提高锆质滑板热震稳定性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
文中介绍了通过添加稳定剂把单斜氧化锆转变为部分稳定的氧化锆的方法,考察了单一稳定剂对单斜氧化锆的稳定效果及规律,介绍了锆质制品中稳定化率含量对制品抗热震稳定性的影响。针对原材料类型、产地的不同对制品的性能产生不同的影响也做了简要的描述。
     随着钢铁冶炼技术的进步,钢材市场的需求,国内钢铁生产企业进行产品结构调整,一些深冲、超深冲等超低碳钢开发已成未来发展的必然趋势。这些高附加值的钢材生产,要求钢水在冶炼过程中尽量不使用含碳的耐火材料,传统的含碳耐火材料已不符合使用要求。另外,对于生产高钙钢来讲,在高温下,由于钙容易和钢包用含碳耐火材料(铝碳滑板)中的Al203反应,生成低熔点的铝酸钙,使得铝碳滑板的使用寿命大幅降低,很难满足正常生产的需要。由于Zr02材料具有和钢水不浸润、耐冲刷等性能,因此用锆质材料代替含碳耐材是理想的选择。
     由于锆质制品烧结温度较高,且热震稳定性极差,国内生产95%—Zr02滑板一般是采用CaO为稳定剂,制品的热震稳定性差,在使用过程中容易开裂,连用次数不超过2次。因此,开发抗热震稳定性不低4次的95%—Zr02滑板,可以节省钢材冶炼成本,降低工人劳动强度。
     氧化锆具有耐火度高、耐钢液侵蚀和冲刷等优良特性,但是纯氧化锆制品不容易制造。这主要是因为氧化锆从高温至室温所发生的相变,有约5—6%的体积膨胀,很难获得完整结构的烧制产品。在Zr02中添加某些金属氧化物,其阳离子半径与Zr4+半径相接近,能够在一定温度下单斜锆向四方晶、立方晶转化时,这些金属氧化物的阳离子固溶到到四方晶、立方晶结构中,温度降低时,能够抑制四方、立方晶向单斜结构转化,达到稳定晶格作用,称之为氧化锆稳定剂,如Y203、CaO、Al203、MgO、Ce02等。这些氧化物能与Zr02形成固溶体或复合体,通过晶体内部结构的改变,以及Zr02中晶格缺陷,从而抑制上述相变的发生,从而获得完好结构的氧化锆制品。目前,市场上销售的稳定氧化锆为Y203、CaO、稳定,原料质量不稳定,这对开发生产抗热震稳定性优良的锆质滑板来说有一定难度。因此,本试验从通过加入稳定剂,把单斜氧化锆稳定为部分四方、立方晶结构的稳定氧化锆,然后,用它为主要原料研制开发锆质滑板。
     试验中介绍了添加Y2O3、CaO、MgO的稳定氧化锆,研究了使用单一稳定剂时,在不同烧结温度下,其种类和含量变化对稳定相和稳定化率及稳定后原料的体积密度和显气孔率的影响。最后,确定滑板制品的稳定化率为35—55%,单斜锆为澳大利亚产化学锆,稳定剂为Y2O3、CaO。严格的生产制造工艺,研究出了抗热震稳定性不少于4次的锆质滑板。
This paper introduces the methods by adding a stable monoclinic zirconia into a partially stabilized zirconia, this study investigated a single stabilizer on the stability of monoclinic zirconium oxide effects and rules, introduced quality products in the stabilization of zirconia content on the rate of product the impact of thermal shock resistance. For the raw material type, origin of the products of different properties have different effects have also done a brief description.
     As the iron and steel smelting technology, steel demand, domestic steel production enterprises to adjust product structure, Some depth flush, ultra flush and so on deeply the ultra low-carbon steel development already the inevitable trend which will become develops in the future. These high value-added steel products, molten steel in the refining process required minimal use of carbon refractories, traditional carbon refractories have not meet requirements. In addition, for the production of steel in terms of high calcium, high temperature, due to calcium and easy to use carbon ladle refractories (Al-C sliding) of Al2O3 reaction of calcium aluminate with low melting point, making the life of large aluminum carbon skateboard reduced, it is difficult to meet the needs of normal production. As the molten ZrO2 material with and without infiltration, erosion resistance and other properties, so instead of using zirconium carbon refractory material is ideal.
