钛硅介孔分子筛的制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛硅分子筛是一类重要的氧化催化剂,如具有MFI和MFL结构的TS-1、TS-2分子筛,在以双氧水为氧化剂时,能催化氧化多种有机化合物。但是它们应用于催化氧化大分子化合物时常常会受到其孔径(7?)的制约。MCM-41、MCM-48、SBA-15等新型介孔分子筛的发现,为合成具有大孔孔道的催化剂提供了新的方向。由于SBA-15的孔径可以在很大的范围调控,具有很高的水热稳定性,含钛的SBA-15具有更加重要的应用前景,因而受到人们的普遍关注。
     本文在钛-氧化硅、含钛有机功能化的钛硅介孔分子筛的合成及其在烯烃环氧化反应中的应用方面进行了研究,主要包括以下几个方面:
     第一章为文献综述,主要介绍了钛硅介孔分子筛合成及应用的主要现状。
     第二章介绍了以“酸碱对”混合钛源和无机硅源通过水热法合成钛硅介孔分子筛材料,并应用于1-辛烯环氧化反应体系。混合钛源为四氯化钛和钛酸正丁酯,硅源为正硅酸乙酯,有机结构导向剂为三嵌段共聚物P23。XRD,TEM,FT-IR,Uv-vis和氮吸附表明,经500°C高温去除表面活性剂的钛硅介孔分子筛材料具有高度有序的介孔结构,大比表面积(986– 1349 m2/g)和孔容(0.81– 1.2 cm3/g),均一的孔径(4.5– 6.3 nm),以及Ti-O-Si共价键。通过将材料应用与1-辛烯环氧化反应体系中,催化剂显示了较高的催化活性。
     第三章主要利用无机钛源和混合硅源通过水热法合成有机功能化钛硅介孔分子筛材料的合成,并应用于1-辛烯环氧化反应体系。XRD,TEM,FT-IR,Uv-vis和氮吸附表明,经500°C高温去除表面活性剂的钛硅介孔分子筛材料具有高度有序的介孔结构,大比表面积(421– 980 m2/g)和孔容(0.51– 1.3 cm3/g),均一的孔径(6.3–8.0 nm),以及Ti-O-Si共价键。将材料应用与1-辛烯环氧化反应体系中,通过催化性能比较发现提高材料的疏水性可以提高材料的催化活性。
     第四章研究了利用酚醛树脂,钛酸异丙酯和正硅酸乙酯为前驱体,利用溶剂挥发自主装技术合成比表面积大、有序度高,且硅钛摩尔比例可调的介孔聚合物-氧化钛硅分子筛纳米复合材料,并应用于1-辛烯环氧化反应体系。。通过氮气气氛下350℃去除表面活性剂的聚合物-氧化钛硅分子筛纳米复合材料具有高度有序的介孔结构,有机组分与无机组分混合均匀,大比表面积(476– 711m2/g)和孔容(0.49– 0.76 cm3/g),均一的孔径(6.6–8.2 nm),以及Ti-O-Si共价键。通过调节有机聚合物的含量来改变材料的亲疏水性。将材料应用与1-辛烯环氧化反应体系中,通过催化性能比较发现提高材料的疏水性可以提高材料的催化活性。
     第五章介绍了用后嫁接法,以不同的钛源为前驱物,以未去除表面活性剂的SBA-15为载体制备不同钛含量的钛硅介孔分子筛,并应用于1-辛烯环氧化反应体系。
The discovery of Ti-containing molecular sieves added a new dimension to the applications of molecular sieves in catalysis. Titanium silicate, TS-1, and TS-2 with MFI and MEL structures, respectively, were shown to the active for selective oxidation of a variety of organic compounds in the presence of hydrogen peroxide. However, these applications were restricted to molecules smaller than 7 ? owing to the pore size limitation. This barrier was overcome with the introduction of mesoporous molecular sieves such as MCM-41, MCM-48 and SBA-15. Because of the wide pore size distribution and highly hydrothermal stability, titanium-containing SBA-15 seems more attractive in the application of catalytic oxidation of large organic molecules.
     In this thesis, we have prepared novel Ti-containing mesoporous silicates and studied their catalytic performance in oxidation of octene.
