适合紫外/可见光反应的全聚合物微流体反应器制备金纳米粒子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以PMMA为基体,通过对SU-8 2075光刻工艺中旋涂、前烘、曝光、后烘、显影等参数的优化,制备出厚度达500μm的全聚合物微流体反应器。同时提出了一种新型光刻工艺,即根据光刻胶固化收缩率,取定量光刻胶,用特氟龙刮刀铺展开,绕开旋涂,直接进行前烘、曝光、后烘、显影,制成具有特定厚度的全聚合物微流体反应器。然后使用旋涂了UV快速固化胶(SE-1)的BOPP膜对其进行封盖。实现了流道内无阻塞,且显著地改善了微反应器顶部的透光性,特别适合进行紫外/可见光反应。
     利用该微反应器,在紫外光照射下制备了金纳米粒子。采用紫外-可见吸收光谱、激光粒度分析仪、透射电镜等对柠檬酸钠-氯金酸微流体光化学反应体系进行了表征。考察了注射泵的流速、柠檬酸钠/氯金酸的浓度比和紫外光辐射强度对金纳米粒子紫外-可见光吸收峰强度和粒径大小的影响。结果表明,金纳米粒子的紫外-可见光吸收峰强度随注射泵流速的增大而增强,但是随柠檬酸钠/氯金酸浓度比的增大和紫外辐射强度的增强而减弱。金纳米粒子的粒径随注射泵流速的增大和紫外辐射强度的增强而减小;但是金纳米粒子的粒径在柠檬酸钠/氯金酸浓度比小于16时,变化不大;当柠檬酸钠/氯金酸浓度比大于16时,其迅速增大。
A complete polymeric microfluidic reactor with 500μm depth was fabricated by optimization of SU-8 2075 photolithography parameters such as spin coating, soft baking, exposure, post exposure baking, and development. A new photolithography technology was developed. According to curing shrinkage rate of SU-8 2050, a fixed amount of SU-8 2050 was taken out and spread around to the edge of PMMA substrate by a Teflon scraper. A microfluidic reactor with fixed channel depth was fabricated through soft baking, exposure, post exposure baking, and development without spin coating. Then a piece of hydroxylated BOPP film, on which SE-1 was coated, was used to seal the microfluidic structure. There was no blockage in the microchannel and the top transparency which was very useful and critical for photoreaction was significantly improved.
     Gold nanoparticles were synthesised in the complete polymeric microfluidic reactor under UV irradiation. The gold nanoparticle dispersions prepared by photoreaction of sodium citrate with chloroauric acid in aqueous solution were characterised by UV-vis adsorption spectrum, laser particle size analyzer and transmission electron microscope (TEM). The effects of process factors, such as flow rates of reactants, [sodium citrate]/[HAuCl4] and UV light intensity, on UV-vis adsorption intensity and diameters of gold nanoparticles were investigated. The results showed that the UV-vis absorption intensity of gold nanoparticles increased as flow rates increased, but decreased as [sodium citrate]/[HAuCl4] increased and UV light intensity increased. The diameter of gold nanoparticles decreased as flow rates increased and UV light intensity increased. At low [sodium citrate]/[HAuCl4] (<16), with its increasement the size of nanoparticles changed a little. However, at higher [sodium citrate]/[HAuCl4] (>16), the diameters of the obtained gold nanoparticles increased with the increasement of [sodium citrate]/ [HAuCl4].
引文
[1]Bier W, Keller W, Linder G, et al. Manufacturing and Testing of Compact Micro Heat Exchangers with High Volumetric Heat Transfer Coefficients Microstructures [C]. Sens. Actuators, ASME DSC-19,1990,189-197.
    [2]Schubert K Entwicklung von Mikrostrukturapparaten fur Anwendungen in der Chemischen und Thermischen Verfahrenstechnik [J]. KFK Ber,1998,6080,53-60.
    [3]Srinivasan R, Hsing I M, Berger P E, et al. Micromachined Reactors for Catalytic Partial Oxidaton Reactions [J]. AIChE J.,1997,43 (11):3059-3069.
    [4]Ehrfeld W, Golbig K, Hessel V, et al. Characterization of Mixing in Micromixers by a Test Reaction:Single Mixing Units and Mixer Arrays [J]. Ind. Eng. Chem. Res.,1999,38 (3):1075-1082.
    [5]Cussler E L. Diffusion Mass Transfer in Fluid Systems [M].2nd ed. Cambridge: Cambridge University Press,1997.
    [6]郑亚峰,赵阳,辛峰.微反应器研究及展望[J].化工进展,2004,23(5):461-467.
