高挥发分煤种电站锅炉高效低NOx排放系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤燃烧产生的污染已成为主要的大气污染源。氮氧化物是煤燃烧产生的主要污染物之一。环境污染已经成为我国经济发展的主要制约因素之一,因此治理火电厂NO_x排放是迫在眉睫的任务。结合我国以煤电为主的国情,在目前经济发展状况下,开发有效的低NO_X燃烧技术,在未来具有非常重要的社会效益和经济效益。
     低NO_x燃烧技术是火电机组首选的NO_x控制技术。空气分级燃烧技术是一种基于全面燃烧调整的浓淡燃烧技术,已成为降低燃烧产物中的NOX浓度、减轻环境污染的重要手段,在锅炉改造和新锅炉机组的建设中被普遍采用。各种研究表明,分级燃烧对高挥发分煤降低NO_x生成效果明显。但对锅炉低NO_x改造还缺乏系统的研究。
     本文以空气分级及低NO_x燃烧器综合应用为出发点,重点在于高效低NO_x排放系统集成技术的研究、设计和应用,采用试验研究、理论研究、数学模型研究相结合的研究方式。以理论分析为基础,在冷态模化实验台上对浓淡燃烧器进行模化研究,优化设计参数;在热态试验台上进行分级供风燃烧试验研究,针对不同煤种、不同运行参数,确定合适的改造方案;研究分级燃烧污染生成数学模型,进行数值模拟研究;结合冷态模化试验和燃烧试验研究,进行改造方案优化研究。进行电站锅炉高效低NO_x燃烧优化系统设计的参数优化研究;开发关键设备;进行运行参数优化研究;研究低NO_x燃烧节能技术;高效低NO_x燃烧系统关键设备制造研究;提出了三级可控浓淡燃烧降低NO_x的综合技术集成方法,在200MW电站锅炉上进行工业应用研究;进行示范锅炉机组性能考核试验研究。结果表明:空气分级燃烧的参数对降低NO_x生成影响很大。通过采取分级燃烧的方式,能够降低NO_x。改后NO_x排放较改前降低494mg/Nm~3~508mg/Nm~3,降低了56.7%~58.3%。改后锅炉热效率为90.439%,较改造前提高了1.047%。通过连续的运行调整和观察发现,长时间连续大负荷运行时,锅炉未出现结渣、超温等情况。
     本文的主要创新成果为:多种技术集成与优化,形成了具有自主知识产权的空气分级低NO_X排放系统技术;将污染控制与节能技术结合,达到了高效节能;智能控制技术与低NO_X排放技术有效结合,实现了优化经济运行。本论文的工作可以指导电站锅炉的低NO_x排放技术的研究与工程应用。
The pollutant come from the coal combustion already become the main source of atmosphere pollution. One of the primary factors of atmosphere pollution is NO_x from coal-fired power plants. Environmental pollution already became one of our country economy development main restriction factors, so governed NO_x emission of coal-fired power plant is become urgent mission. Considered our country take the coal-electricity as the national condition, in the present economical development situation, develop the effective low-NO_x combustion technology, will have very important social efficiency and economic efficiency in the future.
     The low-NO_x combustion technology is the first choice of the NO_x control technology in thermal power unit. The air staged combustion technology is one kind of rich-lean combustion technology based on the comprehensive burning adjustment, which has become the important method to reduce density of NO_x in the combustion product and reduce the environmental pollution, so it is generally used in the boiler transformation and the new boiler unit's construction. Various research indicated that the staged combustion have obvious effect to reduce the NO_x production of high volatile matter coal. But also lack the system research to low NO_x of the boiler transformation now.
     The article begin with the air grading as well as the low-NO_x combustion application, focusing on the research, design and application of the high efficiency and low-NO_x emission system integration technology, with the methods of experience, theory narration, combining with mathematics model research. Based on the theory analysis, the simulated experiments to the bias burner are conducted on the cold modeling bench, while the design parameters are optimized. The air staged combustion test is carried on the hot bench, which aims at different coals and different operating parameters to determine appropriate transformation programs. Research staged combustion pollution to generate mathematical models for value simulation. Unify the cold modeling experiment and the burning test research to conduct the optimization research of the transformation programs. Carry on the utility boiler’s parameter optimization research for the combustion system design of high efficiency and low NO_x; development of key equipment; conduct the movement parameter optimization research; study the low-NO_x combustion energy conservation technology; high efficiency and low-NO_x combustion system’s key equipment manufacturers; established the ensemble method of three staged controlled rich-lean low NO_x combustion comprehensive technology, conduct the industrial application research on the 200MW power plant boiler; conduct the demonstration boiler unit performance inspection experimental study.
