填充床内阴燃传播的数值模拟及阴燃着火—熄火、向明火转捩特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阴燃是在多孔介质内发生异相反应并能自维持进行的无焰缓慢燃烧形式,其中包括许多复杂的热物理和化学过程(如流体流动、多孔介质传热、传质过程、表面化学反应等),这些过程之间的关系决定了阴燃反应的最终特性。阴燃是诱发火灾的重要因素,其主要的危害表现在:①阴燃比通常的有焰燃烧释放的有毒产物更多,对人造成危害更大;②它发生在火灾初期,不易被人发现,因此潜在危险性很大;③如果条件适宜,如随着供氧量的增大,阴燃会发生气相反应而转捩成有焰燃烧诱发火灾,会带来更大破坏和损失。同时,燃料阴燃也具有广泛的科技实用性,如在控制多孔可燃材料的燃烧速度、固体物质的气化工程、城市垃圾焚烧、有害固体废物的燃烧、处理生物量燃烧及燃池采暖技术等。所以,研究可燃物阴燃的传播蔓延过程、熄灭条件及其向明火的转捩,对于火灾安全科学、热能源利用、气化工程等方面都具有重要的应用价值。
     阴燃一般分为正向阴燃和反向阴燃。正向阴燃是指阴燃波的转播方向与来流方向相同;而反向阴燃是指阴燃波的传播方向与来流方向相反。正向阴燃在外界条件的改变(如增大风流或氧气含量等)易转捩成明火,而反向阴燃传播则相对比较稳定。
     在数值模拟中,本文采用一个专业有限元数值分析软件包—COMSOL Multiphysics(FEMLAB)对燃料阴燃传播的控制方程,即对偏微分方程组(PDEs),进行建模、离散求解。该软件的求解器是基于C++程序采用最新的数值计算技术编写而成,包括最新的直接求解和迭代求解方法、多级前处理器、高效的时间步用算法则和本征模型。本文对燃料阴燃的数值模拟计算中,主要调用了软件包模型库中的热传递模块和化学工程模块,对能量守恒方程、质量守恒方程、气体组分扩散、动量方程等进行了建模,选用迭代求解方法,使用GMRES求解器,采用自适应网格生成器将填充床划分为多个三角形网格单元。
     首先,本文以两种典型的多孔介质材料(松散的纤维质材料和多孔骨架结构的聚胺脂泡沫)为式样,数值模拟了燃料正向阴燃和反向阴燃传播过程:
     (1)基于燃料阴燃三步反应动力学机理,建立了2D非稳态纤维质材料填充床正向阴燃的数学模型。阴燃的化学动力过程包括燃料热解、燃料放热氧化及焦炭的放热氧化。该模型考虑了固-气之间的热交换及气体在多孔介质内扩散系数的变化。数值模拟了燃料正向阴燃的温度分布、固体成分和气体组分的变化、气流密度和气流速度的变化、反应释热分析等;模拟了来流速度、氧气浓度对阴燃速度及平均最高温度影响,证明阴燃速度与来流风速和氧气浓度基本上呈线性关系变化,模拟结果与实验进行了对比,吻合较好;模拟了燃料特性参数(如燃料导热率、比热、密度等)对燃料阴燃传播的影响,其中燃料的密度对燃料的阴燃传播影响较大,其次是比热,而燃料导热率的影响是很小的;通过模拟多孔介质的孔径的影响,发现对于小孔隙直径,模型中可以忽略辐射传热,而随着孔隙直径的增大,辐射换热的作用逐渐加强,理论模型中要考虑辐射的传热作用;模拟反应指前频率因子来考察燃料阴燃的传播特性;通过模拟分析了燃料阴燃三个反应过程的释热情况,证明燃料氧化是维持阴燃传播的重要动力。
     (2)对于反向阴燃传播,采用两步反应动力学模型,即包括燃料热解和燃料氧化两个反应,建立了二维非稳态燃料反向阴燃传播数学模型。模型中考虑了辐射换热以及气体扩散系数随温度的变化。数值模拟了燃料反向阴燃传播的温度分布、气体组分变化、固体成分变化、气流密度的变化以及反应热释放情况;模拟了来流速度对燃料阴燃传播的影响,随着来流速度的增大,阴燃传播速度呈现出先增大后减小直至熄灭的变化趋势,对阴燃温度的影响相对较小;模拟发现氧气浓度对燃料阴燃传播特性具有重要的影响,其关系粗略呈线性增长,且对燃料阴燃的最高温度也有一定的影响。
     其次,基于Dosanih et al.的单步反应机理,建立了一维非稳态燃料填充床反向阴燃的数学模型,通过大活能渐进分析和参数简化得出了定性描述燃料反向阴燃传播的方程。采用采用Matlab7.0.1计算了燃料反向阴燃的传播过程。计算结果表明:燃料的阴燃温度随着气体流量的增大而增大,但随着反向气流对流冷却作用的加强,阴燃温度的增长幅度是逐渐减小的;阴燃传播速度却呈现出先增大后减小直至熄灭的变化趋势。反向阴燃固相质量通量和阴燃温度随气流质量通量变化的解析解与数值解进行了对比,其变化趋势基本一致。通过定性分析反向阴燃得出;在气体流量为零的情况下,燃料仍然可以发生阴燃,且求得来流速度为零的阴燃速度和阴燃温度。同时,分析了氧气浓度、指前频率因子、孔隙率、燃料特性参数(包括密度、比热、导热率、活化能、放热量)等对反向阴燃熄灭的影响。
     最后,通过理论分析和物理动力学模型简化,建立了燃料阴燃向明火转捩的数学模型,采用分岔理论对燃料阴燃着火-熄火及向明火转捩过程进行了研究和探讨。以Frank-Kamenetskii参数β_1为分岔参数,详细讨论了阴燃着火及向明火转捩的分岔特性。整个分岔曲线出现了二次分岔特点,明显地分为固相反应区和气相反应区。在每一个反应区,分岔曲线均呈现S型,其中包含有三个分支:稳定的着火分支、熄火分支及非稳定状态分支。同时,研究了方程中的其他控制参数(如Pe_1、Pe_2、α_1、α_2、ε和Le)的变化对燃料阴燃着火-熄火及及向明火转捩的影响。此外,也分析了气相反应活化能和放热量的变化对气相反应临界状态消失的影响。
Smoldering combustion is defined as a heterogeneous, slow surface combustion reactionwithout flame in the interior of porous medium. The smoldering involves many complexprocesses related to fluid flow, heat and mass transfer in a porous medium, together withsurface chemical reactions. The interactions between these thermo-physical and chemicalprocesses determine the final characteristics of the smoldering reaction. The smolderingcombustion is of particular interest in the fire safety field because of its role as a potential fireignition source. Firstly, smoldering reactions can produce more toxic combustion products toresult in severely impair than those of open flames. Secondly, it is very difficult to detectbecause smoldering combustion is a weakly reacting phenomenon that can propagate slowlyfor a long period of time through the interior of porous combustible material. Thirdly, andperhaps, more importantly, smoldering reactions may transition to flaming reactions initiatinga rapidly propagation and potentially hazardous fire. At the same time, this phenomenon has awide range of technological relevance, as in the control of fire spread in permeable solids, thegasification process of porous solid materials, the packed bed incineration of municipal solidwaste, the incineration of hazardous solid waste, dealing with the combustion of biomass, theheating technology of fire pit, etc. Therefore, it is very significative to study the propagationprocess, extinguishing conditions and transition to flaming of smoldering of combustiblematerials for the fire safety science, heat energy utilizing and gasification engineering.