    [7]Holladay J D, Jones E O, Dagle R A, et al. High Efficiency and Low Carbon Monoxide Micro-Scale Methanol Processors [J]. J. Power Sources,2004,131 (1-2):69-72.
    [8]Keoschkerjan R, Richter M, Boskovic D, et al. Novel Multi-Functional Microreaction Unit for Chemical Engineering [J]. Chem. Eng. J.,2004,101 (1-3):469-475.
    [9]Sichler P, Buttgenbach S, Baars-Hibbe L, et al. A Micro Plasma Reactor for Fluorinated Waste Gas Treatment [J]. Chem. Eng. J.,2004,101 (1-3):465-468.
    [10]Santos L S, Knaack L, Metzger J O. Investigation of Chemical Reactions in Solution Using API-MS [J]. Int. J. Mass Spectrom.2005,246 (1-3):84-104.
    [11]Manz A, Effenhauser C S, Barggraf N, et al. Capillary Electrophoresis Integrated onto a Planar Microstructure [J]. Analusis Magazine,1994,22 (9):25-28.
    [12]Jensen K F. Microreactor Engineering is Small Better [J]. Chem. Eng. Sci.,2001,56 (2): 293-303.
    [13]Worz O, Jackel K P, Richter Th, et al. Microreactors, a New Efficient Tool for Optimum Reactor Design [J]. Che. Eng. Sci.,2001,56 (3):1029-1033.
    [14]Doku G N, Verboom W, Reinhoudt D N, et al. On-Microchip Multiphase Chemistry-a Review of Microreactor Design Principles and Reagent Contacting Modes [J]. Tetrahedron,2005,61 (11):2733-2742.
    [15]Terry S C, Jerman J H, Angell J B. A Gas Chromatograph Air Analyzer Fabricated on a Silicon Wafer [J]. IEEE Trans. Electron Devices,1979,26 (12):1880-1886.
    [16]Volkmuth W D, Austin R H. DNA Electrophoresis in Microlithographic Arrays [J]. Nature,1992,358 (6387):600-602.
    [17]Murakami Y, Takeuchi T, Yokoyama K, et al. Integration of Enzyme-Immobilized Column with Electrochemical Flow Cell Using Micromachining Techniques for a Glucose Detection System [J]. Anal. Chem.,1993,65 (20):2731-2735.
    [18]Wilding P, Pfahler J, Bau H H, et al. Manipulation and Flow of Biological Fluids in Straight Channels Micromachined in Silicon [J]. Clin. Chem.,1994,40 (1):43-47.
    [19]Furlan R, Zemel J N. Behavior of Microfluidic Amplifiers [J]. Sens. Actuators A,1995, 51 (2-3):239-246.
    [20]Kovacs G T A, Petersen K, Albin M. Silicon Micromachining-Sensors to Systems [J]. Anal. Chem.,1996,68 (13):407A-412A.
    [21]Lang W. Silicon Microstructuring Technology [J]. Mater. Sci. Eng. R.,1996,17(1):1-55.
    [22]Kovacs G T A. Micromachined Transducers Sourcebook [M]. WCB/McGraw-Hill: Boston,1998.
    [23]Duffy D C, McDonald J C, Schueller O J A, et al. Rapid Prototyping of Microfluidic Systems in Poly (dimethyl-siloxane) [J]. Anal. Chem.,1998,70 (23):4974-4984.
    [24]McDonald J C, Whitesides G M. Poly (dimethylsiloxane) as a Material for Fabricating Microfluidic Devices [J]. Acc. Chem. Res.,2002,35 (7):491-499.
    [25]Martynova L, Locascio L E, Gaitan M,et al. Fabrication of Plastic Microfluid Channels by Imprinting Methods [J]. Anal. Chem.,1997,69 (23):4783.
    [26]Rossier J S, Roberts M A, Ferrigno R, et al. Electrochemical Detection in Polymer Microchannels [J]. Anal. Chem.,1999,71 (19):4294-4299.
    [27]Gina S F, Gavin D M J, David S W L, et al. Fabrication of Thermoset Polyester Microfluidic Devices and Embossing Masters Using Rapid Prototyped Polydimethylsiloxane Molds [J]. Lab Chip,2003,3 (3):158-163.
    [28]Muck A, Wang J, Jacobs M, et al. Fabrication of Polymethylmethacrylate Microfluidic Chips by Atmospheric Molding [J]. Anal. Chem.,2004,76 (8):2290-2297.
    [29]Rossier J S, Bercier P, Schwarz A, et al. Topography, Cystallinity & Wetability of Photoablated PET Surfaces [J]. Langmuir,1999,15 (15):5173-5178.