     As the zirconium high quality products, sintering temperature, and poor thermal shock resistance, the domestic production of 95%-ZrO2 skateboarding generally is used CaO as stabilizer, the products is poor thermal shock resistance, easy to crack during use, once a number of not more than twice. Therefore, the development of thermal shock resistance is not low four times 95%-ZrO2 skateboard, you can save the cost of steel smelting and reduce labor intensity.
     Zirconia has a high refractoriness, resistance to corrosion and erosion of liquid steel and other excellent features, but of pure zirconium oxide products is not easy to manufacture. This is mainly because zirconia to room temperature from high temperature phase transition occurred, about 5-6 percent of the volume expansion, is difficult to obtain a complete structure of the fired product. Add in some metal oxides ZrO2, the cation radius and Zr4+ radius are close, can under certain temperature monoclinic to tetragonal zirconia, cubic transformation, these metal oxide cation solution to the tetragonal, cubic crystal structure, the temperature is lowered, it can inhibit the square, cubic crystal structure to monoclinic transformation, to stabilize the lattice effect, known as zirconia stabilizer, such as Y2O3; CaO, Al2O3, MgO, CeO2, etc. These oxides form a solid solution with ZrO2 or complex, by changing the internal structure of crystals, and ZrO2, lattice defects, thus inhibiting the occurrence of the phase transition, which was intact structure of zirconia products. Currently, the market's stabilized zirconia as Y2O3, CaO, stable, unstable quality of raw materials, which develop and produce excellent thermal shock resistance of zirconium quality skateboard is a certain degree of difficulty. Therefore, this study from by adding stabilizer, the stability of monoclinic zirconia as part of the square, cubic crystal structure of stabilized zirconia, and then use it as the main raw material research and development of zirconium skateboard.
     Experiments described add Y2O3, CaO, MgO of stabilized zirconia were studied using a single stabilizer, at different sintering temperature, the type and content on phase stability and stabilization rate and stable raw materials and bulk density were Porosity. Finally, to determine the stability of skateboard products was 35-55 percet monoclinic zirconia for the Australian production of zirconium chemicals, stabilizers Y2O3, CaO. Strict manufacturing process, developed a thermal shock resistance of zirconium of not less than fourth skateboard.
引文
[1].金志浩,高积强,乔冠军.工程陶瓷材料,西安:西安交通大学出版社,2000:239.
    [2]. Dworak U, Olapinski H, Burge w. Thermal stability of PSZ[A]. In:Shigeyuki Somiya, Noboru Yamamoto, Hiroaki Yanagida eds. Science and Technology of Zirconia ||, Advances in Ceramics, Vol 24A. Ohio:The American Ceramic Society Inc.,1988:545.
    [3]. Zhang Qi, Chen Yu-ru, Wu Hou-zheng etal. The role of Y2O3 in fine-grained (Y,Mg)-PSZ/MgAl2O4 during long term heat treatment [J], Ceramics International,1998,24:175-179.
    [4].朱义文,严解荣[J].江苏冶金2004,05
    [5].王志发,王荣林,王瑞生等[J].耐火材料.2004.38(6)410—413
    [6].周玉.陶瓷材料学[M].北京:科学出版社,2004:1.
    [7].谢征芳,陈朝辉,李永清.特种陶瓷的发展与展望[J].中国陶瓷工业,2000,7(1):31-36.
    [8]. Wykoff R W G Crystal Structures[M], Interscience Publishers,1963.
    [9]. Smith D K, and Newlirt H W. The Crystal Structure of Baddeleyite (monoclinic ZrO2) and Its Relation to The Polymorphism of ZrO2[J], Acta Crystal,1965,18:983-991.
    [10]. Teufer G The Crystal Structure of Tetragonal ZrO2[J], Acta Crystal,1962, 15:1187-1190.
    [11]. Murray P, Allision E B. A Study of the monoclinic-Tetragonal Phase Transformation in Zirconia[J], Trans Br Ceram Soc,1954,53:335-361.