     The thesis is composed of five chapters. The fist chapter is a detaild review on the syntheses of Ti-containing molecular sieves and their catalytic performances.
     Chapter 2 introduces a novel method of syntheses of Ti-containing molecular sieves. Using mixed inorganin“acid-base pairs”(TiCl4 and tertrabutyl titanate) as the titanium sources and tetraethoxysilane as silica source and triblock copolymer as the struture-directing agent through hydrothermal methode.Characterization using XRD,Uv-vis, FT-IR,TEM and nitrogen sorption isotherm techniques reveals that the Ti-containing molecular sieves posses ordered 2-D hexagonal mesostructures,highly surface areas(986– 1349 m2/g),uniform pore sizes (4.5– 6.3 nm), large pore volumes(0.81– 1.2 cm3/g),and tetrahedrally incorporated titanium species in silica network. The Ti-containing molecular sieves show catalytic performance in the epoxidation of 1-octene using tert-butylhedroperoxide as an oxidant, the Ti(M12.5)-SBA shows the highest catalytic performance, conversion of 1-octene is 47%.
     The synthersis of organic functional Ti-containing molecular sieves are discussed in chapter 3 and chapter 4. In chaper 3, the organic founctional Ti-containing molecular sieves can be assemed by using a single inorganic TiCl3 as titanium source and tetraethoxysilane and 1,2-bis(triethoxysilyl)ethane as the silica soures and triblock copolymer as the struture-directing agent through hydrothermal methode. The nanocomposites have the highly ordered 2-D hexagonal mesostructure, high surface areas, large pore volumesand large pore diameters. The Uv-vis and FT-IR technique, indicate that the pore walls are composed of polymer, silica and Ti species. The highest catalytic cinversion (62%) of 1-octene in epoxidation is realized on an organic founctional Ti-containing molecular sieve(Ti(S6.7)-SBA).
     In chaper 4, highly ordered mesoporous bifunctional nanocomposite Ti-SiO2-Polymer have been successfully synthesized by the evaporation-induced co-assembly method, wherein soluble resol polymer is used as an organic precursor, tetraethoxysilane as silica source, and triblock copolymer as the struture-directing agent. The nanocomposites have the highly ordered 2-D hexagonal mesostructure, high surface areas, large pore volumes and large pore diameters. The XPS and FT-IR technique, indicate that the pore walls are composed of polymer, silica and Ti species. These bifunctional nanocomposite: Ti-SiO2-Polymer show remarkably catalytic avtivity in the epoxidation of 1-octene using tert-butylhedroperoxide as an oxidant,the hightest conversition of 1-octene can achive 62%.
     In the last chapter,we prepared the Ti-containing molecular sieves through postsynthesis. Rapid introduce the titanium into as - made SBA-15 occluded with template. These Ti-containing molecular sieves show excellent catalytic avtivity in 1-octene eopoxidation reaction, the hightest conversition of 1-octene can achive 65%.
引文
[1]. Prasad, M. R.; Madhavi, G.; Rao, A. R.; Kulkarni, S. J.; Raghavan, K. V., Synthesis, characterization of high Ti-containing Ti-MCM-41 catalysts and their activity evaluation in oxidation of cyclohexene and epoxidation of higher olefins. Journal Of Porous Materials [J] 2006, 13 (1): 81-94.
    [2]. Fan, W. B.; Duan, R. G.; Yokoi, T.; Wu, P.; Kubota, Y.; Tatsumi, T., Synthesis, crystallization mechanism, and catalytic properties of titanium-rich TS-1 free of extraframework titanium species. Journal of the American Chemical Society [J] 2008, 130 (31): 10150-10164.
    [3]. Clerici, M. G.; Ingallina, P., Epoxidation of Lower Olefins with Hydrogen-Peroxide and Titanium Silicalite. Journal of Catalysis [J] 1993, 140 (1): 71-83.
    [4]. Ratnasamy, P.; Srinivas, D.; Knozinger, H., Active sites and reactive intermediates in titanium silicate molecular sieves. In Advances in Catalysis, Vol 48, Elsevier Academic Press Inc: San Diego, 2004; Vol. 48, pp 1-169.