     The result indicated that the parameters of air staged combustion have a significant influence on reducing the NO_x production. It can reduce NO_x through the air staged combustion. Compared with before transformation the NO_x emission reduce 494mg/Nm3 to 508mg/Nm3 after rebuilding while the reduction rate reaches to 56.7%~58.3%. After transformation the thermal efficiency of boiler is 90.439%, which improves 1.047% compared with before transformation. Through the continual adjust operation and observe it can be discovered that the boiler is not appeared the situation such as slag-bonding, excess temperature and so on.
     The main innovation achievement of this article is: The system of air staged low NO_x emission which have our own independent intellectual property right is formed by various technology integrated and optimizes; it have reached high-effect energy conservation with the link of contamination control and energy-efficient technology; and it have realized optimizing economy operation with the union of intelligent control technology and low NO_x emission technology.
     The work of this paper may instruct the research and project application of low NO_x power plant boiler.
引文
[1] Xu Xuchang, Chen Changhe,Qi Haiyin,et al. Development of coal combustion pollution control for SO2 and NO_x in China. Fuel Processing Technology. 2000:62(2-3):153~160
    [2] [美]Noel de Nevers 著.大气污染控制工程(第二版),胡敏,谢绍东译.北京:化学工业出版社,2005:294~310
    [3] 田贺忠.中国氮氧化物排放现状、趋势及综合控制对策研究:[博士学位论文].北京:清华大学,2003
    [4] 朱法华 , 王圣 , 郑有飞 . 我国燃煤电厂 NO_x 排放现状与前景预测 . 中国电力,2004,37(4):2~7
    [5] 岑可法 ,姚强 ,骆仲泱 ,高翔编著 .燃烧理论与污染控制 .北京 :机械工业出版社,2004:410~430
    [6] [日]新井纪男. 燃烧生成物的发生和抑制技术,赵黛青,赵哲石等译. 北京:科学出版社,2001:527~534
    [7] 苏亚欣,毛玉茹,徐璋编著,燃煤氮氧化物排放控制技术.北京:化学工业出版社,2005:20~35
    [8] Smoot L D. Fundamentals of coal combustion for clean and efficient use. Amsterdam-London-New York-Tokyo: Elsevier Press, 1993
    [9] De Soete G G. Overall reaction rates of NO and N2 formation from fuel nitrogen. Fifteenth Symposium(International)on Combustion, The Combustion Institute,Pittsburg, PA, 1975:1093~1192
    [10] Abbas T, Costa M, Costen P, et al. NO_x formation and reduction mechanisms in Pulverized coal flames. Fuel, 1994, 73(9):1423~1436
    [11] Miller J A and Bowman C T. Mechanism and modeling of nitrogen chemistry in combustion. Progress in Energy and Combustion Science, 1989, 15(4):287~338
    [12] Andreas B and Gerd R. Kinetics of NO reduction by CO on quartz glass surfaces. Fuel, 1995, 74(3):452~455
    [13] 赵宗彬,陈皓凯,李保庆.煤燃烧过程中 NO_x 的生成和还原.煤炭转化,1999, 22(4):l0~15
    [14] 赵惠富.污染气休 NO_x 的形成和控制.北京:科学出版社, 1993:35~48
    [15] De Soete G G. Heterogeneous N2O and NO formation from boune nitrogen atoms during coal char combustion. 23rd Symposium(International)on Combustion,The Combustion Institute, Pittsburgh, 1990:1257~1260
    [16] Hill S C, Smoot L D. Modeling of nitrogen oxides formation and destruction in combustion systems. Progress in Energy and Combustion Science, 2000, 26(4-6):417 ~458
    [17] Stanmore B R and Visona S P. Prediction of NO emissions from a number of coal-fired power station boilers. Fuel Processing Technology, 2000, 64(1-3): 25~46
    [18] Visona S P and Stanmore B R. Modelling NO formation in a swirling pulverized coal flame. Chemical Engineering Science, 1998, 53(11):2013~ 2027
    [19] Thomas K M. The release of nitrogen oxides during char combustion. Fuel, 1997, 76(6):457~473
    [20] Molina Eddings E G, Pershing D W, Sarofim A F. Char nitrogen conversion: implications to emissions from coal-fired utility boilers. Progress in Energy and Combustion Science, 2000, 26(4-6):507~531