     Smoldering combustion is generally classified into forward and reverse configurations.In forward smolder, the reaction zone propagates in the same direction as the inlet airflow. Inreverse smolder, the fresh airflow enters the reaction zone from opposite direction ofsmoldering wave propagation. Forward smolder is unsteady and moves at a higher rate, andcan eventually transit to flaming combustion as increasing smoldering velocity due toincreased inlet air velocity or oxygen concentration. Reverse smolder is characterized by asteady propagation velocity and can't transit into flaming.
     Inthe numerical study, the COMSOL Multiphysics, a special software package based onthe proven finite element method, is employed to resolve the governing equations rearrangedand discretized in space for modeling the smoldering propagation based on partial differentialequations (PDEs). The solvers including direct and iterative method are written to adopt the advanced computation technology based on the C++ program language, and the softwareincludes the advanced multilevel preprocessor, efficient time-step operating rule and intrinsicmodel. In this paper, the heat transfer and chemical engineering modules are called to bulidthe mathematical model including the energy, gaseous species, momentum and overall massconservation equations. The method to solve the equations is iterative and the correspondingsolver, GMRES, is selected. The packed bed of fuel is divided into triangle meshes to performcalculations by employing self-adapting mesh generator.
     Firstly, in this paper, the forward and reverse smoldering propagations are numericallystudied for the typical porous materials including combustible cellulosic fuel andpolyurethane foam.
     (1) Based on a three-step kinetic mechanism, a two-dimensional, time dependent,numerical model is presented for the forward smoldering propagation in a horizontally packedbed of fuel. The kinetic processes include pyrolysis of fuel, oxidation of fuel and oxidation ofchar. Heat transfer between solid and gas is taken into account, and radiative transfer isincluded using the diffusion approximation. The diffusion coefficient varies with temperature.Predicted profiles of solid temperature as well as evolutions of gaseous species, solidcompositions, gaseous density and velocity and heat release are presented and analyzed. Theeffects of airflow velocity and oxygen concentration are numerically simulated on smolderingvelocity and average maximum temperature of smoldering fuel, and the results show that thesmoldering velocity linearly varies with increasing airflow velocity and mass fraction ofoxygen. The computational results are compared with the experimental data available fromthe literature, and a general agreement is reached. Simultaneously, the effects of fuelproperties (including thermal conductivity, specific heat, density and pore diameter) arestudied on the smoldering propagation. The fuel density is the most important factor indetermining smoldering propagation, the second is specific heat, and the least is thermalconductivity. Radiation has a non-negligible role on the smoldering velocity for larger porediameters of porous material. By varying the frequency factors (including fuel pyrolysis, fueloxidation and char oxidation), the simulations show that smoldering velocity increases withincreasing fuel oxidation, but decreases with fuel pyrolysis and char oxidation. The heatreleases of three reactions are analyzed and it is shown that the fuel oxidation is the mostimportant energy to maintain the smoldering propagation.
     (2) Based on a two-step kinetic mechanism (including pyrolysis and oxidation of fuel), atwo-dimensional, time dependent, numerical model is presented for the reverse smolderingpropagation in a horizontally packed bed of fuel. The model takes the radiation heat transferinto account by using the diffusion approximation, and the diffusion coefficient of gas varieswith the temperature in the porous medium. Predicted profiles of solid temperature as well as evolutions of gaseous species, solid compositions, gas density and heat release are presentedand analyzed. The effects of airflow velocity are numerically simulated on smolderingvelocity and average maximum temperature of smoldering fuel by using the model. Withincreasing airflow velocity, the smoldering velocity increases to a maximum and decreasesuntil quenching occurs at the maximum inlet airflow velocity. However, the inlet gas velocityhas little effect on the average maximum temperature. The concentration of oxygen has animportant effect on the characteristics of smoldering propagation. The smoldering velocitylinearly increases with increasing mass fraction of oxygen.
     Secondly, based on a one-step kinetic mechanism as Dosanjt et al. employed, aone-dimensional, unsteady, numerical model is presented for reverse smoldering propagationin a packed bed. Using asymptotic method and simplifying the model parameters theequations are obtained to qualitatively depict the reverse smoldering propagation. Matlab7.0.1language is adopted to compute the propagation progress of reverse smoldering of fuel. Theanalytic solutions show that the smoldering temperature increases with increasing the gaseousmass flux, but the increase in the amplitude is reduced due to enhancing the convectivecooling of preheat zone. With increasing the gaseous mass flux, the smoldering velocityincreases to a maximum and decreases until quenching occurs at the maximum inlet airflowvelocity. The analytical results are compared with the numerically computed results for thefuel mass flux and smoldering temperature with various gas mass flux, and the correct trend ispresent. The computed result also shows that a weak smoldering propagation can be obtainedat zero gaseous flux. The smoldering velocity and temperature are analytically solved whenthe gaseous flux is zero, namely M_g=0. And the smoldering temperatures and gaseous massfluxes are also solved when the smoldering velocity reaches the maximum and zero.Simultaneously, the effects of oxygen concentration, pre-exponential frequency factors,porosity and fuel properties (including density, specific heat, conductivity, activation energy,heat of reaction) are studied on the reverse smoldering propagation.
     Lastly, based on the theoretical analysis and simplified physical model, the mathematicalmodel for the transition to flaming from smoldering combustion is presented in a horizontalpacked bed of fuel. The ignition and extinction of smoldering and transition to flaming arestudied by employing the bifurcation theory. The Frank-Kamenetskii parameter,β_1, isselected as the control parameter and the other parameters (including Pe_1, Pe12,α_1,α_2,ε,Le)are fixed, the bifurcation characteristics of ignition and extinction of smoldering andtransition to flaming are detailedly discussed and analyzed. The computed curve has twobifurcations and both of them show S-shaped. The bifurcation curve is obviously divided intotwo reaction zones of solid phase and gas phase. Each of bifurcation includes three branchesof steady ignited branch, extinguished branch and unstable steady branch. Simultaneously, The effects of other parameters (including Pe_1, Pe_2,α_1,α_2,ε, Le) are studied on the ignitionand extinction of smoldering and transition to flaming. Moreover, the effects of activationenergy and heat release of gas-phase reaction are presented on the vanishing of critical state ofgas-phase reaction.
