合成气稀释旋流扩散火焰燃烧特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
整体煤气化联合循环(IGCC)通过气化炉、燃气轮机、余热锅炉等共同作用,能够同时满足高效和低污染的要求,被认为是未来能源清洁高效利用重要的发展方向。
     合成气(syngas)在燃气轮机中的燃烧是IGCC中向外输出功的重要中间过程,出于安全和低污染的考虑,合成气稀释旋流扩散燃烧是燃气轮机中重要的燃烧方式,但目前这方面的应用基础研究还相当缺乏。
     本文的研究主要是围绕着应用于合成气燃气轮机中的旋流扩散火焰的燃烧特性而展开。通过对火焰形态、温度、混合特性及OH自由基浓度场的了解来分析燃烧的特性。研究方法上,混合特性通过激光可视化方法(LSV)来实现,OH自由基的特征通过平面激光诱导荧光方法(PLIF)来实现。
     实验方法上,首先对旋流扩散的混合特性进行了实验和分析,采用混合数来描述混合特性;然后对合成气旋流稀释扩散燃烧特性开展了研究;最后通过数值模拟方法分析和预测了难以通过实验了解的工况下的合成气旋流燃烧特性。
     结果表明,通过定义的混合数来描述燃料和空气的混合情况,能够说明燃料和空气的混合特性,而且这种表示方面弥补了动量比不能够区分相同速度下的混合特征和其数值的大小不能区分混合好坏的缺陷。
     在旋流扩散燃烧的稳定性方面,它至少受旋流产生的回流区和扩散混合两方面的因素控制,加强回流和加强混合都有利于燃烧稳定。旋流数较大时,燃料和空气同向旋流和反向旋流相比,它的总回流量较大,能够向回流区卷吸更多的活性自由基和热量,从而有利于燃烧稳定。当两者旋流数比较小时,混合对燃烧的稳定性会产生重要的影响,空气和燃料的反向旋流由于混合较为强烈从而稳定性比空气和燃料同向旋流时要好。
     通过对PLIF测量的OH自由基图像的分析,解释了小旋流数下容易发生熄火是由于混合较差,火焰面较薄,不连续的火焰面增多。小旋流数会导致该区域的温度值降低及OH自由基的量降低,并进一步容易诱发不稳定燃烧。
     本文主要从燃烧稳定性的角度考虑分析了几何结构对合成气旋流扩散火焰燃烧的影响,在所研究的范围内优选了燃料和空气旋向相反、空气旋流数为1、燃料旋流数为0.73、燃料通道径向倾角为40°、扩张段扩张半角为35°、扩张段高度为0.5~0.66D的结构。
     对碳氢比研究中,在碳氢比0.22~4.6的范围内,碳氢比的变化对合成气火焰高度的影响不明显。
     不同热值合成气的实验中,随着热值的进一步降低,燃烧稳定性变差,最终会导致燃烧熄火现象的发生。
Integrated Gasification Combined Cycle (IGCC) is considered an important clear coal technology in the future energy technologies for it can meet the need of high efficiency and low pollution emission requirement.
     The syngas combustion in gas turbine of the IGCC system is a main middle process for power output. For the sake of safe and low emission, the diluted non-premixed swirl combustion is the important combustion method, but there is a little fundamental research for the engineering technology.
     The research presented in this report focuses on the syngas diluted non-premixed swirl flame combustion characteristics, which can be understood by analyzing the flame structure, temperature, the character of mixing and the concentration distributions of the OH radical. The laser sheet visualization (LSV) was adopted to obtain the mixing character and the plane laser induced fluorescence (PLIF) was adopted to obtain the OH radical concentration distributions.
     In this report, the mixing characteristics was firstly studied by the experiment and was described by the mixture number, then the combustion characteristics of the diluted non-premixed swirl flame was studied, lastly the combustion characteristics of some work conditions, which is difficult know by the experimental methods, was analyzed and forecasted by the numerical simulation. The main conclusions of this report are as follows:
     The defined mixture number can be used to describe the mixture characteristics. This method makes up the limitation of the previous method of momentum ratio who can not distinguish the mixture characteristics of the same scalar velocity value and the momentum ratio value can not distinguish the quality of the mixture.
     The recirculation zone and the mixture are two factors influencing the swirl non-premixed flame combustion stability. The enhancement the re-circulation and the mixture will be favorable for more stable combustion. Large swirl number of fuel or air is favorable for the mixing and combustion. When the swirl number is large, co swirl for fuel and air is favorable to combustion than counter swirl because more high temperature and radical are reflowed. When the swirl number is small, the mixing of the fuel and air will have significant effect on the stability of combustion. So the counter swirl flame is more stable than the co swirl flame.