    [21] Jones J M, Patterson P M, Pourkashanian M, Williams A. Approaches to modeling heterogeneous char NO formation/destruction during pulverized coal combustion. Carbon, 1999, 37(10):1545~1552
    [22] Song Y H, Beer J M, Sarofim A F. Oxidation and devolatilization of nitrogen in coal char. Combustion Science and Technology, 1982, 28:177~183
    [23] Levy J M, Chan L K, Sarofim A F, Beer J M. NO/char reactions at pulverized coal flame conditions. 18th Symposium(International) on Combustion, The Combustion Institute, Pittsburg, PA, 1981:111~120
    [24] Chan L K, Sarofim A F, Beer J M. Kinetics of the NO-char reactions at fluidized bed combustor conditions. Combustion and Flame, 1983, 52(1):37~45
    [25] Harding W, Brown S D, Thomas K M. Release of NO from the combustion of coal char. Combustion and Flame, 1996, 67(4):336~350
    [26] Lazaro M J, Lbarra J V, Moliner R, et al. The release of nitrogen during the combustion of coal chars. Fuel, 1996, 75(8):1014~1024
    [27] Visona S P, Tsuji H, Makino H. Modeling NO_x release from a single coal particle. Combustion and Flame, 2001, 80(10):1457~1465
    [28] Fujun T, Jianglong Y, Lachan J M, et al. Formation of NO_x precursors during the pyrolysis of coal and biomass. Fuel, 2006, 85(9):1411~1417
    [29] Pevida C, Arenillas A, Rubiera F, Pis J J. Heterogeneous reduction of nitric oxide on synthetic coal chars. Fuel, 2005, 84(12):2275~2279
    [30] Giannopoulos D, Kolaitis D I, Togkalidou A, et al. Quantification of emissions from the co-incineration of cutting oil emulsions in cement plants – Part I: NO_x, CO and VOC. Fuel, 2007, 86(8):1144~1152
    [31] Van der Lans R P, G1arborg P, Dam-Johansen K. Influence of process Parameters on nitrogen oxide formation in Pulverized coal burners. Progress in Energy and Combustion Science, 1997, 23(4):349-377
    [32] Brimblecombe P. The Big Smoke. New York:Methuen Press, 1987:6~15
    [33] Stern A C. History of Air Pollution Legislation in the United States. Air Pollution Cont. 1982, 32(1):44~61
    [34] Nebel B J, Wright R T. Environmental Science. 6~(th) Edition, Prentice Hall, Upper Saddle River, New Jersey, 1998:1~20
    [35] Muzio L J, Quartucy G C. Implementing NO_x control:research to application. Progress in Energy and Combustion Science, 1997, 23(3):287~293
    [36] 张忠孝,姚向东,乌晓江,等.气体再燃低 NO_x 排放试验研究.中国电机工程学报,2005,25(9): 99-102
    [37] 沈伯雄,孙幸福.天然气先进再燃区脱硝效率影响因素的实验与模拟研究.中国电机工程学报, 2005,25(9):146~149
    [38] Bertrana CAet al. Rebuming and burnout simulations of natural gas for heavy oil combustion[J]. Fuel, 2004, (83):109-121
    [39] Giral I et al. An augmented reduced mechanism for the reburning process[J]. Fuel, 2002, 81(17):2263-2275
    [40] 高正阳,阎维平,刘忠.再燃过程再燃煤粉燃料 N 释放规律的试验研究.中国电机工程学报, 2004,24(8): 238-242
    [41] 高正阳,阎维平,刘忠,等.再燃过程再燃煤粉燃料 C 释放特性的试验研究.中国电机工程学报, 2004,24(10): 244-248
    [42] 刘忠,阎维平,高正阳,等.超细煤粉的细度对再燃还原 NO 的影响.中国电机工程学报, 2003, 23(10): 204-208
    [43] 向军,邱纪华,熊友辉,等.锅炉氮氧化物排放特性试验研究.中国电机工程学报, 2000, 20(9): 80-83
    [44] 郭永红,孙保民,刘彤,等.褐煤的超细粉再燃中 NO_x 的生成与还原的数值模拟.中国电机工程学报, 2005, 25(9):94-98
    [45] 金晶,张忠孝,李瑞阳.超细煤粉再燃的模拟计算与试验研究.中国电机工程学报, 2004,24(10): 215-218
    [46] 潘维,池作和,斯东波,等.200MW 四角切圆燃烧锅炉改造工况数值模拟.中国电机工程学报, 2004,24(8): 110-115
    [47] 肖理生,曾汉才,金峰,等.分级燃烧最佳一次风空气系数的实验研究.动力工程, 2001,21(1): 1042-1045
    [48] 彭玲,王恩禄,罗永浩,等.分级燃烧降低燃煤锅炉 NO_x 排放的机理及影响因素分析.锅炉技术, 2004, 35(3): 27-30
    [49] 黄伟,曾汉才.分级燃烧对 NO_x 排放的试验研究.电站系统工程, 2005, 21(4):8-10
    [50] 唐志国,朱全利,唐必光,等.空气分级燃烧降低 NO_x 排放的实验研究.电站系统工程, 2003,19(3):7-9
    [51] 王红.分级燃烧降低锅炉 NO_x 排放的控制技术.环境技术, 2002,5:23-26
    [52] 余战英,谭厚章,张杰,等.W 型火焰分级燃烧的热态试验研究.燃烧科学与技术, 2004, 10(4):314-317