引文
[1] 周力行.燃烧理论和化学流体力学.北京:科学出版社,1986.
    [2] 周校平,张晓男.燃烧理论基础.上海:上海交通大学出版社,2001
    [3] Bar-Ilan A A. The effects of buoyancy on smoldering combustion and its transition to flame: (Ph.D.). Berkeley: University of California, 2004.
    [4] Kimmerle G. Toxicity of combustion products with particular reference to polyurethane. Annals of Occupational Hygiene (Ann. Hyg.), 1976, 19(3-4): 269-273.
    [5] Quintiere J G, Birky M, Macdonald F et al. An analysis of smoldering fires in closed compartments and their hazard due to carbon monoxide. Fire and Materials. 1982, 6(3-4): 99-110.
    [6] Hibberd S. Spontaneous combustion. Notes and Queries, 1853, s1-Ⅶ(184): 458-459.
    [7] Henneke M R, Ellzey Janet L. Modeling of filtration combustion in a packed bed. Combustion and Flame, 1999, 117(4): 832-840.
    [8] Zhou X Y, Mahalingam S, Weise D. Modeling of marginal burning state of fire spread in live chaparral shrub fuel bed. Combustion and Flame, 2005, 143(3): 183-198.
    [9] Johansson R, Thunman H, Leckner B. Influence of intraparticle gradients in modeling of fixed bed combustion. Combustion and Flame, 2007, 149(1-2): 49-62.
    [10] resner P A, Tsibulevsky A M. Kinetics of dispersed carbon gasification in diffusion flames of hydrocarbons. Combustion and Flame, 1967, 11(3): 227-233.
    [11] Ohlemiller T J, Kashiwagi T, Werner K. Wood gasification at fire level heat fluxes. Combustion and Flame, 1987, 69(2): 155-170.
    [12] Hurt R H, Sarofim A F, Longwell J P. Gasification-induced densification of carbons: From soot to form coke. Combustion and Flame, 1993, 95(4): 430-432.
    [13] 朱群益,赵广播,阮根建等.煤粉热解时升温速率对最终挥发分产量的影响.哈尔滨工业大学学 报,1996,28(03):35-39.
    [14] Dasappa S, Paul P J. Gasification of char particles in packed beds: analysis and results. International Journal of Energy Research. 2001, 25(12): 1053-1072.
    [15] Mermoud F, Golfier F, Salvador S et al. Experimental and numerical study of steam gasification of a single charcoal particle. Combustion and Flame, 2006, 145(1-2): 59-79.
    [16] 矫常命,何芳.玉米秸秆热解液体产物热值的测定.山东理工大学学报,2006,20(02):11-13.
    [17] Yamashita T, Fujii Y, Morozumi Y et al. Modeling of gasification and fragmentation behavior of char particles having complicated structures. Combustion and Flame, 2006, 146(1-2):85-94.
    [18] James A, Brindley J, McIntosh A C. Stability of multiple steady states of catalytic combustion. Combustion and Flame, 2002, 130(1-2): 137-146.
    [19] Li J J, Im H G. Extinction characteristics of catalyst-assisted combustion in a stagnation-point flow reactor. Combustion and Flame, 2006, 145(1-2): 390-400.
    [20] Kim S, Shin D, Choi S. Comparative evaluation of municipal solid waste incinerator designs by flow simulation. Combustion and Flame, 1996, 106(3):241-251.
    [21] Sφum L, Skreiberg φ, Glarborg P et al. Formation of NO from combustion of volatiles from municipal solid wastes. Combustion and Flame, 2001, 124(1-2):195-212.
    [22] Shin D, Choi S. The combustion of simulated waste particles in a fixed bed. Combustion and Flame, 2000, 121(1-2): 167-180.
    [23] 李爱民,李延吉.固体废物在固定床式热解炉内热解产气特性的实验研究.环境污染治理技术与设备,2003,4(04):4-10.
    [24] Abanades S, Flamant G, Gauthier D. The kinetics of vaporization of a heavy metal from a fluidized waste by an inverse method. Combustion and Flame, 2003, 134(4): 315-326.
    [25] 刘汉桥,蔡九菊,包向军等.废弃生物质热解的两种反应模型对比研究.材料与冶金学报,2003,2003,2(02):153-156.
    [26] 何芳,易维明,柏雪源等.几种生物质热解反应动力学模型的比较.太阳能学报,2003,24(06):237-241.
    [27] Smith F G, Pendarvis R W, Rice R W. Combustion of cellulosic char under laminar flow conditions. Combustion and Flame, 1992, 88(1): 61-73.
    [28] 孙文策,解茂昭.燃池的工作特点和热能利用分析.中国能源,1994,8:38-41.
    [29] 孙文策,解茂昭,郭晓平等.燃池内的阴燃过程的实验分析研究.工程热物理学报,2000,21(3):393-396.
    [30] Egerton A T, Gugan K, Weinberg F J. The mechanism of smouldering in cigarettes. Combustion and Flame, 1963, 7(1): 63-78.
    [31] Ohlemiller T J. Modeling of smoldering combustion propagation. Progress in Energy and Combustion Science, 1985, 11(4): 277-310.
    [32] Kinbara T, Endo H, Sega S. Combustion propagation through solid materials I—downward propagation of smouldering along a thin vertical sheet of paper. Combustion and Flame, 1966, 10(1): 29-36.
    [33] Gugan K. Natural smoulder in cigarettes. Combustion and Flame, 1966, 10(2): 161-164.
    [34] Torero J L, Fernandez-Pello A C, Kitano M. Opposed force flow smoldering of polyurethane foam. Combustion Science and Technology, 1993, 91(1-3): 95-117.
    [35] Wang Jing-hong. A study of smoldering combustion in horizontally oriented polyurethane foam layer: (Ph.D.). Nong Kong: Hong Kong University of Science and Technology (People's Republic of China), 2002.
    [36] Zinn B T, Powell E A, Cassanova R A et al. Investigation of smoke particulates generated during the thermal degradation of natural and synthetic materials. Fire Safety Journal, 1977, 1(1): 23-36.
    [37] Krause U, Schraid M. Initiation of smouldering fires in combustible bulk materials by glowing nests and embedded hot bodies. Journal of Loss Prevention in the Process Industries, 1997, 10(4): 237-242.
    [38] Krause U, Schmid M. The influence of initial conditions on the propagation of smouldering fires in dust accumulations. Journal of Loss Prevention in the Process Industries, 2001, 14(6): 527-532.
    [39] Krause U, Schmidt M, Lohrer C. A numerical model to simulate smouldering fires in bulk materials and dust deposits. Journal of Loss Prevention in the Process Industries, 2006, 19(2-3): 218-226.
    [40] Alarie Y, Stock M F, Mati jak-schaper M et al. Toxicity of smoke during chair smoldering tests and small scale tests using the same materials. Fundamental and Applied Toxicology, 1983, 3(6): 619-626.