    [12]. Smith D K, Cline C F. Verification of Existence of Cubic Zirconia at High Temperature[J], J Am Ceram Soc,1962,45(5):249-250.
    [13]. Mccullough J D, Trueblood K N. The Crystal Structure of Baddeleyite (monoclinic ZrO2)[J], Acta Crystsllogr,1959,12:507-511.
    [14].张林,范仕刚.Zr02增韧陶瓷的研究进展[J],现代技术陶瓷,2002,4:23-26.
    [15]. Wolton G M. Diffusionless Phase Transformations in Zirconia and Hafnia[J], J Am Ceram Soc,1963,46(9):418-422.
    [16]. Lange F F. Transformation Toughening Part I Size Effects Associated with the Thermodynamics of Constrained Transformation [J], J Mater Sci, 1982,17:225-234.
    [17]. Evans A G, Butlingame N, Drory M etal. Martensitic Transformation in Zirconia Particle Size Effects and Toughening[J], Act Metal,1981,29:447-456.
    [18].李美俊.氧化锆和掺杂氧化锆物相及其变化的紫外拉曼光谱研究[D],辽宁:中国科学院大连化学物理研究所,2002
    [19].朱学文,廖列文,张明月,崔英德.无机功能材料二氧化锆德应用及研究进展,化学推进剂与高分子材料,2001,82(4):22-24.
    [20].闫洪,窦明民,李和平.二氧化锆陶瓷的相变增韧机理及应用,陶瓷学报,2000,21(1):46-50.
    [21].秦海霞.低温液相烧结四方相多晶氧化锆增韧陶瓷的制备研究[D],上海:中国科学院上海硅酸盐研究所,2000
    [22]. Claussen N. Microstructure Design of Zirconia-toughened Ceramics[A]. In: N.Claussen, M.Ruhle and A,H.Heuer. Science and technology of Zirconia II [C]. Ohio:The American Ceramic Society,1984:325-351.
    [23].毛骏飙.Yb-Ce-TZP增韧陶瓷材料的研究[D],广东:华南理工大学,1997
    [24]. Rieth P H, Reed J S, and Naumann A W. Fabrication and Flexual Strength of Ultrafine-Grained Yttria-Stabilized Zirconia[J], Am Ceram Soc Bull, 1976,55(8):717-721.
    [25]. Gupta T K. Sintering of Tetragonal Zirconia and its Characteristics[J], Sci Sintering,1978,10:205-207.
    [26]. Gupta T K, Rechthold J H, Kuzhcki R C etal. Stabilization of Tetragonal Phase in Polycrystalline Zirconia[J], J Mater Sci,1977,12:2421-26.
    [27]. Lange F F. Transformation Toughening Part3 Experimental Observation in the ZrO2-Y2O3 System[J], J Mater Sci,1982,17:240-46.
    [28]. Lu H Y and Chen S Y. Low Temperature aging of t-ZrO2 Polycrystals with 3mol% Y2O3[J], J Am Ceram Soc,1987,70(8):537-41.
    [29]. Sato T, Shimada M. Crystalline Phase Change in Yttria-partially Stabilize Zirconia by Low-temperature Annealing[J], J Am Ceram Soc,1984, 67(10):212-213.
    [30]. Tsubakino H, Nazato R, and Yamamoto M. Effect of Alumina Addition on the Tetragonal-to-Monoclinic Phase Transformation in Zirconia-3mol% Y2O3[J], J Am Ceram Soc,1991,74(2):440-443.
    [31].王零森.二氧化锆陶瓷(一)[J],陶瓷工程,1997,31(1):40-44.
    [32]. Tsukuma K, Shimada M. Thermal Stability of Y2O3-Partially Stabilized Zirconia (Y-TZP) and Y-PSZ/Al2O3 Composites[J], J Mater Sci Lett,1985,4: 857-861.
    [33]. Masahiro Nawa, SyoichiNakamoto, Tohru Sekino & KoichiNiihar. Tough and Strong Ce-TZP/Alumina Nanocomposites Doped with Titania[J], Ceramics International,1998,24:497-506.
