[J]. J.Phys.C, 1970, (3): 1727.
    [30] W. Tillmann. Trends and market perspectives for diamond tools in the construction industry[J]. International Journal of Refractory Metals& Hard Materials, 2000, (8): 301-306.
    [31] C.M. Sung. Brazed diamond grid: a revolutionary design for diamond saws. Diamond and Related Materials, 1999, (8): 1540-1543.
    [32] A.K. Freund, J. Hoszowska, J.P.F. Sellschop, etal. Recent developments of high-quality synthetic diamond single crystals for synchrotron X-ray monochromators[J]. Nuclear Instruments and Methods in Physics Research A, 2001, (467-468): 384-387.
    [33] R.J. Tapper. Diamond detectors in particle physics[J]. Rep. Prog. Phys, 2000, (63): 1273.
    [34] H. Sumiya. Super-hard diamond indenter prepared from high- purity synthetic diamond crystal[J]. Review of Scientific Instruments, 2005, (76): 1-3.
    [35] T. Tanaka, J. Kaneko, D. Takeuchi, et al. Diamond radiation detector made of an ultrahigh-purity type IIa diamond crystal grown by high-pressure and high-temperature synthesis[J]. Review of Scientific Instruments, 2001, 76 (2): 1406-1410.
    [36] P.W. May. Diamond thin films: a 21st-century material[J]. Phil. Trans. R. Soc. Lond. A, 2000, (358): 473-495.
    [37] M.N.Yoder. In: Diamond and Diamond-Like Films and Coatings, Eds R.E.Clausing, L.L.Horton, J.C.Angus, et al. Plenum Press, New York, 1991. 1-16.
    [38] R.H. Wentorf, Jr..Some studies of diamond growth rates[J]. J. Phys. Chem., 1971, (75): 1833.
    [39] F.P.Bundy, H.T.Hall, H.M.Strong,et al. Man Made Diamonds[J]. Nature 1955, (51): 176.
    [40] H.T. Hall. Diamond synthesis. U.S. Patent, 2947608, 1960.
    [41] B.J.Alder, R.H.Christian, Phys. Rev. Lett. 1961, (7): 367-369.
    [42] P.S.DeCarli, J.C.Jamieson. Science 1961, (133): 1821-1822.
    [43] F.P. Bundy. Direct conversion of graphite to diamond in static pressure apparatus[J]. J. Chem. Phys, 1963, (38): 631-643.
    [44] H.M.Strong, R.H.Wentorf. The growth of large diamond crystals[J]. Naturwissenschaften , 1972, (59): 1-7.
    [45] J.E. Shigley, R. Abbaschian, C. Clarke. G.E.mesis laboratory- created diamonds[J]. G.E.ms & G.E.mology, 2002, 38 (2): 301-309.
    [46] W.G.E.versole. US Patent, 3030187-3030188,1962.
    [47] B.V.Deryagin and D.V.Fedoseev, Russ. Chem. Rev. 1970, (39): 783.
    [48] K.E.Spear, J. Am. Ceram. Soc. 1989, 72 (2):171-191.
    [49] M.Kamo, Y.Sato, S.Matsumoto, N.Setaka, J. Cryst. Growth, 1983,(62): 642.
    [50] H. T. Hall. Design of Experiments to Diffusion, Molecular. In: Encyclopedia of Chemical Processing and Design. John J. McKetta and William A. Cunningham, eds. Synthetic Diamonds. Marcel Dekker, Inc. New York and Basel, 1982, (15): 410-435.
    [51]郝兆印,陈宇飞,邹广田.人工合成金刚石.长春:吉林大学出版社,1996
    [52]郭永存,李植华,张广云.金刚石的人工合成与应用.北京:科学出版社, 1984, 181.
    [53]贾晓鹏.金刚石合成的溶剂理论及当今行业热点问题的探讨.中国超硬材料研讨会南京会议论文集, 2002, 1-11.
    [54] R.Berman, F.Simon. Z.Elktrochem, 1955, (59): 333.
    [55] R.Berman. Thermal Properties, In:The Properties of Diamond. J.E.Field,eds Academic Press, London: 1979, 3-22.
    [56] H.M.Strong, R.E.Hanneman. J. Chem. Phys. 1967, (46): 3668-3676.
    [57] R.H.Wentorf. Diamond Formation at High Pressure. In: Advances in High Pressure Research. Academic Press, London:1974, 249-284.