     The analysis of the OH radical image showed that the quenching at small swirl number is due to the weak mixing, thus result to the flame sheet be thin and bring more discontinuousness flamelet. The small swirl number will result in low temperature and low OH radical concentration distributions at the exit zone of the quarl and induce the unstable combustion.
     In this report, on the syngas diluted swirl non-premixed flame, we analyze the influence of geometry mainly from the combustion stability characteristics. Counter swirl of air and fuel, air swirl number 1, fuel swirl number 0.73, fuel channel radial angle 40°, quarl divergent half angle 35°and height of quarl 0.5~0.66D is the priorities considered.
     When the ratio of C: H was in the range of 0.22 to 4.6, there is no distinct influence on the flame high with the change of the ratio.
     For the different heat value experiment, as the heat value decrease, the combustion stability deteriorates and the quenching will occurs at last.
引文
1.U.S Department of Energy,How Coal Gasification Power Plants Work,http://www.fossil.energy.gov/programs/powersystems/gasification/howgasificatio nworks.html
    2.N.vonmeyer,M.Huth,B.Schetter,B.Becker,J.Karg,W.Emsperger,烧合成气的燃气轮机在设计和运行中的经验,燃气轮机技术,1997,Vol.10(2),41-47
    3.Chung SH,Williams FA.Asymptotic structure and extinction of CO-H2 diffusion flame with reduced kinetic mechanisms.Combustion and Flame,1990,Vol.82:389-410.
    4.Fotache CG,Tan Y,Sung C J,Law CK.Ignition of CO/H2/N2 versus heated air in counterflow:experimental and modeling results,Combustion and Flame,2000,Vol.120:417-26.
    5 Rumminger MD,Linteris GT.Inhibition of premixed carbon monoxide-hydrogen-oxygen-nitrogen flames by iron pentacarbonyl,Combustion and Flame,2000,Vol.120:451-64.
    6.Natarajan J.,Nandula S.,Lieuwen T.,Seitzman J.,Laminar flame speeds of synthetic gas fuel mixtures,Proceedings of GT2005 ASME Turbo Expo 2005:Power for Land,Sea and Air June 6-9,2005,Reno-Tahoe,Nevada,USA,GT2005-68917
    7.Alavandi SK,Agrawal AK.Lean premixed combustion of carbon monoxide-hydrogen-methane fuel mixtures using porous inert media,Paper GT2005-68586,ASME Turbo Expo 2005,Reno,Nevada;June,6-9,2005.
    8.Drake MC,Blint RJ.,Thermal NOx in stretched laminar opposed-flow diffusion flames with CO/H2/N2 fuel,Combustion and Flame,1989,Voi.76:151-67.
    9.Daniel E.Giles,Sibendu Som,Suresh K.Aggarwal,NOx emission characteristics of counterflow syngas diffusion flames with air stream dilution,Fuel,2006,85:1729-1742
    10.Roman Weber,Jacques Dugue,combustion accelerated swirling flows in high confinements,Progress in Energy and Combustion Science e,1992,Vol.18(4):349-367
    11.Daniel Brdar R.,Robert M.Jones,GE IGCC Technology and Experience with Advanced Gas Turbines,GE Power Systems,GER-4207.
    12.[英]J.M.比埃尔,N.A.切给尔,陈熙译,.燃烧空气动力学,科学出版社,1979
    13. Kris Midgley, Adrian Spencer, James J. McGuirk, Unsteady Flow Structures in Radial Swirler Fed Fuel Injectors, Journal of Engineering for Gas Turbines and Power, 2005, Vol.127, p 755-764
    