    [53] Smoot L D, Hill S C, Xu H. NO_x control through reburning. Progress in Energy and Combustion Science, 1998, 24(5):385~408
    [54] Folsom B A, Sommer T M, Engelhardt D A, et al. Coal reburning for cost-effective NO_x complince. 5th Annual Clean Coal Technology Conference, Tempa, Florida, 1997:850~858
    [55] 钟北京 , 施卫伟 , 傅维标 . 煤和煤焦还原 NO 的试验研究 . 工程热物理学报,2000,21(3): 383~387
    [56] Burch T E, Weiyin C, Lester T W, Sterling A M. Interaction of fuel nitrogen with nitric oxide during reburning with coal. Combustion and Flame, 1994, 98(4):391~401
    [57] Liu Hao, Hampartsoumian E, Gibbs B M. Evaluation of the optimal fuel characteristics for efficient NO reduction by coal reburning. Fuel, 1997, 76(11): 985~993
    [58] U.S. Department of Energy. Micronized coal reburning demonstration for NO_x control: a DOE assessment. National Energy Technology Laboratory, DOE/NETL-2001/11148, 2001
    [59] John M, Les K. New laws prompt focus on low NO_x options. Modern Power Systems, 1999, 11:29~33
    [60] McCahy S, Mcmullan J T, Williams B C. Techno-economic analysis of NO_x reduction technologies in P.P. boilers. Fuel, 1999, 78(14):1771~1778
    [61] 阎维平.高浓度煤粉燃烧的试验研究和数值计算:[博士学位论文].西安:西安交通大学,1992.
    [62] 徐明厚.正交湍流射流及高浓度煤粉燃烧过程的研究:[博士学位论文].武汉:华中理工大学,1992
    [63] Howard J B, Essenhigh R H. Mechanism of solid-particle combustion with simultaneous gas-phase volatiles combustion. 11th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburg, PA, 1967. 399~408
    [64] Wall T F. Indications of ignition for clouds of pulverized coal. Combustion andFlame, 1992, 72(2):111~118
    [65] Hertzberg M. Domain of flameability and theromal ignitability for pulverized coal and other dust particles size dependences and microscopic residue analysis. 19th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburg, PA, 1982. 1169~1180
    [66] Ryan W, Annamalai K. Group ignition of cloud of particle. J. of Heat Transfer ASME, 1991, 113(4):677~687
    [67] 盛 昌 栋 , 韩 才 元 . 煤 粉 气 流 着 火 方 式 和 煤 粉 浓 度 的 关 系 . 电 站 系 统 工程,1995,11(3):31~37
    [68] Hertzberg M. Autoignition temperatures for coal particle ciepersed in air. Fuel, 1991, 70(8):1115~1123
    [69] Zhang D, Wall T F. An analysis of the ignition of coal dust clouds. Combustion and Flame, 1993, 92(3):475~480
    [70] 韩才元.高浓度煤粉燃烧理论和技术发展现状.电站系统工程,1993,9(4):40~45
    [71] Essenhigh R H. Ignition of coal particles: A review. Combustion and Flame, 1989, 77(1):3~30
    [72] 徐明厚.一维炉高浓度煤粉燃烧试验研究.工程热物理学报,1993,14(2):20~22
    [73] 袁建伟 ,徐明厚,盛昌栋 ,韩才元.高浓度煤粉及左右浓淡燃烧技术 .中国电力,1995,28(1):31~35
    [74] 秦裕琨.浓缩煤粉燃烧技术的发展.燃烧科学与技术,1995,1(1):27~33
    [75] 韩才元.稳燃腔燃烧器射流中粒子动态分析及燃烧过程研究.中国电机工程学报,1992,12(4):2~6
    [76] 梁勇军.煤粉颗粒的湍流弥散实验研究及船形体煤粉燃烧器流场的贴体坐标数值模拟:[博士学位论文].北京:清华大学,1990
    [77] 吕清刚.直立弯道和直立分叉管中气固两相流动研究:[博士学位论文].西安:西安交通大学,1990
    [78] 韩 才 元 . 火 焰 稳 定 和 弯 管 煤 粉 浓 缩 浓 淡 燃 烧 研 究 . 中 国 电 机 工 程 学报,1997,17(4):274~277
    [79] 刘贵苏,陈世英.浓淡燃烧器弯曲管内气固两相流动的试验研究.工程热物理学报,1994,15(4):610~617
    [80] 李永华,段辉建,戴立洪.宽调节比煤粉燃烧器低 NO_x 排放应用研究.水电能源科学,2006, 24(3):85-86
    [81] 陈 世 英 .WR 浓 淡 分 离 燃 烧 器 波 纹 扩 流 锥 的 选 型 . 华 中 理 工 大 学 学报,1994,22(3):74~77
    [82] 孙文超.新型三功能煤粉锅炉燃烧器.燃烧科学与技术,1996,2(2):139~148
    [83] 陈涛,周力行.轴向切向进风强旋气粒流动的 PDA 研究.燃烧科学与技术,1997, 3(4):340~343
    [84] 李 劲 , 赵 惠 富 . 逆 向 射 流 火 焰 稳 定 特 性 的 实 验 研 究 . 燃 烧 科 学 与 技术,1996,2(1):58~64
    [85] 张 军 , 傅 维 标 . 中 心 大 速 差 射 流 浓 缩 煤 粉 方 法 研 究 . 燃 烧 科 学 与 技术,1996,2(3):200~208
    [86] Smart J D. The effect of burner scale on NO_x emissions from a swirt stabilized pulverized coal burner. Fuel, 1990, 69(9):1350~1355
    [87] Suhlmann J. Experimental characterization of the influence of CO on the high-temperature reduction of NO_x by NH3. Fuel, 1993, 72(12):175~179.