    [41] Wagner J P, Soderman K L, Konzen R et al. Toxic species evolution from guayule fireplace logs. Bioresource Technology, 1991, 35(2): 203-208.
    [42] McKenzie L M, Hao W M. Measurement and modeling of air toxins from smoldering combustion of biomass. Environmental Science & Technology, 1995, 29 (8) : 2047-2055.
    [43] Rabelo E R C, Veras C A G, Carvalho J A et al. Log smoldering after an amazonian deforestation fire. Atmospheric Environment, 2004, 38(2): 203-211.
    [44] Veras C A G, Alvarado E. The role of smoldering combustion on smoke emission in tropical forest fires. Forest Ecology and Management, 2006, 234(Suppl. 1): S159.
    [45] Chao C Y H, Wang J H. Transition from smoldering to flaming combustion of horizontally oriented flexible polyurethane foam with natural convection. Combustion and Flame, 2001, 127(1): 2252-2264.
    [46] Lu C, Yu M G, Liu N A et al. Smoldering and the transition to flaming combustion for cellulosic materials: Effect of fuel porosity. Forest Ecology and Management, 2006, 234(Suppl. 1): S132.
    [47] Aldushin A. P, Bayliss A., Matkowsky B J. On the transition from smoldering to flaming. Combustion and Flame, 2006, 145(3): 579-606.
    [48] Sweis F K The effect of admixed material on the flaming and smouldering combustion of dust layers. Journal of Loss Prevention in the Process Industries, 2004, 17(6) : 505-508
    [49] Clarke F B, Ottoson J. Fire death scenarios and fire safety planning. Fire Journal, 1976, 70(3): 20-22; 117-118.
    [50] Ohlemiller T J, Bellan J, Rogers F. A model of smoldering combustion applied to flexible polyurethane foams. Combustion and Flame, 1979, 36: 197-215.
    [51] Rogers F E, Ohlemiller T J. A survey of several factors influencing smoldering combustion in flexible and rigid polymer foams. Journal of Fire and Flammability, 1978, 9(4): 489-509.
    [52] Ohlemiller T J. Smoldering combustion propagation through a permeable horizontal fuel layer. Combustion and Flame, 1990, 81(3-4): 341-353.
    [53] Ohlemiller T J. Forced smolder propagation and the transition to flaming in cellulosic insulation. Combustion and Flame, 1990, 81(3-4): 354-365.
    [54] Torero J L, Fernandez-Pello A C. Natural convection smolder of polyurethane foam, upward propagation. Fire Safety Journal, 1995, 24(1): 35-52.
    [55] Anderson M K, Sleight R T, Torero J L. Downward smolder of polyurethane foam: ignition signatures. Fire Safety Journal, 2000, 35(2): 131-147.
    [56] Anderson M K, Sleight RT, Torero J L. Ignition signatures of a downward smolder reaction. Experimental Thermal and Fluid Science, 2000, 21(1-3): 33-40.
    [57] Rogaume T, Auzanneau M, Jabouille F et al. The effects of different airflows on the formation of pollutants during waste incineration. Fuel, 2002, 81(17): 2277-2288.
    [58] Baker R R. Product formation mechanisms inside a burning cigarette. Progress in Energy and Combustion Science, 1981, 7(2): 135-153.
    [59] Baker R R, Coburn S, Liu C et al. Pyrolysis of saccharide tobacco ingredients: a TGA-FTIR investigation. Journal of Analytical and Applied Pyrolysis, 2005, 7(1-2): 171-180.
    [60] Baker R R, Coburn S, Liu C. The pyrolytic formation of formaldehyde from sugars and tobacco. Journal of Analytical and Applied Pyrolysis, 2006, 77(1): 12-21.
    [61] 解茂昭,D.Reinelt.碳粒填充床在驻点流场中燃烧.大连理工大学学报,1995,35(3):362—366.
    [62] Xie Maozhao, Liang Xiaohong. Numerical simulation of combustion and ignition-quenching behavior of a carbon packed bed. Combustion Science and Technology, 1997, 125(1-6): 1-24.
    [63] Woolley W D, Ames S A, Pitt A I et al. The ignition and burning characteristics of fabric covered foams. Fire Safety Journal, 1980, 2(1): 39-59.
    [64] Muramatsu M, Umemura S, Okada T. A mathematical model of evaporation-pyrolysis processes inside a naturally smoldering cigarette. Combustion and Flame, 1979, 36:245-262.
    [65] Uyemura S, Imanishi H. Effects of gaseous compounds in smoke on dormancy release in freesia corms. Scientia Horticulturae, 1983, 20(1): 91-99.
    [66] Ohlemiller T J, Lucca D A. An experimental comparison of forward and reverse smolder propagation in permeable fuel beds. Combustion and Flame, 1983, 54(1-3): 131-147.
    [67] Krause U, Schmidt M. Propagation of smouldering in dust deposits caused by glowing nests or embedded hot bodies. Journal of Loss Prevention in the Process Industries, 2000, 13(3-5): 319-326.
    [68] Kelley M L, Schult D A. Modeling extinction in forced opposed-flow smolder. Combustion Theory and Modelling, 2006, 10(1): 133-143.
    [69] Newhall J L, Fernandez-Pello A C, Pagni P J. Experimental observations of the effect of pressure and buoyancy on cellulose co-current smoldering. Fire and Materials. 1989, 14(4): 145-150.
    [70] Patterson E M, McMahon C K. Absorption characteristics of forest fire particulate matter. Atmospheric Environment, 1984, 18(11): 2541-2551.
    [71] 范维澄,杨立中.城市与工业火灾安全科学与工程.中国科学院院刊,2000,15(3):178-182.
    [72] 范维澄,刘乃安.火灾安全科学-一个新兴交叉的工程科学领域.中国工程科学,2001,3(1):6-14.
    [73] 范维澄,刘乃安.中国火灾科学基础研究进展与展望.中国科技大学学报,2006,36(1):1-8.
    [74] 赵平辉,陈义良,刘明侯等.多孔介质内层流预混燃烧的数值模拟.燃烧科学与技术,2006,12(1):P.46-50.
    [75] 赵平辉,陈义良,刘明侯等.化学反应机理和弥散效应对多孔介质内燃烧过程的影响.中国科技大学学报,2006,36(10):1051-1056.
    [76] Leach S V, Ellzey J L, Ezekoye O A. A numerical study of reverse smoldering. Combustion Science and Technology, 1997, 130(1-6): 247-267.
    [77] Palmer K N. Smouldering combustion in dusts and fibrous materials. Combustion and Flame, 1957, 1(2): 129-154.
    [78] Kinbara T, Endo H, Sega S. Downward propagation of smoldering combustion through solid materials. Eleventh Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 1967: 525.
    [79] Williams F A. Mechanisms of fire spread. Sixteenth Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 1976: 1281-1294.