    14. Guoqiang Li, Ephraim J. Gutmark, Geometry Effects on the Flow Field and the Spectral Characteristics of a Triple Annular Swirler, Proceedings of ASME Turbo Expo 2003 Power for Land, Sea, and Air June 16-19, 2003, Atlanta, Georgia, USA, GT 2003-38799
    
    15. Ramos J.I., Turbulent nonreacting swirling flows, AIAA J. , 1984, 22 (6), p846-848.
    
    16. Sturgess G.J., Syed S.A., McMaus K.R., Importance of inlet boundary conditions for numerical simulation of combustor flows, Paper AIAA, SAE, and ASME, Joint Propulsion Conference, 19th, Seattle, WA,June 27-29, 1983, 1263.
    
    17. Ikeda Y., Yanagisawa Y, Hosokawa S., Nakajima T., Influence of inlet conditions on the flow in a model gas turbine combustor, Experimental Thermal Fluid Sci. 5 (1992)390-398.
    
    18. Mondal S., Datta A., Sarkar A., Influence of side wall expansion angle and swirl generator on flow pattern in a model combustor calculated with k- ε model International Journal of Thermal Sciences 43 (2004) 901-914
    
    19. Yongqiang Fu and San-Mou Jeng, Robert Tacina, Characteristics of the swirling flow generated by a axial swirler, 2005 ASME , GT2005-68728
    
    20. Vanierschot M., Van den Bulck E., Hysteresis in flow patterns in annular swirling jets , Experimental Thermal and Fluid Science (2006) , doi:10.1016/j.expthermflusci.2006.06.001, in print
    
    21. Lawn C.J., Schefer R.W., Scaling of premixed turbulent flames in the corrugated regime, Combustion and Flame, reserved. doi:10.1016/j.combustflame.2006.03.010, in print
    
    22.傅维镳,张永廉,王清安,燃烧学,高等教育出版社,北京,1989
    
    23. Schofield K ., Steinberg M., Quantitative atomic and molecular laser fluorescence in the study of detailed combustion processes, Optical Engineering, 1981, Vol. 20:501-510
    
    24. Mark J. D, David R. C, Two-dimensional imaging of OH laser-induced fluorescence in a flame, Optics Letters, 1982, Vol. 7(8): 382- 384
    