    [58] C.M.Sung, M.F.Tai and coworkers. Kinetics of the graphite to diamond transition under high pressure[J]. High Temperature-High Pressure, 1995/1996, 27/28, 499-521.
    [59] Bovenkerk H P, Bundy F P, Hall H T, et al. Preparation of diamond[J]. Nature, 1959, (184): 1094
    [60] Novirov N V, Shulzhenko A A. In: Saito S, Fukunaga O, Yoshikawa M, eds. Science and Technology of New Diamond. Tokyo Japan:1990, 217-221.
    [61] Kanda H, Akaishi M, Yamaoka S. New catalysts for diamond growth under high pressure and high temperature[J]. Appl. Phys. Lett., 1994, 65(8): 784.
    [62] Yamaoka S, Akaishi M, Kanda H, et al. Crystal growth of diamond in the system of carbon and water under very high pressure and temperature[J]. J Crys Growth, 1992, (125): 375-377.
    [63] Akaishi M, Kanda H, Yamaoka S. Phosphorus: An elemental catalyst for diamond synthesis and growth[J]. Science, 1993, (259): 1592-1593.
    [64] Akaishi M, Kanda H, Yamaoka S. Synthesis of diamond from graphite_carbonate system under very high temperatute and pressure[J]. J Crys Growth, 1990, (104): 578-581.
    [65] Kanda H, Akaishi M, Yamaoka S. Morphology of synthetic diamond growth from Na2CO3 solvent_catalyst[J]. J Crys Growth, 1990, (106): 471-475.
    [66] R.G. Farrer, Solid State Commun.,1969, (7) :685.
    [67] S. Koizumi, M. Kamo, Y. Sato, H. Ozaki, T. Inuzuka, APPl. Phys. Lett, 1997 (71) :1065.
    [68] E. Gheeraert , N. Casanova , A. Tajani et al. Diam. Relat. Mater,2002,(11): 289-295
    [69] I. Sakaguchi, M. Nishitani-Gamo, Y. Kikuchi, et al., Phys.Rev. B, 1999, (60): R2139.
    [70] R. Kalish, A. Reznik, C. Uzan-Saguy, C. Cytermann, APPl. Phys. Lett,2000 (76): 757.
    [71] K. Horiuchi, A. Kawamura, T. Ide, T. Ishikura, K. Nakamura, S. Yamashita, Presented at the Surface and Bulk Defects in CVD diamond, VI, February 28th March 2nd 2001, Hasselt, Belgium.
    [72] T. Miyazaki, H. Okushi, Diam. Relat. Mater, 2001 ,(10) :449.
    [73]贾晓鹏等.金刚石的高温高压合成及宝石级金刚石单晶制备的基本技术.第四届郑州国际超硬材料及制品研讨会论文集.
    [74]王光祖,汪静,陶刚.不断发展的金刚石合成与应用技术[J].超硬材料与宝石,2002,14(3):1-4.
    [75] Pastor-moreno. Electrochimica Acta, 2002 ,(47): 2589-2595.
    [76] Yamada ,Takatoshi . Diamond and Related Materials, 2002 ,11 : 780-783.
    [77] R. Kalish. Carbon, 1999, (3): 39-41.
    [78]方啸虎.超硬材料基础与标准.北京:中国建材工业出版社,1998: 9-10.
    [79] JIANG Zhi-Gang(姜志刚) , JIN Zeng-Sun (金曾孙) , BAI Yi-Zhen (白亦真) et al. Chem. J.Chinese Universities(高等学校化学学报), 2002, 23 (9): 1648-1650.
    [80] JIN Zeng-Sun (金曾孙) , JIANG Zhi-Gang(姜志刚) , HU Hang(胡航) et al. New Carbon Materials(新型碳材料) , 2003, 18(1): 65-68.
    [81] Ekimov E. A., Sidorov V. A. . Letters to Nature, 2004, (428): 542-545.
    [82] Yoshihiko Takano, Masanori Nagao, Isao Sakaguchi. Appl. Phys. Lett, 2004, 85 (14) : 2851-2853.
    [83] HU Chen-Guo (胡陈果) . Physics and High New Technics (物理学和高新技术), 2002, 31(2) : 93-97
    [84] Kalish R. . Diamond and Related Materials, 1999, 37(5) : 781-785.
    [85] Lagrange J. P., Deneuville A., Gheeraert E.. Diamond and Related Materials, 1998, 7(9): 1390-1393.
    [86] Huang B. R., Wu C. H., KeW. Z. . Materials Chemistry and Physics, 1999, 59 (2): 143-148.