    [34]. Duh J G, Dai H T, and Hsu W Y. Synthesis and Sintering Behaviour in CeO2-ZrO2 Ceramics[J], J Mater Sci,1988,23:2786-2791.
    [35]. Duh J G, Dai H T, and Chiou B S. Sintering, Microstructure, Hardness and Fracture Toughness Behaviour of Y2O3-CeO2-ZrO2[J], J Am Ceram Soc, 1988,71(10):813-819.
    [36]. Mastelaro Valmor, Valerie Briois, Dulcina P F etal. Structural studies of a ZrO2-CeO2 doped system[J], Journal of the European Ceramics Society, 2003,23:273-282.
    [37]. Tsukuma K, Ueda K, Matsushita K etal. High Temperature Strength and Fracture Toughness of Y2O3-Partially Stabilized ZrO2/Al2O3 Composites[J], J Am Ceram Soc,1985,68(6):56-57.
    [38]. Tsukuma K, Ueda K, and Shimada M. Strength and Fracture Toughness of Isostatically Hot-Pressed Composites of Al2O3 and Y2O3-Partially Stabilized ZrO2[J], J Am Ceram Soc,1985,68(1):4-5.
    [39]. Claussen N, Ruhle M. Design of Transformation Toughened Ceramics[J], Advanced in Ceramics,1981,113:137.
    [40]. Garvie R C. Improved Thermal Shock Resistance Refractories from Plasma dissociated Zircon[J], J Mater Sci,1979,14:817-822.
    [41]. Wallace J S, Claussen N, Ruhle M etal. Development of Phases in in-Situ Reacted Mullite-Zirconia Composites[A]. In:Surfaces Interfaces in Ceramic and Ceramic Metal Systems, Pask Ed J A, Evans A Q Plenum press, New York,1981.
    [42].闫洪,窦明民,李和平.二氧化锆陶瓷的相变增韧机理和应用[J],陶瓷学报,2000,21(1):46-50.
    [43].王黔平.马氏体相变与Zr02增韧陶瓷[J],中国陶瓷,1994,138(5):45-49.
    [44].王东升等.四方氧化锆多晶瓷的磨料磨损[J],硅酸盐学报,1995,23(5):518-524.
    [45].廖金带.氧化锆陶瓷[J],陶瓷工程,1994,27(5):50-54.
    [46].王黔平,郭春丽.马氏体相变与Zr02增韧陶瓷[J],中国陶瓷,1994,5:45-49.
    [47].摩树帜.热处理对Zr02纳米粉末粒度和结构的影响[J],稀有金属材料与工程,1998,27(5):309—311.
    [48].郑秀华.陶瓷中t-m等温相变[J],材料科学与工程,1999,17(1):75-79.
    [49].牟军等.氧化锆陶瓷的相变及相变增韧[J],材料科学与工程,1994,12(3):6-11.
    [50]. King A G, Yavorsky P J. Stress relief mechanisms in magnesia and yttria stabilized zirconia[J], J Amer Ceram Soc,1968,51(1):38-42.
    [51]. Garvie R C, Hannink R H, Pascoe R T. Ceramic Steel[J], Nature,1975, 258:703-704.
    [52].郭瑞松.工程结构陶瓷[M],天津:天津大学出版社,2002.
    [53].马亚鲁.(Y,Mg)-PSZ材料的微晶化设计、制备与表征[J],硅酸盐通报,2004(06):30-34.
    [54].张琪.Y203在(Y,Mg)-PSZ/MgAl204材料中的作用[J],硅酸盐学报,1996,24(05):498-503.
    [55].王诚训等.Zr02复合耐火材料[M],北京:冶金工业出版社,2003.
    [56]. Hannink R H. Growth morphology of the tetragonal phase in partially stabilized zirconia[J], Journal of Materials Science,1978,13:2487-2496.
    [57]. Porter D L, Evans A G and Heuer A H. Transformation-toughening in partially-stabilized zirconia (PSZ)[J], Acta Metallurgica, 1979,27(10):1649-1654.