    [88] 李争起.径向浓淡旋流煤粉燃烧器气固两相流动特性及应用的研究:[博士学位论文].哈尔滨:哈尔滨工业大学,1997
    [89] 李 永 华 , 戴 立 洪 , 冯 兆 兴 . 电 站 锅 炉 低 NO_x 燃 烧 应 用 研 究 . 华 东 电力,2006,34(7):20-22
    [90] Winterfeld G. On pracesses of turbulent exchange behind flame holders. 10th Symposium(International)on Combustion, The Combustion Institute, Pittsburg, PA, 1964.1265~1275
    [91] Spalding D B. Mathematical models of turbulent flame: A review. Combustion Science and Technology, 1976, (3):3~10
    [92] 谢象春.湍流射流理论和计算.北京:科学出版社,1975.3~13
    [93] 李之光.相似与模化.北京:国防工业出版社,1982.20~60
    [94] 程尚模 .相似理论及其在热工和化工中的应用 .武汉 :华中理工大学出版社,1990.45~70
    [95] 王丰.相似理论及其在传热学中的应用.北京:高等教育出版社,1990.12~30
    [96] Han Caiyuan. A model with geomectric similarity for moved-back burner. Journal Huazhong University of Science and technology, 1985, 7(1):51~57
    [97] 韩才元,李金佛.钝体尾迹煤粉火焰特性的研究.华中工学院学报,1993, 21(6):79 ~84
    [98] 上海发电设备成套研究所.燃烧器四角布置冷热态炉膛空气动力场试验.动力工程,1981,(2):21~27
    [99] 李永华,曾庆广,胡秀丽,等.旋流燃烧器冷态模化试验研究.发电设备,2001,(2): 6~9
    [100] Rogaume T, Koulidiati J, Richard F, et al. A model of the chemical pathways leading to NO_x formation during combustion of mixtures of cellulosic and plastic materials. International Journal of Thermal Sciences, 2006, 45(4):359~366
    [101] Ryan Z, Sarma V P. Evaluation of the use of coal volatiles as reburning fuel for NO_x reduction. Fuel, 2007, 86(4):554~559
    [102] Xiaosheng P, He L, Wenfeng S G, Zhen H. A highly efficient and porous catalyst for simultaneous removal of NO_x and diesel soot. Catalysis Communications, 2007, 8(1):157~161
    [103] Frassoldati A, Faravelli T, Ranzi E. A wide range modeling study of NO_x formation and nitrogen chemistry in hydrogen combustion. International Journal of Hydrogen Energy, 2006, 31(12):2310~2328
    [104] Lofflera G, Siebera R, Harasek M, et al. NO_x formation in natural gas combustion-a new simplified reaction scheme for CFD calculations. Fuel, 2006, 85(3):513~523
    [105] Gosman A D, Pun W M, Runchal A K, Spalding D B. Heat and Mass Transfer in Recirculating Flow. New York: Academic Press, 1969.45~70
    [106] Khalil E E, Spalding D B, Whitelaw J H. The calculation of local flow properties in two-dimensional furnaces. Int. J. Heat Mass Transfer, 1975, 18:775~780
    [106] Boyd R K, Kent J H. Three-dimensional furnace computer modelling. 21st Symposium (Int.) on Combustion, The Combustion Institute, Pittsburg, PA, 1986. 265~273
    [107] Gornet K, Inser W. Prediction of three-dimentional flows in veility baler furnaces and comparison with experiment. Combustion Science and technology, 1988, 58(1):43~57
    [108] Smoot L D. Modelling of coal combustion processes. Prog. Energy Combustion Science, 1984, 10(22):229~235
    [109] Truelove J S. The modeling of flow and combustion in swirled, pulverized coal burners. 20th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburg, PA, 1984. 523~527
    [110] Lockwood F C, Abbas A S. Prediction of corner-fired power station combustion combustor. Combustion Science and Technology, 1988, 58(1):5~23
    [111] 孙保民.火焰炉内流动传热与燃烧数值计算和流动的实验研究:[博士学位论文].北京:清华大学,1994