    25. Ronaid K. H, Jerry M. S, Phillip H. P, Planar Laser-Fluorescence Imaging of Combustion Gases, Applied Physics B (Photophysics and Laser Chemistry), 1900, Vol.50: 441-454
    26.Quang-viet N,Phillip H.P,The time evolution of a vortex-flame interaction observed via planar imaging of CH and OH,Twenty-Sixth Symposium (International)on Combustion/The Combustion Institute,1996,pp.357-364
    27.Schefer R.W.,Hydrogen enrichment for improved lean flame stability,International Journal of Hydrogen Energy,2003,Vol.28:1131-1141
    28.Su L.K.,Sun O.S.,Mungal M.G.,Experimental investigation of stabilization mechanisms in turbulent,lifted jet diffusion flames,Combustion and Flame,2006,Vol.144:494-512
    29.Lartigue G.,Meier U.,erat C.B,Experimental and numerical investigation of self-excited combustion oscillations in a scaled gas turbine combustor,Applied Thermal Engineering,2004,Vol.24:1583-1592
    30.Wegand P.,Meier W.,Duan,X.R.et al.Investigations of swirl flames in a gas turbine model combustor:Ⅱ.Turbulence-chemistry interactions.Combustion and Flame,2006,Vol.144(1-2):205-224.
    31.Wang,Y.,Zhang,Z.,Cui,Y.,Xu,G.,Nie,C.,Xiao,Y.,and Huang,W.,Influence of Humid Air on Gaseous Combustion of Gas Turbines,ASME Paper,GT2005-68946
    32.张哲巅,湿空气扩散火焰的实验和数值研究,博士学位论文,中国科学院工程热物理研究所,2006
    33.崔玉峰,合成气燃气轮机燃烧室数值模拟与试验研究,博士学位论文,中国科学院工程热物理研究所,2005
    34.赵建荣,陈立红,俞刚,杨仕润,韩百,平面激光诱导荧光显示火焰中OH的分布图像,流体力学实验与测量,2000,Vol.14(2):67-71
    35.赵建荣,杨仕润,俞刚,张新宇,火焰结构的平面激光诱导荧光技术观测,分析测试学报,2003,Vol.22(2):16-18
    36.关小伟,刘晶儒,黄梅生,胡志云,张振荣,利用平面激光诱导荧光技术测量燃烧场内NO的浓度分布,强激光与粒子束,2003,Vol.15(7):629-631
    37.关小伟,刘晶儒,黄梅生,胡志云,张振荣,叶锡生,PLIF法定量测量甲烷一空气火焰二维温度场分布,强激光与粒子束,2005,Vol.17(2):173-176
    1.[英]比埃尔J.M.,切给尔N.A.,陈熙译,燃烧空气动力学。1979:科学出版社
    2.Lewis.D.G..,Structure of Laminar Flames.In Proceedings of the Combustion Institute.1990.
    3.Barlow R.S.,Dibble R.W.,Chen J.Y.,Lucht R.P.,Effect of Damkohler number on superequilibrium OH concentration in turbulent nonpremixed jet flames.Combustion and Flame,1990.82(3-4):p.235-251.
    4.Weigand P.,Meier W.,Duan X.R.,Stricker W.,Aigner M.,Investigations of swirl flames in a gas turbine model combustor:Ⅰ.Flow field,structures,temperature,and species distributions.Combustion and Flame,2006.144(1-2):p.205-224.
    5.Drake M.C.,Blint R.J.,Relative importance of nitric oxide formation mechanisms in laminar opposed-flow diffusion flames.Combustion and Flame,1991.83(1-2):p.185-203.
    6.Milosavljevic V.D.,Taylor A.P.,Whitelaw J.H.,the influence of burner geometry and flow rates on the stability and symmetry of swirl-stabilized nonpremixed flames.Combustion and Flame,1990.80:p.192-208.
    7.Fudihara T.J.,Goldstein L.J.,Mori M.,the three-dimensional numerical aerodynamics of a movable block burner.Brazilian Journal of Chemical Engineering,2003.20(4):p.391-401.
    1.Nathan,G.J.,et al.,Impacts of a jet's exit flow pattern on mixing and combustion performance.Progress in Energy and Combustion Science,2006.32(5-6):p.496-538.
    2.Olivani,A.,et al.,Near field flow structure of isothermal swirling flows and reacting non-premixed swirling flames.Experimental Thermal and Fluid Science Fourth Mediterranean Combustion Symposium-MCS04,2007.31(5):p.427-436.
    3.Milosavljevic V.D.,Taylor A.P.,Whitelaw J.H.,the influence of burner geometry and flow rates on the stability and symmetry of swirl-stabilized nonpremixed flames.Combustion and Flame,1990.80:p.192-208.