    [80] Rogers F E, Ohlemiller T J. Smolder Characteristics of Flexible Polyurethane Foams. Journal of Fire and Flammability, 1980, 11(1): 32-44.
    [81] Rogers F E, Ohlemiller T J. Cellulosic insulation material, Part Ⅰ:Overa11 degradation kinetics and reaction heats. Combustion Science and Technology, 1980, 24(3-4): 129-137.
    [82] 孙文策,解茂昭,张明阁等.水平燃料床阴燃传播及其向明火转挨的实验研究.火灾科学,1995,4(3):23—29.
    [83] Torero J L, Fernandez-Pello A C. Forward smolder of polyurethane foam in a forced air flow. Combustion and Flame, 1996, 106(1-2): 89-109.
    [84] Bilbao R, Mastral J F, Aldea M E et al..Experimental and theoretical study of the ignition and smoldering of wood including convective effects. Combustion and Flame, 2001, 126(1-2): 1363-1372.
    [85] Carvalho E R, Yeras C A G, Carvalhojr 3 A. Experimental investigation of smouldering in biomass. Biomass and Bioenergy, 2002, 22(4): 283-294.
    [86] Wang J H, Chao C Y H, Kong W J. Experimental study and asymptotic analysis of horizontally forced forward smoldering combustion. Combustion and Flame, 2003, 135(4): 405-419.
    [87] Bar-Ilan A, Rein G, Fernandez-Pello A C et al. Forced forward smoldering experiments in micro-gravity. Experimental Thermal and Fluid Science, 2004, 28(7): 743-751.
    [88] Debenest G, Mourzenko V V, Thovert J -F. Smouldering in fixed beds of oil shale grains: A three-dimensional microscale numerical model. Combustion Theory and Modelling, 2005, 9(1):113-135.
    [89] Debenest G, Mourzenko V V, Thovert J -F. Smouldering in fixed beds of oil shale grains: governing parameters and global regimes. Combustion Theory and Modelling, 2005, 9(2): 301-321
    [90] Saidi M S, Hajaligol M R, Mhaisekar A et al. A 3D modeling of static and forward smoldering combustion in a packed bed of materials. Applied Mathematical Modelling, 2007, 31(9): 1970-1996.
    [91] Moallemi M K, Zhang H, Kumar S. Numerical modeling of two-dimensional smoldering processes. Combustion and Flame, 1993, 95(1-2): 170-182.
    [92] Fatehi M, Kaviany M. Adiabatic Reverse Combustion in a Packed Bed, Combustion and Flame, 1995, 99(1): 1-17.
    [93] Scult D A, Matkowsky B J, Volpert V A. Forced Forward Smolder Combustion, Combustion and Flame, 1996, 104(1-2): 1-26.
    [94] 解茂昭,孙文策.纤维质颗粒床阴燃特性的数值模拟.大连理工大学学报,1998,38(1):58-62.
    [95] 郭晓平,解茂昭,孙文策.水平纤维质阴燃过程的数值模拟.工程热物理学报,2000,21(5):657-660.
    [96] 解茂昭,梁晓宏.碳粒填充床燃烧及着火熄火特性的数值分析.火灾科学,1995,4(2):24-30.
    [97] Rostami A, Murthy J, Hajaligol M. Modeling of a smoldering cigarette. Journal of Analytical and Applied Pyrolysis, 2003, 66(1-2): 281-301.
    [98] Rostami A, Murthy J, Hajaligol M. Modeling of smoldering process in a porous biomass fuel rod. Fuel, 2004, 83(11-12): 1527-1536.
    [99] Fernando de Souza Costa, Sandberg D. Mathematical model of a smoldering log. Combustion and Flame, 2004, 139(3): 227-238.
    [100] Dosanjh S S, Peterson J, Fernandez-Pello A C et al. Buoyancy effects on smoldering combustion. Acta Astronautica, 1986, 13(11-12): 689-696.
    [101] Dosanjh S S, Pagni P J, Fernandez-Pello A C. Forced cocurrent smoldering combustion. Combustion and Flame, 1987, 68(2): 131-142.
    [102] Rein G, Fernandez-Pello A C, Urban D L. Computational model of forward and opposed smoldering combustion in micro-gravity. Proceedings of the Combustion Institute, 2007, 31(2): 2677-2684.
    [103] 李天祥.摄动法在燃烧中的应用.1987年中国工程热物理学会燃烧学术会议论文集.北京:学术期刊出版社,1987.
    [104] 谢定裕.渐进方法—在流体力学中的应用.北京:中国友谊出版社,1983.
    [105] 夏少武.活化能及其计算.北京:高等教育出版社,1993.
    [106] Schult D A, Matkowsky B J, Volpert V A et al. Propagation and extinction of forced opposed flow smolder waves. Combustion and Flame, 1995, 101 (4): 471-490.
    [107] 石英,解茂昭.碳粒填充床逆向阴燃传播渐近分析解.燃烧科学与技术,1998,4(3):247-252.
    [108] 石英,沈胜强,解茂昭.氧化环境中碳粒的弱反应研究.燃烧科学与技术,1998,4(1):86-90.
    [109] 郭晓平,解茂昭,孙文策.考虑热解反应的阴燃渐进分析.大连理工大学学报,1999,39(4):547-551.
    [110] Baliga V L, Miser D E, Sharma R K et al. Physical characterization of the cigarette coal: part 1—smolder burn. Journal of Analytical and Applied Pyrolysis, 2003, 68-69: 443-465.
    [111] Yi S C, Hajaligol M R, Jeong S H. The prediction of the effects of tobacco type on smoke composition from the pyrolysis modeling of tobacco shreds. Journal of Analytical and Applied Pyrolysis, 2005, 74(1-2): 181-192.
    [112] Branca C, Di Blasi C, Casu Aet al. Reaction kinetics and morphological changes of a rigid polyurethane foam during combustion. Thermochimica Acta, 2003, 399(1-2): 127-137.
    [113] Lozinski D, Buckmaster J. Quenching of reverse smolder. Combustion and Flame, 1995, 102(1-2): 87-100.
    [114] Saidi M S, Hajaligol M R, Mhaisekar A et al. A 3D modeling of static and forward smoldering combustion in a packed bed of materials. Applied Mathematical Modelling, 2007, 31(9): 1970-1996.
    [115] Di Blasi C. Mechanisms of two-dimensional smoldering propagation through packed fuel beds. Combustion Science and Technology, 1995, 106(1-3): 103-124.
    [116] Leach S V, Rein G, Ellzey J L et al. Kinetic and fuel property effects on forward smoldering combustion. Combustion and Flame, 2000, 120(3): 346-358.
    [117] Rein G, Bar-Ilan A, Fernandez-Pello A C et al. Modeling of one-dimensional smoldering of polyurethane in microgravity conditions. Proceedings of the Combustion Institute, 2005, 30(2): 2327-2334.