    [112] 王应时,范维澄,周力行,徐旭常.燃烧过程数值计算.北京:科学出版社,1986. 1~20
    [113] Fiveland W A, Latham C E. Use of numerical modeling in the design of a low NO_x burner for utility boiler. Combustion Science and Technology, 1993, 93(1): 53~72
    [112] Hill S D, Smoot L D, Smith P J. Prediction of nitrogen oxide formation in turbulent flames. 20th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, PA, 1984. 1391~1400
    [113] Xu M H, Fan Y G, Yuan J W. Modeling and mechanism of NO_x emission under fuel staging during combustion. Combustion Science and Technology, 1998, 133(2):377~394
    [114] De soete G G. Overall reaction rates of NO and N2 formation from fuel nitrogen. 15th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, PA, 1975. 1093~1102
    [115] Zeldovich Y B, Sadovnikov P Y. Oxidation of nitrogen in combustion. Translated by Shelef M, Academy of science of USSR, Moscow, 1947.35~60
    [116] 范耀国,徐明厚,袁建伟.燃料 NO 生成的总包反应速率.环境科学,1997, 18(4): 52~55
    [117] 范耀国,徐明厚,袁建伟.分级燃烧时 NO_x 排放特性的数值研究.工程热物理学报,1997,18(5):649~652
    [118] 李永华,陈鸿伟,刘吉臻等.800MW 锅炉混煤燃烧数值模拟.中国电机工程学报,2002,22(6):101~104
    [119] 李永华,陈鸿伟,刘吉臻等.煤粉燃烧排放特性数值模拟.中国电机工程学报,2003,23(3):166~169
    [120] Yonghua L, Zhe T, Song F, et al. Numerical Simulation of Safe Combustion of Power Plant Boiler. Progress in Safety Science and Technology, 2002, 866~868
    [121] Eaton M, Smoot L D, Hill S C, Eatough C N. Components, formulations, solutions, evaluation, and application of comprehensive combustion models. Progress in Energy and Combustion Science. 1999, 25(4):387~436
    [122] Smith P J, Smoot L D, Hill S C. Effects of swirling flow on nitrogen oxide concentration in pulverized coal combustion. AICHE Journal, 1986, 32(11):1917~ 1919
    [123] Zhou X., Chen X L, Zheng C G, Yin J. Second-order moment turbulence-chemistry models for simulating NO_x simulation in gas combustion. Fuel, 2000, 79(11):1289~1301
    [124] 周力行.NO_x 生成湍流反应率数值模拟的进展.力学进展,2000,30(1): 77~82
    [125] 林洪昌,陈义良,赵巍.湍流射流扩散火焰中 NO_x 排放量的数值模拟.工程热物理学报,1997,18(1):108~112
    [126] 郭印诚,林文漪,周力行.煤粉燃烧过程中 NO_x 生成的数值模拟.燃烧科学与技术,1998,4(1):18~23
    [127] 郭印诚,周力行,王希麟,林文漪.NO_x 生成的有限反应速率二阶矩封闭模型.工程热物理学报,1995,19(3):352~356
    [128] Callén M S, de la Cruz M T, Marinov S, et al. Flue gas cleaning in power stations by using electron beam technology Influence on PAH emissions. Fuel Processing Technology, 2007, 88(2):251~258
    [129] Jose′ Mar?′a Soriano-Mora, Agust?′n Bueno-Lo′pez, Avelina Garc?′a-Garc?′a, et al. NO_x removal by low-cost char pellets: Factors influencing the activity and selectivity towards NO_x reduction. Fuel, 2007, 86(6):949~956
    [130] Yoichi Ishibai, Junya Sato, Shoichi Akita, et al. Photocatalytic oxidation of NO_x by Pt-modified TiO2 under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 188(1):106~111
    [131] Krocher O, Devadas M, Elsener M, et al. Investigation of the selective catalytic reduction of NO by NH3 on Fe-ZSM5 monolith catalysts. Applied Catalysis. Environmental, 2006, 66(3-4):208~216
    [132] Pio Forzatti. Present status and perspectives in deNO_x SCR catalysis. Applied Catalysis, 2001, 222(1-2):221~236