    [5]. Park, S.; Cho, K. M.; Youn, M. H.; Seo, J. G.; Baeck, S. H.; Kim, T. J.; Chung, Y. M.; Oh, S. H.; Song, I. K., Epoxidation of propylene with hydrogen peroxide over TS-1 catalyst synthesized in the presence of polystyrene. Catalysis Letters [J] 2008, 122 (3-4): 349-353.
    [6]. Tatsumi, T.; Nakamura, M.; Negishi, S.; Tominaga, H., Shape-Selective Oxidation of Alkanes with H2o2 Catalyzed by Titanosilicate. Journal of the Chemical Society-Chemical Communications [J] 1990, (6): 476-477.
    [7]. Notari, B., Microporous crystalline titanium silicates. In Advances in Catalysis, Vol 41, Academic Press Inc: San Diego, 1996; Vol. 41, pp 253-334.
    [8]. Wu, P.; Nuntasri, D.; Ruan, J. F.; Liu, Y. M.; He, M. Y.; Fan, W. B.; Terasaki, O.; Tatsumi, T., Delamination of Ti-MWW and high efficiency in epoxidation of alkenes with various molecular sizes. Journal of Physical Chemistry B [J] 2004, 108 (50): 19126-19131.
    [9]. Liu, M.; Guo, X. W.; Wang, X. S., Highly effective phenol hydroxylation over Ti-ZSM-5 catalyst prepared using B-ZSM-5 as precursor. Chinese Journal Of Catalysis [J] 2004, 25 (3): 169-170.
    [10]. Goa, Y.; Wu, P.; Tatsumi, T., Influence of fluorine on the catalytic performance of Ti-betazeolite. Journal of Physical Chemistry B [J] 2004, 108 (14): 4242-4244.
    [11]. Chandra, D.; Bhaumik, A., Highly active 2D hexagonal mesoporous titanium silicate synthesized using a cationic-anionic mixed-surfactant assembly. Industrial & Engineering Chemistry Research [J] 2006, 45 (14): 4879-4883.
    [12]. Inagaki, S.; Fukushima, Y.; Kuroda, K., Synthesis of Highly Ordered Mesoporous Materials from a Layered Polysilicate. Journal of the Chemical Society-Chemical Communications [J] 1993, (8): 680-682.
    [13]. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature [J] 1992, 359 (6397): 710-712.
    [14]. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., A New Family of Mesoporous Molecular-Sieves Prepared with Liquid-Crystal Templates. Journal of the American Chemical Society [J] 1992, 114 (27): 10834-10843.
    [15]. Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science [J] 1998, 279 (5350): 548-552.
    [16]. Beck, J. S.; Vartuli, J. C.; Kennedy, G. J.; Kresge, C. T.; Roth, W. J.; Schramm, S. E., Molecular or Supramolecular Templating - Defining the Role of Surfactant Chemistry in the Formation of Microporous and Mesoporous Molecular-Sieves. Chemistry of Materials [J] 1994, 6 (10): 1816-1821.
    [17]. Davis, M. E., Materials Science - Organizing for Better Synthesis. Nature [J] 1993, 364 (6436): 391-393.
    [18]. Monnier, A.; Schuth, F.; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R. S.; Stucky, G. D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicke, M.; Chmelka, B. F., Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures. Science [J] 1993, 261 (5126): 1299-1303.
    [19].Huo, Q. S.; Margolese, D. I.; Ciesla, U.; Feng, P. Y.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D., Generalized Synthesis of Periodic Surfactant Inorganic Composite-Materials. Nature [J] 1994, 368 (6469): 317-321.
    [20]. Huo, Q. S.; Margolese, D. I.; Ciesla, U.; Demuth, D. G.; Feng, P. Y.; Gier, T. E.; Sieger, P.; Firouzi, A.; Chmelka, B. F.; Schuth, F.; Stucky, G. D., Organization of Organic-Molecules with Inorganic Molecular-Species into Nanocomposite Biphase Arrays. Chemistry of Materials [J] 1994, 6 (8): 1176-1191.