    [118] Rein G, Lautenberger C, Fernandez-Pello A C et al. Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion. Combustion and Flame, 2006, 146(1-2): 95-108.
    [119] Akkutlu I Y, Yortsos Y C. The dynamics of in-situ combustion fronts in porous media. Combustion and Flame, 2003, 134(3): 229-247.
    [120] Saidi M S, Hajaligol M R, Rasouli F. Numerical simulation of a burning cigarette during puffing. Journal of Analytical and Applied Pyrolysis, 2004, 72(1): 141-152.
    [121] McKenzie L M. Hao W M, Richards G Net al. Quantification of major components emitted from smoldering combustion of wood. Atmospheric Environment, 1994, 28(20): 3285-3292.
    [122] Reinelt D, Laurs A, Adomeit G. Ignition and combustion of a packed bed in a stagnation point flow. Combustion and Flame, 1994, 99(2): 395-403.
    [123] Yi S C, Hajaligol M R. Product distribution from the pyrolysis modeling of tobacco particles. Journal of Analytical and Applied Pyrolysis, 2003, 66(1-2): 217-234.
    [124] 孙文策,解茂昭,徐敏.纤维质颗粒燃料阴燃引燃过程的研究.大连理工大学学报,1998,38(2):218-222.
    [125] 孙文策,郭晓平,解茂昭等.自然流动条件下竖直阴燃传播和气体成分.燃烧科学与技术,2002,8(2):188-191.
    [126] 徐敏,孙文策,解茂昭.多孔颗粒床阴燃着火研究与数值分析.大连理工大学学报,2002,42(1):65—70.
    [127] 郭晓平,解茂昭,孙文策.水平碳粒床中阴燃过程的数值计算.大连理工大学学报1998,38(1):63-69.
    [128] 郭晓平,解茂昭.二维碳粒床中阴燃传播的数值模拟.燃烧科学与技术,1995,1(1):86-93.
    [129] 郭晓平,解茂昭,孙文策.空隙率变化对阴燃传播的影响.燃烧科学与技术,2001,7(3):258-261.
    [130] 郭晓平,解茂昭,孙文策.水平碳粒填充床上方气体热辐射对阴燃影响.大连理工大学学报,2000,40(6):702-705.
    [131] 林其钊,王清安.灾害燃烧及特点.合肥:火灾科学.2000,9(4):19-24.
    [132] 邵战杰,林其钊.聚氨酯泡沫材料阴燃特性的实验研究.消防科学与技术,2003,22(5):363-365.
    [133] 路长,林其钊,王清安.阴燃中出现有焰火的理论初探.火灾科学.2000,9(1):13-20.
    [134] 路长,周建军,刘乃安等.阴燃材料受热升温过程分析.工程热物理学报,2006,27(S2):211-214.
    [135] 何芳,徐梁,柏雪源等.生物质热解过程吸热量.太阳能学报,2006,27(3):237-241.
    [136] 何芳,窦沙沙,李永军等.秸秆阴燃过程热量释放定量分析.生物质化学工程,2007,41(1):5-8.
    [137] Buckmaster J, Lozinski D. An Elementary Discussion of Forward Smoldering. Combustion and Flame, 1996, 104(3): 300-310.
    [138] Kashiwagi T, Ohlemiller T J, Werner K. Effects of external radiant flux and ambient oxygen concentration on nonflaming gasification rates and evolved products of white pine. Combustion and Flame, 1987, 69(3): 331-345.
    [139] Shafizadeh F, Sekiguchi Y. Oxidation of chars during smoldering combustion of cellulosic materials. Combustion and Flame, 1984, 55(2): 171-179.
    [140] Rajeshwar K. Diagnostic probes for fire hazard evaluation based on thermal analysis methodology. An example of use in hot asphalt mixing operations. Fuel, 1986, 65(7): 987-990.
    [141] Akin C, Scott L M, Metcalfe D D. Slowly progressive systemic mastocytosis with high mast-cell burden and no evidence of a non-mast-cell hematologic disorder: an example of a smoldering case. Leukemia Research, 2001, 25(7): 635-638.
    [142] Oros D R, Simoneit B R T. Identification and emission factors of molecular tracers in organic aerosols from biomass burning Part 1. Temperate climate conifers. Applied geochemistry, 2001, 16(13): 1513-1544.
    [143] Oros D R, Simoneit B R T. Identification and emission factors of molecular tracers in organic aerosols from biomass burning Part 2. Deciduous trees. Applied Geochemistry, 2001, 16(13): 1545-1565.
    [144] Gratkowski M T, Dembsey N A, Beyler C L. Radiant smoldering ignition of plywood. Fire Safety Journal, 2006, 41(6): 427-443.
    [145] El-Sayed S A, Abdel-Latif A M. Smoldering combustion of dust layer on hot surface. Journal of Loss Prevention in the Process Industries, 2000, 13(6): 509-517.
    [146] Aldushin A. P, Matkowsky B J, Schult D A. Downward buoyant filtration combustion. Combustion and Flame, 1996, 107(1-2): 151-175.
    [147] Bar-Ilan A., Putzeys 0 M, Rein G et al. Transition from forward smoldering to flaming in small polyurethane foam samples. Proceedings of the Combustion Institute, 2005, 30(2):2295-2302.
    [148] Aldushin A. P, Bayliss A., Matkowsky B J. On the mechanism of triggering the transition from smoldering to flaming. Proceedings of the Combustion Institute, 2007, 31(2): 2661-2668.
    [149] Putzeys O, Bar-Ilan A, Rein G et al. The role of secondary char oxidation in the transition from smoldering to flaming. Proceedings of the Combustion Institute, 2007, 31(2): 2669-2676.
    [150] 陈义良,张孝春,孙慈等.燃烧理论.北京:航空工业出版社,1992.
    [151] 林瑞泰.多孔介质传热传质引论.北京:科学出版社,1995.
    [152] Durbetaki P. Ignition phase transition of a polymer: convective xxposure. International Journal For Numerical Methods in Engineering, 1988, 25(2): 373-386.
    [153] Annamalai K, Durbetaki P. A theory on transition of ignition phase of coal particles. Combustion and Flame, 1977, 29(2): 193-208.
    [154] Sato K, Sega S. The mode of burning zone spread along cylindrical cellulosic material. Journal of Fire Science, 1985, 3(1): 26-34.
    [155] Salig R. Smoldering behavior of upholstered polyurethane cushioning and its relevance to home furnishings fires:(Master' s Thesis). Massachusetts Institute of Technology, Cambridge, USA, 1981.
    [156] Ohlemiller T J, Shaub W. Products of wood smolder and their relation to wood-burning stoves. NBSIR 88- 3767, National Bureau of Standards, Washington, DC, 1988.
    [157] Ohlemiller T J. Fire Safety Science-Proceedings of the Third International Symposium, Elsevier, New York, 1991: 565.