    [133] Dirk Bosteels, Robert A. Exhaust emission catalyst technology. Platinum Metals Review, 2002, 46(1):27~36
    [134] George N, Pontikakis, Grigorios C, et al. Experimental and modeling study on zeolite catalysts for diesel engines. Topics in Catalysis, 2001, 16/17(1-4):329~335
    [135] Apostolescu N, Geiger B, Kureti S, et al. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts. Applied Catalysis B, Environmental, 2006, 62(1-2):104~114
    [136] Kang M, Yeon T H, Park E D, et al .Novel MnOx catalysts for NO reduction at low temperature with ammonia. Catalysis Letters, 2006, 106(1-2):77~80
    [137] 李丽,王道.氮氧化物选择催化还原的研究进展.工业催化,2003,11(6):1~6
    [138] 吕君英,龚凡,郭亚平.选择性催化还原 NO_x 的反应机理研究.工业催化,2006, 14(1):40~45
    [139] 刘涛,金保升,李锋,范红梅.纳米级 TiO2 多元催化剂对 NH3 选择性催化还原NO_x 试验研究.能源研究与利用,2005,(3):18~22
    [140] 曲虹霞,钟秦,徐复铭.V2O5/TiO2 片状催化剂上 NH3 选择性还原 NO_x 反应传质情况研究.北京化工大学学报(自然科学版),2004,31(4):12~15
    [141] 毛健雄,毛健全,赵树民编著.煤的清洁燃烧.北京:科学出版社,2000.244~257
    [142] 魏恩宗,岑可法,闰志勇等.燃煤锅炉低 NO_x 燃烧技术及其实验研究.电站系统工程.2001,17(6)363~365
    [143] Li Z Q, Wei F. Numerical simulation of pulverized coal combustion and NO formation. Chemical Engineering Science, 2003, 58(20):5161~5171
    [144] Ryoichi Kurosea, Hisao Makinob. Numerical analysis of pulverized coal combustion characteristics using advanced low-NO_x burner. Fuel, 2004, 84(3):693~703
    [145] 郑友取,樊建人,查旭东,等.切向燃烧锅炉炉内 NO_x 生成的数值模拟.动力工程,2000,20(3):689~693
    [146] 张颉,吴少华,孙锐,等.350MW 燃煤锅炉燃烧过程和 NO_x 排放的数值研究.哈尔滨工业大学学报,2004,36(9):1239~1243
    [147] 李芳芹,魏敦裕,马京程,等.燃煤锅炉空气分级燃烧降低 NO_x 排放的数值模拟.燃料化学学报,2004,32(5):537~541
    [148] 李芳芹,魏敦林,任律兴.旋流燃烧煤粉锅炉 NO_x 生成的数值模拟.煤气与热力,2005,25(4):13~16
    [149] 韩才元,徐明厚,周怀春,邱建荣.煤粉燃烧.北京:科学出版社,2001.339~ 360
    [150] 吴少华,孙绍增,李争起,等.水平浓淡煤粉燃烧器关键技术的试验研究.动力工程, 1999,19(2):l4~18
    [151] 朱群益,秦裕琨,吴少华,等.水平浓淡煤粉燃烧器低负荷稳然性能的试验研究.动力工程,2003,23(3):2400~2403
    [152] 聂其红,孙绍增,吴少华,等.新型水平浓淡风低 NO_x 煤粉燃烧器在贫煤锅炉的应用研究.中国电机工程学报,2002,122(7):155~159
    [153] 张泽,吴少华,姚政,等.水平浓淡风煤粉燃烧器调节特性的数值模拟及工业性试验研究.中国电机工程学报,2000,20(2):51-55
    [154] 周昊,杜黎龙,王正华,等.水平浓淡然烧器出口气固浓淡射流的混合特性研究.中国电机工程学报,2003,23(7):178~182
    [155] 安恩科,徐通模.水平浓淡煤粉燃烧器的研究.热能动力工程,1999,14(1):37~39
    [156] Fan J R, Xia Z H. Numerical investigation on two-phase flow in rich/lean pulverized coal nozzles. Fuel, 2000, 79(14):1853~1860
    [157] 周俊虎,赵玉晓,刘建忠,等.浓淡燃烧器两相流的分离特性和阻力特性的实验研究.动力工程,2003,23(5):2643~2645
    [158] 朱群益,姜文龙,葛键,等.弯头和百叶窗浓缩器联合作用时浓淡风比试验.动力工程,2004,24(5):623~625
    [159] 孙绍增,吴少华,李争起,等.单只水平浓缩煤粉燃烧器在 1MW 燃烧试验台上的试验研究.工程热物理学报,1994,15(3):345~348
    [160] 冯兆兴,安连锁,李永华,等.空气分级燃烧降低 NO_x 排放试验研究.中国电机工程学报,2006,26(25):88~92
    [161] 中国电力企业联合会标准化部编. 电力工业标准汇编:火电卷 第二分册:锅炉及燃煤机械.北京:中国电力出版社,1996.2929~38
    [162] 李永华,陈鸿伟,刘吉臻,冯兆兴, 等.褐煤及烟煤混煤综合燃烧特性的试验研究.动力工程, 2003,23(4):2495~2499
    [163] Li Yonghua, Chen Hongwei, Liu Jizhen, Feng Zhaoxing, et al. A New Distinguish Method of Blending Coals Slagging Characteristic. Proceedings of the International Conference on Power Engineering-03(ICOPE-03), Kobe, Japan, 2003. 395-399
    [164] 李永华,李松庚,冯兆兴, 等.褐煤及其混煤 NO_x 生成的试验研究.中国电机工程学报,2001,21(8):34~36