    [30]McDonald J C, Duffy D C, Anderson J R, et al. Fabrication of Microfluidic Systems in Poly (dimethylsiloxane) [J]. Electrophoresis,2000,21 (1):27-40.
    [31]Dang F, Shinohara S, Tabata O, et al. Replica Multichannel Polymer Chips with a Network of Sacrificial Channels Sealed by Adhesive Printing Method [J]. Lab Chip, 2005,5 (4):472-478.
    [32]Lai S Y, Cao X, Lee L J. A Packaging Technique for Polymer Microfluidic Platforms [J]. Anal. Chem.,2004,76 (4):1175-1183.
    [33]Myra T. K, Corey R. K, Vincent T R. Technique for Microfabrication of Polymeric-Based Microchips from an SU-8 Master with Temperature-Assisted Vaporized Organic Solvent Bonding [J]. Anal. Chem.,2009,81 (4):1652-1659.
    [34]Tiina S, Santeri T, Raimo A K, et al. Characterization of SU-8 for Electrokinetic Microfluidic Applications [J]. Lab Chip,2005,5 (8):888-896.
    [35]Lochel B, Maciossek A, Quenzer H-J, et al. Magnetically Driven Microstructures Fabricated with Multiply Electroplating [J]. Sens. Actuators A,1995,46 (1-3):98-103.
    [36]Lin C H, Lee G B, Wen B, et al. A New Fabrication Process for Ultra-Thick Microfluidic Microstructures Utilizing SU-8 Photoresist [J]. J. Micromech. Microeng.,2002,12 (5): 590-597.
    [37]Zhang J, Tan K L, Hong G D, et al. Polymerization Optimization of SU-8 PR and Its Applications in Microfluidic Systems and MEMS [J]. J. Micromech. Microeng.,2001,11 (1):20-26.
    [38]Tay F E H, Van K J A, Watt F, et al. A Novel Micro-Machining Method for the Fabrication of Thick-Film SU-8 Embedded Micro-Channels [J]. J. Micromech. Microeng. 2001,11(1):27-32.
    [39]Jackman R J, Floyd T M, Ghodssi R, et al. Microfluidic Systems with on-Line UV Detection Fabricated in Photodefinable Epoxy [J]. J. Micromech. Microeng.,2001,11 (3):263-269.
    [40]Bogdanov L A, Peredkov S S. Use of SU-8 Photoresist for very High Aspect Ratio x-Ray Lithography [J]. Microelectron. Eng.,2000,53 (1-4):493-496.
    [41]Bertsch A, Lorenz L, Renaud P.3D Microfabrication by Combining Microstereolithography and Thick Resist UV Lithography [J]. Sens. Actuators A,1999, 73 (1-2):14-23.
    [42]Lorenz H, Despont M, Fahrni N, et al. High-Aspect Ratio, Ultrathick, Negative-Tone near-UV Photoresist and Its Application for MEMS [J]. Sens. Actuators, A,1998,64 (1): 33-39.
    [43]Zhang J, Tan L K, Gong Q H. Characterization of the Polymerization of SU-8 Photoresist and Its Application in Micro-Electro-Mechanical Systems [J]. Poly. Test,2001,20 (6): 693-701.
    [44]Allen P B, Chiu D T. Calcium-Assisted Glass-to-Glass Bonding for Fabrication of Glass Microfluidic Devices [J]. Anal. Chem.,2008,80 (18):7153-7157.
    [45]Schjolberg-Henriksen K, Plaza J A, Raft J M, et al. Protection of MOS Capacitors during Anodic Bonding [J]. J. Microchem. Microeng.,2002,12(4):361-367
    [46]McDonald J C, Duffy D C, Anderson J R, et al. Fabrication of Microfluidic Systems in Poly (dimethylsiloxane) [J]. Electrophotoresis,2000,21(1):27-40.
    [47]Ceriotti L, Weible K, de Rooij N F, et al. Rectangular Channels for Lab-on-a-Chip Applications [J]. Microelectron. Eng.,2003,67-68 (8); 865-871.
    [48]Sikanen T, Tuomikoski S, Ketola R A. Characterization of SU-8 for Electrokinetic Microfluidic Applications [J]. Lab Chip,2005,5 (8):888-896.
    [49]Xia Y, Whitesides G M. Soft Lithography [J]. Angew. Chem. Int. Ed.,1998,37 (5): 550-575.
    [50]DeBolt L C, Mark J E. Models for the Trapping of Cyclic Poly (dimethylsiloxane) (PDMS) Chains in PDMS Networks [J]. Macromolecules,1987,20 (10):2369-2374.
    [51]Clarson S J, Semlyen J A. Siloxane Polymers [M]. Prentice Hall, Engleword, NJ,1993.