    [21]. Tanev, P. T.; Pinnavaia, T. J., A Neutral Templating Route to Mesoporous Molecular-Sieves. Science [J] 1995, 267 (5199): 865-867.
    [22]. Bagshaw, S. A.; Prouzet, E.; Pinnavaia, T. J., Templating of Mesoporous Molecular-Sieves by Nonionic Polyethylene Oxide Surfactants. Science [J] 1995, 269 (5228): 1242-1244.
    [23]. Tanev, P. T.; Pinnavaia, T. J., Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating: A comparison of physical properties. Chemistry of Materials [J] 1996, 8 (8): 2068-2079.
    [24]. Antonelli, D. M.; Ying, J. Y., Synthesis of a stable hexagonally packed mesoporous niobium oxide molecular sieve through a novel ligand-assisted templating mechanism. Angewandte Chemie-International Edition in English [J] 1996, 35 (4): 426-430.
    [25]. Attard, G. S.; Glyde, J. C.; Goltner, C. G., Liquid-Crystalline Phases as Templates for the Synthesis of Mesoporous Silica. Nature [J] 1995, 378 (6555): 366-368.
    [26]. Attard, G. S.; Bartlett, P. N.; Coleman, N. R. B.; Elliott, J. M.; Owen, J. R.; Wang, J. H., Mesoporous platinum films from lyotropic liquid crystalline phases. Science [J] 1997, 278 (5339): 838-840.
    [27].Lu, Y. F.; Ganguli, R.; Drewien, C. A.; Anderson, M. T.; Brinker, C. J.; Gong, W. L.; Guo, Y. X.; Soyez, H.; Dunn, B.; Huang, M. H.; Zink, J. I., Continuous formation of supported cubic and hexagonal mesoporous films by sol gel dip-coating. Nature [J] 1997, 389 (6649): 364-368.
    [28]. Yang, P. D.; Zhao, D. Y.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D., Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature [J] 1998, 396 (6707): 152-155.
    [29].Yang, P. D.; Deng, T.; Zhao, D. Y.; Feng, P. Y.; Pine, D.; Chmelka, B. F.; Whitesides, G. M.; Stucky, G. D., Hierarchically ordered oxides. Science [J] 1998, 282 (5397): 2244-2246.
    [30]. Zhao, D. Y.; Yang, P. D.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D., Synthesis of continuous mesoporous silica thin films with three-dimensional accessible pore structures. Chemical Communications [J] 1998, (22): 2499-2500.
    [31]. Zhao, D.; Yang, P.; Melosh, N.; Feng, J.; Chmelka, B. F.; Stucky, G. D., Continuous mesoporous silica films with highly ordered large pore structures. Advanced Materials [J] 1998, 10 (16): 1380-+.
    [32]. Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O., Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. Journal of the American Chemical Society [J] 2000, 122 (43): 10712-10713.
    [33]. Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M., Ordered mesoporous carbons. Advanced Materials [J] 2001, 13 (9): 677-681.
    [34]. Joo, S. H.; Jun, S.; Ryoo, R. In Synthesis of ordered mesoporous carbon molecular sieves CMK-1, 2nd International Symposium on Mesoporous Molecular Sieves (ISMMS), Quebec City, Canada, Aug 27-Sep 02, 2000; Elsevier Science Bv: Quebec City, Canada, 2000; pp 153-158.
    [35]. Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R., Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature [J] 2001, 412 (6843): 169-172.
    [36]. Gao, F.; Lu, Q. Y.; Zhao, D. Y., Synthesis of crystalline mesoporous CdS semiconductor nanoarrays through a mesoporous SBA-15 silica template technique. Advanced Materials [J] 2003, 15 (9): 739-742.
    [37]. Zhao, X. L.; Yen, A.; Kopelman, R., Anomalous etching kinetics of self-assembled monolayers on silica-water interfaces: Experiment and modeling. Journal of Physical Chemistry B [J] 1997, 101 (49): 10446-10449.
    [38]. Tuel, A., Modification of mesoporous silicas by incorporation of heteroelements in the framework. Microporous and Mesoporous Materials [J] 1999, 27 (2-3): 151-169.
    [39]. Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O., Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. Journal of the American Chemical Society [J] 1999, 121 (41): 9611-9614.