    [165] 钱 垂 喜 . 我 国 部 分 煤 灰 粘 温 特 性 及 其 与 锅 炉 结 渣 关 系 的 讨 论 . 热 力 发电,1984,(6):14~26
    [166] Hinze J O. Turbulence. 2nd Edition, McGrow: Hill Book Co. Inc., 1975. 30~60
    [167] Benesch W, Kremer H. Mathematical modelling of fluid flow and mixing in tangentially fired furnaces. 20th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, PA, 1984. 549~557
    [168] Gosman A D, Lockwood F C, Salooja A P. The prediction of Cylindrical furnaces gaseous fueled with premixed and diffusion burners. 17th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, PA, 1979. 747~750
    [169] Bradshaw P. Introduction Turbulence. Spring-Verlag, 1976. 15~30
    [170] Spalding D B. A two-equation model of turbulence. VDI Forschungsheft 549, 1972. 5~16
    [171] Gidaspow D. Hydrodynamics of Fluidization and Heat Transfer: Supercomputer Modeling. Appl. Mech. Rev., 1986, 39(1):l~22
    [172] Lounge M Y. The role of particle collisions in pneumatic transfort. Fluids Mech., 1991, 231(2):345~359
    [173] Tu J Y, Fletcher C A. An improved model for particulate turbulence modulation in confined two-phase flows. Int. Commum. Heat Mass Transfer, 1994, 21(3): 775~783
    [174] Crowe C T, Sharma M P, Stock D E. The particle source-in-cell (PSI-cell) model for gas droplet Flows. Trans. ASME. J. Fluids. Eng., 1977, 23(2):325~330
    [175] Richter W, Quack R. Heat Transfer in Flames. Scripta Technica, 1974. 7~15
    [176] 郑楚光, 周向阳.湍流反应流的 PDF 模拟.武汉:华中理工大学出版社, 1996
    [177] Obayashi H K, Howard T B, Sarofim A F. Coal devolatilization at high temperature. 18th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, PA, 1979. 411~415
    [178] [英]菲尔德 M A 著,章明川译.煤粉燃烧.北京:水利电力出版社,1989. 169~172
    [179] 徐小琼,金建卫,潘国清,茅建波.1025 t/h 煤粉炉燃烧方式对 NO_x 排放影响的试验研究.电力环境保护,2006,22(4):22~24
    [180] 许昌,吕剑虹,郑源,冯晓琼.以效率和低 NO_x 排放为目标的锅炉燃烧整体优化.中国电机工程学报,2006,26(4):46~50
    [181] 刘定平,陈敏生,陆继东.电站锅炉高效低污染燃烧优化控制系统设计.电力自动化设备,2006,26(5):46~49
    [182] 饶苏波.多目标进化算法在电站锅炉燃烧优化控制系统设计中的应用.广东电力,2006,19(4):11~15
    [183] 张毅,陈彪,丁艳军, 等.燃煤锅炉高效低 NO_x 运行策略的实验研究.清华大学学报(自然科学版),2006,46(5):666~669
    [184] 许昌,吕剑虹,郑源.基于效率与 NO_x 排放的锅炉燃烧优化试验及分析.锅炉技术,2006,37(5):69~74
    [185] 周国民,李宝义,龚家猷.燃煤锅炉 NO_x 排放特性及其燃烧优化.锅炉技术, 2006,37(3):77~80
    [186] 曾雪峰,吕晓东.降低 125 MW 机组 NO_x 排放的试验及分析.华东电力,2006, 34(3):61~65
    [187] 杨冬,路春美,王永征,刘汉涛.不同煤种燃烧中 NO_x 排放规律的试验研究.华东电力,2006,34(6):9~13
    [188] Klaus R G. Experience with NO_x-control techniques in brown coal combustion system. Coal combustion , science and technology of industrial and utility application. New York: Hemisphere Publishing Corporation, 1988.
    [189] Miyamae S, Kiga T, Ikebe H, et al. Low NO_x pulverized coal combustion technology for large utility thermal power plant. Coal combustion , science and technology of industrial and utility application. New York: Hemisphere Publishing Corporation, 1988.
    [190] Leithner R, Lendt B, Miilen H. Reduction of the NO_x emission in coal fired boilers. Coal combustion , science and technology of industrial and utility application. New York: Hemisphere Publishing Corporation, 1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700