    [158] 石英.渐进法在炭粒燃烧及其填充床阴燃研究中的应用:(博士学位论文).大连:大连理工大学,1998.6:90-106.
    [159] Bakhman N N. Smoldering wave propagation mechanism. I. Critical conditions. Combustion. Explosion, and Shock Waves, 1993, 29(1): 14-17.
    [160] Bakhman N N. Smoldering wave propagation mechanism. Ⅱ. Smoldering velocity and temperature in Smoldering zone. Explosion, and Shock Waves, 1993, 29(1): 18-24
    [161] Sadiq M A, Merkin J H. Combustion in a porous material with reactant consumption: The role of the ambient temperature. Mathematical and Computer Modelling, 1994, 20(1): 27-46.
    [162] Bakhman N N, Kuznetsov G P, Puchkov V M. Effect of airflow direction and velocity on smoldering waves in combustible porous layers. Combustion, Explosion, and Shock Waves, 2002, 38(5): 518-524.
    [163] Saidi M S, Mhaisekar A, Hajaligol M R et al. Effects of thermo-physical and flow parameters on the static and dynamic burning of a cigarette. Combustion Theory and Modelling, 2006, 10(6): 939-960.
    [164] Schaffer E L. Smoldering initiatioh in cellulosics under prolonged low-level heating. Fire Technology, 1980, 16(1): 22-28.
    [165] Norbury J, Stuart A M. Parabolic free boundary problems arising in porous mmedium combustion. IMA Journal of Applied Mathematics, 1987, 39(3): 241-257.
    [166] Stuart A. M. Existence of solutions of a two-point free-boundary problem arising in the theory of porous medium combustion. IMA Journal of Applied Mathematics, 1987, 38(1): 23-34.
    [167] Wang Shin-Hwa, Lee Fu-Ping. Bifurcation of an equation from catalysis theory. Nonlinear Analysis, Theory, Methods & Applications, 1994, 23(4): 1167-1187.
    [168] Wang Shin-Hwa. Bifurcation of an equation arising in porous-medium combustion. IMA Journal of Applied Mathematics, 1996, 56(3): 219-234.
    [169] Vlachos D G. Reduction of detailed kinetics mechanics for ignition and extinction of prefixed hydrogen/air flames. Chemical Engineering Science, 1996, 51(16): 3979-3993.
    [170] Shui-Nee Chow, Jack K. Hale. Method of Bifurcation Theory. New York: Springer-Verlag, 1982
    [171] Hazewinkel M, Jurkovich R, Paelinck J H P. Bifurcation Analysis (Principle, Application and Sythesis). Dordrecht: D. Reidel Publishing ComDany, 1984.
    [172] 陆启韶.分岔与奇异性[M](非线性科学丛书).上海:上海科技教育出版社,1995.09
    [173] Song X, Williams W R, Schmidt L D et al. Bifurcation behavior in homogeneous-heterogeneous combustion: Part. Ⅱ computations for stagnation-point flow. Combustion and Flame. 1991, 84(3-4): 292:311.
    [174] Bruter C P, Aragnol A, Lichnerowicz A. Bifurcation Theory, Mechanics and Physics. Dordrecht: D. Reidel Publishing Company, 1983.
    [175] 谢之康,范维澄,王清安.热灾害过程的非线性动力学理论.中国安全科学学报,1998,8(5):1-5.
    [176] 谢之康,李雯,范维澄等.燃烧、爆炸过程复杂性行为的非线性动力学.合肥:火灾科学,1999,8(3):6-13.
    [177] 谢之康.火灾现象与非线性-非线性火灾学.徐州:中国矿业大学学报,1999.54(5):421-425
    [178] Wang Shin-Hwa. On s-shaped bifurcation curve. Nonlinear Analysis, Theory, Methods & Applications, 1994, 22(12): 1475-1485.
    [179] Ogle R A, Schumacher J L. Fire patterns on upholstered furniture: Smoldering versus flaming combustion. Fire Technology, 1998, 34(3): 247-265.
    [180] Jon-Pierre Michaud. Hazard assessment of maalaea construction and demolition landfill smoldering fire, and Air Quality at a Nearby Community, Environmental Science Research, 2005, Vol. 59(2): 176-183
    [181] 魏伴云.火灾与爆炸灾害安全工程学.武汉:中国地质大学出版社,2004.
    [182] Buckmater J. A theory of shallow smoulder waves. Journal of Applied Mathematics, 1996, 56(1): 87-102.
    [183] Herbert D M, Kerr C E, Adler J. Diffusion-controlled smouldering combustion with material shrinkage. The Quarterly Journal of Mechanics and Applied Mathematics, 1994, 47(1): 43-52.
    [184] 许晋源,徐通模.燃烧学[M].北京:机械工业出版社,1980.
    [185] Norbbury J, Stuart A M. A Model for porous-medium combustion. The Quarterly Journal of Mechanics and Applied Mathematics (Q J Mechanics Appl Math), 1989, 42(1): 159-178.
    [186] 傅维镳,张永廉,王清安.燃烧学[M].北京:高等教育出版社,1990.490-491。
    [187] 杨传铭.传热学[M].北京:高等教育出版社,1987.248-251.
    [188] 冯长根.热爆炸理论[M].北京:科学出版社,1988.
    [189] Yang T T, Chen C C, Lin J M. Effect of air flow on emission of smoldering incense. Bulletin of Environmental Contamination and Toxicology, 2005, 74(3): 456-463
    [190] Kerr C E. Diffusion-controlled smoulder propagation in a semi-infinite solid: A numerical solution. Institute of Mathematics and its Applications Journal of Applied Mathematics (IMA J. Appl. Math.), 1992, 48(2): 149-62.
    [191] Herbert D M, Kerr C E, Adler J. Diffusion-controlled smoulder propagation in a semi-infinite solid: The asymptotic temperature distribution. IMA Journal of Applied Mathematics, 1994, 53(2): 127-136.
    [192] Reinelt D, Laurs A, Adomeit G. Ignition and combustion of a packed bed in a stagnation point flow. Combustion and Flame, 1994, 99(2): 395-403.
    [193] Hayhurst A N. The mass transfer coefficient for oxygen reacting with a carbon particle in a fluidized or packed bed. Combustion and Flame, 2000, 121(4): 679-688.
    [194] Gort R, Brouwers J J H. Theoretical analysis of the propagation of a reaction front in a packed bed. Combustion and Flame, 2001, 124(1-2): 1-13.
    [195] Mikofski M A., Williams T C, Shaddix C R et al. Structure of laminar sooting inverse diffusion flames. Combustion and Flame, 2007, 149(4): 463-478.
    [196] Isaev A V. Mechanism of in- flame gasification of disperse carbon in diffusion combustion of hydrocarbons. Chemistry and Technology of Fuels and Oils, 2004, 40(5): 311-319.
    [197] Fang J B, Steward F R. Flame spreadthrough randomly packed fuel particles. Combustion and Flame, 1969, 13(4): 392-398.