    [40]. Asefa, T.; MacLachan, M. J.; Coombs, N.; Ozin, G. A., Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature [J] 1999, 402 (6764): 867-871.
    [41]. Melde, B. J.; Holland, B. T.; Blanford, C. F.; Stein, A., Mesoporous sieves with unified hybrid inorganic/organic frameworks. Chemistry of Materials [J] 1999, 11 (11): 3302-3308.
    [42]. Hatton, B.; Landskron, K.; Whitnall, W.; Perovic, D.; Ozin, G. A., Past, present, and futureof periodic mesoporous organosilicas - The PMOs. Accounts of Chemical Research [J] 2005, 38 (4): 305-312.
    [43]. Hoffmann, F.; Cornelius, M.; Morell, J.; Froba, M., Periodic mesoporous organosilicas (PMOs): Past, present, and future. Journal of Nanoscience and Nanotechnology [J] 2006, 6 (2): 265-288.
    [44]. Muth, O.; Schellbach, C.; Froba, M., Triblock copolymer assisted synthesis of periodic mesoporous organosilicas (PMOs) with large pores. Chemical Communications [J] 2001, (19): 2032-2033.
    [45]. Hamoudi, S.; Kaliaguine, S., Periodic mesoporous organosilica from micellar oligomer template solution. Chemical Communications [J] 2002, (18): 2118-2119.
    [46]. Kapoor, M. P.; Inagaki, S., Synthesis of cubic hybrid organic-inorganic mesostructures with dodecahedral morphology from a binary surfactant mixture. Chemistry of Materials [J] 2002, 14 (8): 3509-3514.
    [47]. Sayari, A.; Wang, W. H., Molecularly ordered nanoporous organosilicates prepared with and without surfactants. Journal of the American Chemical Society [J] 2005, 127 (35): 12194-12195.
    [48]. Hunks, W. J.; Ozin, G. A., Periodic mesoporous organosilicas with phenylene bridging groups, 1,4-(CH2)(n)C6H4 (n-0-2). Chemistry of Materials [J] 2004, 16 (25): 5465-5472.
    [49]. Landskron, K.; Hatton, B. D.; Perovic, D. D.; Ozin, G. A., Periodic mesoporous organosilicas containing interconnected [Si(CH2)](3) rings. Science [J] 2003, 302 (5643): 266-269.
    [50]. Olkhovyk, O.; Jaroniec, M., Periodic mesoporous organosilica with large heterocyclic bridging groups. Journal of the American Chemical Society [J] 2005, 127 (1): 60-61.
    [51]. Inagaki, S.; Guan, S.; Ohsuna, T.; Terasaki, O., An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature [J] 2002, 416 (6878): 304-307.
    [52]. Landskron, K.; Ozin, G. A., Periodic mesoporous dendrisilicas. Science [J] 2004, 306 (5701): 1529-1532.
    [53]. Wu, P.; Tatsumi, T., Unique trans-selectivity of Ti-MWW in epoxidation of cis/trans-alkenes with hydrogen peroxide. Journal of Physical Chemistry B [J] 2002, 106 (4): 748-753.
    [54]. Zhang, W. H.; Lu, J. Q.; Han, B.; Li, M. J.; Xiu, J. H.; Ying, P. L.; Li, C., Direct synthesis and characterization of titanium-substituted mesoporous molecular sieve SBA-15. Chemistry Of Materials [J] 2002, 14 (8): 3413-3421.
    [55]. Wu, P.; Tatsumi, T.; Komatsu, T.; Yashima, T., Postsynthesis, characterization, and catalytic properties in alkene epoxidation of hydrothermally stable mesoporous Ti-SBA-15. Chemistry Of Materials [J] 2002, 14 (4): 1657-1664.
    [56]. Melero, J. A.; Arsuaga, J. M.; de Frutos, P. G.; Iglesias, J.; Sainz, J.; Blazquez, S., Direct synthesis of titanium-substituted mesostructured materials using non-ionic surfactants and titanocene dichloride. Microporous and Mesoporous Materials [J] 2005, 86 (1-3): 364-373.