    [87] GrangerM. C., WitekM. , Xu J ishou et al. . Analytical Chemistry, 2000, (72): 3793-3804.
    [88]谈耀麟.导电金刚石及应用[J].超硬材料工程,2007,3(19):32-34.
    [89] Suzaki Kiyo shi, Tetsutaro Uematsu. Applications for electrically conductive diamond [J]. Industrial Diamond Review, 2004, (2).
    [90] K. Suzuki, T. Uematsu. A new tool for micro precision grinding using electrically conductive diamond [J]. Industrial Diamond Review, 2007 (1).
    [91]姚裕成等.从两面顶、六面顶、凹模的特点论我国合成金刚石装备大型化的方向,人工晶体学报,1999,No. 1.
    [92]郭永存,李植华,张广云.金刚石的人工合成与应用,科学出版社,1984.
    [93] H.T. Hall, Rev. Sci. Instr, 1960, (31):125-131.
    [94] 233厂赴芬兰实习小组,芬兰人造金刚石厂生产概况[J].人造金刚石,1979,(3):20.
    [95]袁公昱主编.人造金刚石合成与金刚石工具制造[M].中南工业大学出版社, 1993, 6.
    [96] X. Jia, S. H. Kagi, S. Hayakawa, et al. Proc. Joint 15th Int. Conf. on High Pressure Science and Technology and 33rd EHPRG Conf. on High Pressure Reseach, Warsaw, 1995, 565.
    [97] X. Jia, S. Hayakawa, K. Ugajin, et al. Review of High Pressure Science and Technology, 1998, (7): 998.
    [98]虞觉奇等编译,《二元合金状态图集》.上海:科学技术出版, 1987.
    [99]彭明生.宝石优化处理与现代测试技术.北京:科学出版社,1995.
    [100]张健琼.金属-硼-碳系工业金刚石的高温高压合成:[博士学位论文].长春:原子分子物理研究所, 2006.
    [101]黄昆原著,韩汝琦改编.固体物理学.北京:高等教育出版社,1998.
    [102]刘万强.柱状工业金刚石晶体的高温高压合成与表征:[博士学位论文].长春:原子分子物理研究所,2008.
    [103]苟清泉.含硼黑金刚石的结构.与合成机理及其特殊性能的探讨[J].人造金刚石, 1977 (2):26-36.
    [104]关长斌,崔占全,杨雪梅.B对人造金刚石表面结构及性能的影响[J].人工晶体学报,2002(2):216-219.
    [105]程光煦.拉曼布里渊散射原理及应用.北京:科学出版社,2001.
    [106] E.B.小威尔逊著,胡皆汉译.分子振动.红外和拉曼振动光谱理论.北京:科学出版社, 1985.
    [107] Thompson,Charles A., Reynolds,et al. Raman spectroscopic studies of diamond in interlaid[J]. Optics Letters, 1995, (20):1195.
    [108] Chen, Kuei-Hsien, Lai Yen-Liang, et al. High-temperature Raman study in CVD diamond[J]. Thin Solid Films, 1995, (270): 143-147.
    [109] Wang W.N., Fox N.A., May, P.W. Laser Raman studies of polycrystalline and amorphic diamond films[J]. Phy.a Sta. Sol. (A) Applied Research, 1996, (154):255-268.
    [110] Khasawinah S, Popovici G. Raman and FTIR study of neutron irradiated CVD diamond[J]. Diamonds for Electronic Applications. 1996, (416): 223-227.
    [111] Vogelgesang R, Ramdas A K. Brillouin and Raman scattering in natural and isotopically controlled diamond[J]. Physical Review B: Condensed Matter, 1996, (54): 3989.
    [112]李俊清.物质结构导论.合肥:中国科学技术大学出版社,1990.
    [113] Niwase K,Tanaka T,Kakimoto Y, etal. Raman spectra of graphite and diamond mechanically milled with agate or stainless steel ball-mill[J]. Materials Transactions, 1995, (36): 282-288.
    [114] Niwase K, Tanaka T. Raman spectra of graphite and Characterization of diamond-like carbon by Raman spectroscopy and optical constantsⅢ-Nitride, SiC and Diamond Materials for Electronic Devices, 1996, (423): 699-704.
    [115] Bergman L, Nemanich R J. Raman and photoluminescence analysis of stress state and impurity distribution in diamond thin films [J]. Journal of Applied Physics, 1995, (78): 6709-6719.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700