    4.Masri A.R.,Bilger R.W.,Dibble,R.W.,Turbulent nonpremixed flames of methane near extinction:Mean structure from Raman measurements.Combustion and Flame,1988.71(3):p.245-266.
    5.[美]伯纳德.刘易斯,京特.冯.埃尔贝(著),王方(译),燃气燃烧与瓦斯爆炸.2007,北京:中国建筑工业出版社.
    6.M.A.Habib,J.H.W.,Velocity characteristics of a confined coaxial jet.Journal of Fluids Engineering,1979.101:p.521.
    7.T.S.Cheng,Y.C.C.,D.C.Wu,T.Yuan,C.C.Lu,C.K.Cheng,J.M.Chang.effects of fuel-air mixing on flame structures and NOx emissions in swirling methane jet flames,in Twenty-Seventh Symposium(International)on Combustion.1998.
    8.Cheng,T.S.,et al.,Effects of partial premixing on pollutant emissions in swirling methane jet flames.Combustion and Flame,2001.125(1-2):p.865-878.
    9.Esquiva-Dano,I.,H.T.Nguyen,and D.Escudie,Influence of a bluff-body's shape on the stabilization regime of non-premixed flames.Combustion and Flame,2001.127(4):p.2167-2180.
    10.Mridha,M.and K.D.P.Nigam,Coiled flow inverter as an inline mixer.Chemical Engineering Science.In Press,Corrected Proof.
    11.Vanierschot,M.and E.Van den Bulck,Hysteresis in flow patterns in annular swirling jets.Experimental Thermal and Fluid Science,2007.31(6):p.513-524.
    12.Merkle,K.,Haessler,H.,Buchner,H.,Zarzalis,N.,Effect of co- and counter-swirl on the isothermal flow- and mixture-field of an airblast atomizer nozzle.International Journal of Heat and Fluid Flow Selected Papers from the Fifth International Conference on Engineering Turbulence Modelling and Measurements,2003.24(4):p.529-537.
    13.林宇震,刘高恩,王华芳,反向与同向双旋流器流场的试验研究.航空动力学报,1995.10(4):p.423-425.
    1.宁晃,高歌,燃烧室气动力学.1987,北京:科学出版社.
    2.Milosavljevic V.D.,Taylor A.P.,Whitelaw J.H.,the influence of burner geometry and flow rates on the stability and symmetry of swirl-stabilized nonpremixed flames.Combustion and Flame,1990.80:p.192-208.
    3.Pitts W.M.,Assessment of theories for the behavior and blowout of lifted turbulent jet diffusion flames,in Twenty-second symposium(international)on combustion.1988.Pittsburgh.
    4.[英]比埃尔 J.M.,切给尔 N.A.,陈熙译,燃烧空气动力学.1979:科学出版社
    5.Chedaille J.,Leuckel W.,Chesters A.K.,aerodynamic studies carried out on turbulent jets by the international flame research foundation.Journal of the Institute of Fuel,1966.39(311):p.506-521.
    6.Kejin Mu,Yongsheng Zhang,Zhedian Zhang,Yue Wang and Yunhan Xiao.effect of fuel dilution on the stability characteristics of syngas diffusion flames,in Proceedings of ASME Turbo Expo 2008:Power for Land,Sea and Air.2008.Berlin,Germany.
    1.Sung C.J.,Law C.K.,Fundamental and combustion properties of H2/CO mixtures:Ignition and flame propagation at elevated pressures.Combustion and Flame,in press.
    2.焦树建,燃气轮机燃烧室.1988,北京:机械工业出版社.
    1.Dong Y.F,Holley A.T.,Andac M.G.,Egolfopoulos F.N.,Davis S.,Wang H.,Extinction of premixed H2/air flames:Chemical kinetics and molecular diffusion effects.Combustion and Flame,2005.142(4):p.374-387.
    2.Konnov,A.A.,Remaining uncertainties in the kinetic mechanism of hydrogen combustion.Combustion and Flame.In Press,Corrected Proof.
    3.You X.Q.,Wang H.,Goos E.,Sung C.J.,Klippenstein S.J.,Reaction Kinetics of CO+HO2 Products:Ab Initio Transition State Theory Study with Master Equation Modeling.The Journal of Physical Chemistry A,2007.111(19):p.4031-4042.
    4.Drake M.C.,Blint R.J.,Relative importance of nitric oxide formation mechanisms in laminar opposed-flow diffusion flames.Combustion and Flame,1991.83(1-2):p.185-203.
    5 盖顿A.G.,.伍法德H.G,工方译,火焰学.1994,北京:中国科学技术出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700