    [57]. Melero, J. A.; Iglesias, J.; Arsuaga, J. M.; Sainz-Pardo, J.; de Frutos, P.; Blazquez, S., Synthesis and catalytic activity of organic-inorganic hybrid Ti-SBA-15 materials. Journal Of Materials Chemistry [J] 2007, 17 (4): 377-385.
    [58]. Yu, J. Q.; Feng, Z. C.; Xu, L.; Li, M. J.; Xin, Q.; Liu, Z. M.; Li, C., Ti-MCM-41 synthesized from colloidal silica and titanium trichloride: Synthesis, characterization, and catalysis. Chemistry Of Materials [J] 2001, 13 (3): 994-998.
    [59]. Morey, M. S.; O'Brien, S.; Schwarz, S.; Stucky, G. D., Hydrothermal and postsynthesis surface modification of cubic, MCM-48, and ultralarge pore SBA-15 mesoporous silica with titanium. Chemistry of Materials [J] 2000, 12 (4): 898-911.
    [60]. Ji, D.; Zhao, R.; Lv, G. M.; Qian, G.; Yan, L.; Suo, J. S., Direct synthesis, characterization and catalytic performance of novel Ti-SBA-1 cubic mesoporous molecular sieves. Applied Catalysis A-General [J] 2005, 281 (1-2): 39-45.
    [61]. Segura, Y.; Cool, P.; Kustrowski, P.; Chmielarz, L.; Dziembaj, R.; Vansant, E. F., Characterization of vanadium and titanium oxide supported SBA-15. Journal Of Physical Chemistry B [J] 2005, 109 (24): 12071-12079.
    [62]. Arends, I.; Sheldon, R. A.; Wallau, M.; Schuchardt, U., Oxidative transformations of organic compounds mediated by redox molecular sieves. Angewandte Chemie-International Edition [J] 1997, 36 (11): 1144-1163.
    [63]. Guidotti, M.; Ravasio, N.; Psaro, R.; Gianotti, E.; Marchese, L.; Coluccia, S., Heterogeneous catalytic epoxidation of fatty acid methyl esters on titanium-grafted silicas. Green Chemistry [J] 2003, 5 (4): 421-424.
    [64]. Li, X. F.; Gao, H. X.; Jin, G. J.; Ding, L.; Chen, L.; Yang, H. Y.; He, X.; Chen, Q. L., Characterization of silylated Ti-grafted HMS catalyst and its excellent epoxidation performance. Chinese Chemical Letters [J] 2007, 18 (5): 591-594.
    [65]. Zhang, W. H.; Froba, M.; Wang, J. L.; Tanev, P. T.; Wong, J.; Pinnavaia, T. J., Mesoporous titanosilicate molecular sieves prepared at ambient temperature by electrostatic (S+I-, S(+)X(-)I(+)) and neutral (S degrees I degrees) assembly pathways: A comparison of physical properties and catalytic activity for peroxide oxidations. Journal of the American Chemical Society [J] 1996, 118 (38): 9164-9171.
    [66]. Tian, B. Z.; Liu, X. Y.; Tu, B.; Yu, C. Z.; Fan, J.; Wang, L. M.; Xie, S. H.; Stucky, G. D.; Zhao, D. Y., Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. Nature Materials [J] 2003, 2 (3): 159-163.
    [67]. Vinu, A.; Srinivasu, P.; Miyahara, M.; Ariga, K., Preparation and catalytic performances of ultralarge-pore TiSBA-15 mesoporous molecular sieves with very high Ti content. Journal of Physical Chemistry B [J] 2006, 110 (2): 801-806.
    [68]. Shen, S. D.; Deng, Y.; Zhu, G. B.; Mao, D. S.; Wang, Y. H.; Wu, G. S.; Li, J.; Liu, X. Z.; Lu, G. Z.; Zhao, D. Y., Synthesis and characterization of Ti-SBA-16 ordered mesoporous silica composite. Journal of Materials Science [J] 2007, 42 (17): 7057-7061.
    [69]. Matthias, T., Textural Characterization of Zeolites and Ordered Mesoporous Materials by Physical Adsorption. Introduction to zeolite science and practice [J] 2007.