    [58]. Ramadass N, Mohan S C, Ravindra Reddy S etal. Studies on the metastable phase retention and hardness in zirconia ceramics[J], Materials Science and Engineering,1983,60(1):65-72.
    [59]. Wang J, Rainforth WM, Wadsworth I etal. The effects of notch width on the SENB toughness for oxide ceramics [J], Journal of the European Ceramic Society,1992,10(1):21-31.
    [60]. Swain M V. Inelastic deformation of Mg---PSZ and its significance for strength-toughness relationship of zirconia toughened ceramics[J], Acta Metallurgica,1985,33(11):2083-2091.
    [61]. Garvie R C, Nicholson P S. Phase Analysis in Zirconia Systems[J], J Am Ceram Soc,1972,55(6),303-305.
    [62]. Green D J, Maki D R, Nicholson P S. Journal of the American Ceramic Society,1974,57:136.
    [63]. Bansal G K and Heuer A H. On a martensitic phase transformation in zirconia (ZrO2)-Ⅱ. Crystallographic aspects[J], Acta Metallurgica,1974,22(4):409-417.
    [64]. Gupta T K, Lange F F, Bechtold J H. Effect of stress-induced phase transformation on the properties of polycrystalline zirconia containing metastable tetragonal phase[J], Journal of Materials Science,1978,13:1464-1470.
    [65]Pilyankevich A N, Claussen Nils. Toughening of BN by stress-induced phase transformation[J], Materials Research Bulletin,1978,13(5):413-417.
    [66]. Becher P F, Rice R W, Wu C Cm etal. Factors in the degradation of ceramic coatings for turbine alloys[J], Thin Solid Films,1978,53(2):225-232.
    [67]贾秀芹,减晓明.Zr02增韧陶瓷中的马氏体相变[J],昆明冶金高等专科学校学报,2002,18(3):6-8.
    [68]. Tsukuma K, Ueda K, Matsushita K etal. High Temperature Strength and Fracturee Toughness of Y2O3-Partially Stabilized ZrO2/Al2O3 Composites[J], J Am Ceram Soc,1985,68(6):56-57.
    [69].崔丽华.陶瓷发动机的现状及发展,摩托车技术,1998,69(2):4-5.
    [70]. M.V.Swain.陶瓷的结构与性能[M],材料科学与技术丛书,郭景坤译,北京:科学出版社,1998:93—94.
    [71].张清纯.陶瓷材料的力学性能[M],北京:科学出版社,1987.
    [72].张长瑞,郝元恺.陶瓷基复合材料-原理、工艺、性能与设计[M],长沙:国防科技大学出版社,2001:613.
    [73].罗奕.氧化镁部分稳定氧化锆电解质的制备及性能研究[D],北京:北京科技大学,2001
    [74].金志浩,高积强,乔冠军.工程陶瓷材料[M],西安:西安交通大学出版社,2000:385.
    [75].周公度,段连运.结构化学基础[M],北京:北京大学出版社,2002:332.
    [76]赵世柯,黄校先,施鹰.改善氧化锆陶瓷材料抗热震性能的探讨[J],陶瓷学报,2000,21(1):41-45.
    [77]. Gremillard L, Chevalier J, Epicier T. Modeling the aging kinetics of zirconia ceramics, J Eur Ceram Soc,2004,24 (13):3483-3489.
    [78]. Wei W C, Lin Y P. Mechanical and thermal shock properties of size graded MgO-PSZ refractory[J], J Eur Ceram Soc,2000,20 (8):1159-1167.
    [79].王维邦.耐火材料工艺学[M],北京:冶金工业出版社,2001:174-178.
    [80]. Emad Mustafa, Matthias Wilhelm, Werner Wruss. Phase stability and microstructural characteristics of 12 mol%(Mg, Ca)-PSZ prepared via polymeric route [J], Ceramics International,2003,29:189-194.
    [81]. Wei Wen-Cheng J, Lin Yuh-Pring. Mechanical and thermal shock properties of size graded MgO-PSZ refractory [J]. J Euro Ceram Soc, 2000,20:1159-1167.
    [82].史美伦.交流阻抗谱原理及应用,北京:国防工业出版社,2001:275-277.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700