    [198] Ribert G, Gicquel O, Darabiha Net al. Tabulation of complex chemistry based on self-similar behavior of laminar premixed flames. Combustion and Flame, 2006, 146(4): 649-664.
    [199] Kartheekeyan S, Chakravarthy S R. An experimental investigation of an acoustically excited laminar premixed flame. Combustion and Flame, 2006, 146(3): 513-529.
    [200] Kadowaki S, Hasegawa T. Numerical simulation of dynamics of premixed flames: flame instability and vortex-flame interaction. Progress in Energy and Combustion Science, 2005, 31(3): 193-241.
    [201] Young B C, Smith I W, The combustion of loy young brown coal char. Combustion and Flame, 1989, 76(1): 29-35.
    [202] 岑可法,樊建人.燃烧流体力学.北京:水利电力出版社,1991.
    [203] 张斌全.燃烧理论基础.北京:北京航空航天大学出版社,1990.
    [204] Szekely J, Evans J, Sohn H. Gas-solid reactions. New York: Academic Press, 1976.
    [205] Muramatsu M. Studies on the transport phenomena in naturally smoldering smoldering cigarette. Sci. Pap. Cent. Res. Inst. Jpn. Monp. Corp, 1981, 54(1): 9-77.
    [206] Di Blasi C. Modeling and simulation of combustion processes of charring and non-charring solid fuels. Progress in Energy and Combustion Science, 1993, 19(i):71-104.
    [207] Arpaci V S, Tabaczynski R J. Radiation-affected laminar flame propagation. Combustion and Flame, 1982, 46: 315-322.
    [208] Arpaci V S, Tabaczynski R J. Radiation-affected laminar flame quenching. Combustion and Flame, 1984, 57(2): 169-178.
    [209] 王补宣.多孔介质中单相对流换热分析的流体渗流模式.上海交通大学学报,1999,33(8):966-969
    [210] Fand R M, Kim B Y K, Lam A C C et al. Resistance to the flow of fluids through simple and complex porous media whose matrices are composed of randomly packed spheres. Journal of Fluids Engineering, 1987, 109(3): 268-274.
    [211] 杜礼明.稀薄预混合气体在多孔介质中绝热燃烧的研究:(博士学位论文).大连:大连理工大学,2003.09
    [212] Bear J, Bachmat Y. Introduction to modeling of transport phenomena in porous media. Dordrecht/Boston/London: Kluwer Academic Publishers, 1990.
    [213] Malico I, Zhou X Y, Pereira J C F. Two-dimensional numerical study of combustion and pollutants formation in porous burners. Combustion Science and Technology, 2000, 152(1):57-79
    [214] Wakao N, Kaguei S. Heat and mass transfer in packed beds. New York: Gordon and Breach, 1982.
    [215] 陶文铨.数值传热学(第二版).西安:西安交通大学出版社,2001,5:1-20
    [216] 王勖成.有限单元法.北京:清华大学出版社,2003
    [217] William B J, Zimmerman. Multiphysics Modeling With Finite Element Method. New York: World Scientific Publishing Company, 2006.10: http://comsol.cntech.com.cn/.
    [218] 陆君安 尚涛 谢进.偏微分方程的matlab解法.武汉:武汉大学出版社,2001.
    [219] Schult D A, Matkowsky B J, Volpert V A et al. Forced forward smolder combustion. Combustion and Flame, 1996, 104(1-2): 1-26
    [220] Kashiwagi T, Nambu H. Global kinetic constants for thermal oxidative degradation of a cellulosic paper. Combustion and Flame, 1992, 88(3-4):345-368.
    [221] Madaj E J. Flexible, combustion modified, polyurethane foams. USP 5229427, 1993.
    [222] 孔新平,任永秀.聚氨酯硬质泡沫塑料阻燃性的研究及应.化工新型材料,2000,28(1):34-37.
    [223] 李俊贤.塑料工业手册·聚氨酯.北京:化学工业出版社.1999:293.
    [224] 傅维镳,张永廉,王清安.燃烧学.北京:高等教育出版社.1989:293.
    [225] 徐旭常,毛健雄,曾瑞良等.燃烧理论与燃烧设备.北京:机械工业出版社,1990.
    [226] 石英.渐进法在炭粒燃烧及其填充床阴燃研究中的应用:(博士学位论文).大连:大连理工大学,1998.6.
    [227] Bucker J D, Ludford G S S. Theory of laminar flames. New York: Cambridge University Press, 1982.
    [228] 高会生,李新叶,胡智奇等.Matlab原理与工程应用(第二版).北京:电子工业出版社,2006.01.
    [229] Torero J L, Fernandez-Pello A C, Urban D. Experimental observation of the effect of gravity changes on smoldering combustion. American Institute of Aeronautics and Astronautics (AIAA) Journal, 1994 32(5): 991-996.
    [230] Tse S D, Anthenien R A, Fernandez-Pello A C et al. An application of ultrasonic tomographic imaging to study smoldering combustion - Proceedings of the Eighth International Symposium on Transport Phenomena in Combustion. Combustion and Flame, 1999, 116(1): 120-135.
    [231] De Neef M J, Knabner P, Summ G. Numerical Bifurcation Analysis of Premixed Combustion in Porous Inert Media. High Performance Scientific and Engineering Computing (H.J. Bungartz et al., eds.), Springer Verlag, Berlin, 1999, 39-50.
    [232] Zhang G, Merkin J H, Scott S K. Reaction-diffusion model for combustion with fuel consumption:Ⅰ. dirichlet boundary conditions. IMA Journal of Applied Mathematics, 1991, 47(1): 33-60.
    [233] Frank-Kamenetskii D A. Diffusion and heat transfer in chemical kinetics. New York: Plenum Press, 1969.
    [234] Zhang G, Merkin J H, Scott S K. Reaction-diffusion model for combustion with fuel consumption:Ⅱ. Robin boundary conditions. IMA Journal of Applied Mathematics, 1993, 51(1): 69-93.
    [235] 张琪昌,王洪礼,竺致文.分岔与混沌理论及应用.天津:天津大学出版社,2005.
    [236] Bakker P G. Bifurcations in flow patterns: some applications of the qualitative theory of differential equations in fluid dynamics. Dordrecht: Kluwer Academic, 1991.
    [237] Salvadori(ED) L. Bifurcation theory and applications(Lect Notes in Math). Berlin: Springer-Verlag, 1984.
    [238] Doedel E J, Champneys A R, Faigrieve T Fetal. AUT097: Continuation and Bifurcation Software for Ordinary Differential Equations. Technical report, Department of Computer Science, Concordia University, Montreal, Canada, 1997.
    [239] Semenov N N. Some problems in chemical kinetics and reactivity. Princeton: Princeton University Press. 1958.
    [240] 谢苗诺夫.论化学动力学和反应能力的几个问题(黄继雅译).北京:科学出版社,1962.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700