    [70]. Tian, B. Z.; Yang, H. F.; Liu, X. Y.; Xie, S. H.; Yu, C. Z.; Fan, J.; Tu, B.; Zhao, D. Y., Fast preparation of highly ordered nonsiliceous mesoporous materials via mixed inorganic precursors. Chemical Communications [J] 2002, (17): 1824-1825.
    [71]. Wei, Q.; Nie, Z. R.; Hao, Y. L.; Liu, L.; Chen, Z. X.; Zou, J. X., Effect of synthesis conditions on the mesoscopical order of mesoporous silica SBA-15 functionalized by amino groups. Journal of Sol-Gel Science and Technology [J] 2006, 39 (2): 103-109.
    [72]. Chong, A. S. M.; Zhao, X. S., Functionalization of SBA-15 with APTES and characterization of functionalized materials. Journal of Physical Chemistry B [J] 2003, 107 (46): 12650-12657.
    [73]. Chandra, D.; Mal, N. K.; Mukherjee, M.; Bhaumik, A., Titanium-rich highly ordered mesoporous silica synthesized by using a mixed surfactant system. Journal of Solid State Chemistry [J] 2006, 179 (6): 1802-1807.
    [74]. Kapoor, M. P.; Bhaumik, A.; Inagaki, S.; Kuraoka, K.; Yazawa, T., Titanium containing inorganic organic hybrid mesoporous materials with exceptional activity in epoxidation of alkenes using hydrogen peroxide. Journal Of Materials Chemistry [J] 2002, 12 (10): 3078-3083.
    [75]. Kapoor, M. P.; Sinha, A. K.; Seelan, S.; Inagaki, S.; Tsubota, S.; Yoshida, H.; Haruta, M., Hydrophobicity induced vapor-phase oxidation of propene over gold supported on titanium incorporated hybrid mesoporous silsesquioxane. Chemical Communications [J] 2002, (23): 2902-2903.
    [76]. Wilkenhoner, U.; Langhendries, G.; van Laar, F.; Baron, G. V.; Gammon, D. W.; Jacobs, P. A.; van Steen, E., Influence of pore and crystal size of crystalline titanosilicates on phenol hydroxylation in different solvents. Journal of Catalysis [J] 2001, 203 (1): 201-212.
    [77]. Igarashi, N.; Kidani, S.; Ahemaito, R.; Hashimoto, K.; Tatsumi, T., Direct organic functionalization of Ti-MCM-41: Synthesis condition, organic content, and catalytic activity. Microporous And Mesoporous Materials [J] 2005, 81 (1-3): 97-105.
    [78]. Barrio, L.; Campos-Martin, J. M.; de Frutos-Escrig, M. P.; Fierro, J. L. G., Selective grafting of titanium on periodic nanoporous silica materials. Microporous and Mesoporous Materials [J] 2008, 113 (1-3): 542-553.
    [79]. Igarashi, N.; Hashimoto, K.; Tatsumi, T., Catalytical studies on trimethylsilylated Ti-MCM-41 and Ti-MCM-48 materials. Microporous and Mesoporous Materials [J] 2007, 104 (1-3): 269-280.
    [80]. Olkhovyk, O.; Jaroniec, M., Polymer-templated mesoporous organosilicas with two types of multifunctional organic groups. Industrial & Engineering Chemistry Research [J] 2007, 46 (6): 1745-1751.
    [81]. Wan, Y.; Yang, H. F.; Zhao, D. Y., "Host-guest" chemistry in the synthesis of ordered nonsiliceous mesoporous materials. Accounts of Chemical Research [J] 2006, 39 (7): 423-432.
    [82]. Wan, Y.; Zhao, D. Y., On the controllable soft-templating approach to mesoporous silicates. Chemical Reviews [J] 2007, 107 (7): 2821-2860.
    [83]. Kleitz, F.; Solvyov, L. A.; Anilkumar, G. M.; Choi, S. H.; Ryoo, R., Transformation of highly ordered large pore silica mesophases (Fm3m, Im3m and p6mm) in a ternary triblock copolymer-butanol-water system. Chemical Communications [J] 2004, (13): 1536-1537.
    [84]. Meng, Y.; Gu, D.; Zhang, F. Q.; Shi, Y. F.; Cheng, L.; Feng, D.; Wu, Z. X.; Chen, Z. X.; Wan, Y.; Stein, A.; Zhao, D. Y., A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly. Chemistry of Materials [J] 2006, 18 (18): 4447-4464.
    [85]. Sacaliuc, E.; Beale, A. M.; Weckhuysen, B. M.; Nijhuis, T. A., Propene epoxidation over Au/Ti-SBA-15 catalysts. Journal of Catalysis [J] 2007, 248 (2): 235-248.
    [86]. Wei, Y.; Jin, D. L.; Yang, C. C.; Kels, M. C.; Qiu, K. Y., Organic-inorganic hybrid materials: relations of thermal and mechanical properties with structures. Materials Science & Engineering C-Biomimetic and Supramolecular Systems [J] 1998, 6 (2-3): 91-98.
    [87]. Nagarale, R. K.; Gohil, G. S.; Shahi, V. K.; Rangarajan, R., Organic-inorganic hybrid membrane: Thermally stable cation-exchange membrane prepared by the sol-gel method. Macromolecules [J] 2004, 37 (26): 10023-10030.
    [88]. Chen, M.; Zhou, S. X.; You, B.; Wu, L. M., A novel preparation method of raspberry-like PMMA/SiO2 hybrid microspheres. Macromolecules [J] 2005, 38 (15): 6411-6417.
    [89]. Choi, M.; Kleitz, F.; Liu, D. N.; Lee, H. Y.; Ahn, W. S.; Ryoo, R., Controlled polymerization in mesoporous silica toward the design of organic-inorganic composite nanoporous materials. Journal of the American Chemical Society [J] 2005, 127 (6): 1924-1932.
    [90]. Scott, B. J.; Wirnsberger, G.; Stucky, G. D., Mesoporous and mesostructured materials for optical applications. Chemistry of Materials [J] 2001, 13 (10): 3140-3150.
    [91]. Mastai, Y.; Polarz, S.; Antonietti, M., Silica-carbon nanocomposites: A new concept for the design of solar absorbers. Advanced Functional Materials [J] 2002, 12 (3): 197-202.
    [92]. Wan, Y.; Shi, Y. F.; Zhao, D. Y., Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. Chemical Communications [J] 2007, (9): 897-926.
    [93]. Rebbin, V.; Schmidt, R.; Froba, M., Spherical particles of phenylene-bridged periodic mesoporous organosilica for high-performance liquid chromatography. Angewandte Chemie-International Edition [J] 2006, 45 (31): 5210-5214.
    [94]. Bhaumik, A.; Kapoor, M. P.; Inagaki, S., Ammoximation of ketones catalyzed by titanium-containing ethane bridged hybrid mesoporous silsesquioxane. Chemical Communications [J] 2003, (4): 470-471.
    [95].Liu, R. L.; Shi, Y. F.; Wan, Y.; Meng, Y.; Zhang, F. Q.; Gu, D.; Chen, Z. X.; Tu, B.; Zhao, D. Y., Triconstituent Co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas. Journal of the American Chemical Society [J] 2006, 128 (35): 11652-11662.
    [96]. Wei, Y.; Jin, D. L.; Yang, C. C.; Wei, G., A fast convenient method to prepare hybrid sol-gelmaterials with low volume-shrinkages. Journal of Sol-Gel Science and Technology [J] 1996, 7 (3): 191-201.
    [97]. Chen, D. H.; Li, Z.; Wan, Y.; Tu, X. J.; Shi, Y. F.; Chen, Z. X.; Shen, W.; Yu, C. Z.; Tu, B.; Zhao, D. Y., Anionic surfactant induced mesophase transformation to synthesize highly ordered large-pore mesoporous silica structures. Journal of Materials Chemistry [J] 2006, 16 (16): 1511-1519.
    [98]. Hu, Q. Y.; Kou, R.; Pang, J. B.; Ward, T. L.; Cai, M.; Yang, Z. Z.; Lu, Y. F.; Tang, J., Mesoporous carbon/silica nanocomposite through multi-component assembly. Chemical Communications [J] 2007, (6): 601-603.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700