    [52]Kunzler J F. Silicone Hydrogels for Contact Lens Application [J]. Trends Polym., Sci. 1996,4 (2):52-59.
    [53]Pan C-T, Yang H, Shen S-C. A Low Temperature Wafer Bonding Technique Using Patternable Materials [J]. J. Micromech. Microeng.,2002,12 (5):611-615.
    [54]Cui L, Zhang T, Morgan H. Optical Particle Detection Integrated in a Dielectrophoretic Lab-on-a-Chip [J]. J. Micromech. Microeng.,2002,12 (1):7-12.
    [55]Li S, Freidhoff C, Young R, et al. Fabrication of Micronozzles Using Low-Temperature Wafer-Level Bonding with SU-8 [J]. J. Micromech. Microeng.,2003,13 (5):732-738.
    [56]Mogensen K, El-Ali J, Wolf A, et al. "Integration of Polymer Waveguides for Optical Detection in Microfabricated. Chemical Analysis Systems [J]. Appl. Opt.,2003,42 (19): 4072-4079.
    [57]Blanco F J, Agirregabiria M, Garcia J, et al. Novel Rhree-Dimensional Embedded SU-8 Microchannels Fabricated Using a Low Temperature Full Wafer Adhesive Bonding [J]. J. Micromech. Microeng.,2004,14 (7):1047-1056.
    [58]Tuomikoski S, Franssila S. Free-standing SU-8 Microfluidic Chips by Adhesive Bonding and Release Etching [J]. Sens. Actuators A,2005,120 (2):408-415.
    [59]Carlier J, Chuda K, Arscott S, et al. High Pressure-Resistant SU-8 Microchannels for Monolithic Porous Structure Integration [J]. J. Micromech. Microeng.,2006,16 (10): 2211-2219.
    [60]Park J, Shin D-S. Application of Epoxy-Based Photosensitive Polymers for Optical MEMS and Subsequent Reliability Evaluation [J]. Mater. Chem. Phys.,2006,98 (2-3): 309-315.
    [61]Heeren A, Luo C P, Roth G, et al. Diffusion along Microfluidic Channels [J]. Microelectron. Eng.,2006,83 (4-9):1669-1672.
    [62]Song Y, Kumar C S S R, Hormes J. Fabrication of an SU-8 Based Microfluidic Reactor on a PEEK Substrate Sealed by a'Flexible Semi-Solid Transfer'(FST) Process. J. Micromech. Microeng.,2004,14 (7):932-940.
    [63]Lu H, Schmidt M A, Jenson K F. Photochemical Reactions and on-Line UV Detection in Microfabricated Reactors [J]. Lab Chip,2001,1 (1):22-28.
    [64]Wootton R C R, Fortt R, de Mello A. A Microfabricated Nano-Reactor for Safe, Continuous Generation and Use of Singlet Oxygen [J]. Org. Proc. Res. Dev.,2002,6 (2): 187-189.
    [65]Jahnisch K, Dingerdissen U. Photochemical Generation and [4+2]-Cycloaddition of Singlet Oxygen in a Falling-Film Microreactor [J]. Chem. Eng. Technol.,2005,28 (4): 426-427.
    [66]Lewis P C, Graham R R, Nie Z,et al. Continuous Synthesis of Copolymer Particles in Microfluidic Reactors [J]. Macromolecules,2005,38 (10):4536-4538.
    [67]Dubinsky S, Zhang H, Nie Z, et al. Microfluidic Synthesis of Macroporous Copolymer Particles [J]. Macromolecules,2008,41 (10):3555-3561.
    [68]Minas G, Wolffenbuttel R F, Correia J H. A Lab-on-a-Chip for Spectrophotometric Analysis of Biological Fluids [J]. Lab Chip,2005,5 (11):1303-1309.
    [69]Yang P, Deng J Y, Yang W T. Confined Photo-Catalytic Oxidation:A fast Surface Hydrophilic Modification Method for Polymeric Materials [J]. Polymer,2003,44 (23): 7157-7164.
    [70]Yang P, Xie J Y, Yang W T. A Simple Method to Fabricate a Conductive Polymer Micropattern on an Organic Polymer Substrate [J]. Macro. Rapid Commun.,2006,27 (6): 418-423.
    [71]Zhao H C, Yang P, Deng J P, et al. Fabrication of a Molecular-Level Multilayer Film on Organic Polymer Surfaces via Chemical Bonding Assembly [J]. Langmuir,2007,23 (4): 1810-1814.
    [72]UV curable adhesive containing EA, a single-functional monomer (GMA) and photoinitiators (1173, TPO) is marked as SE-1. A surface modifier containing EA, and photoinitiators (1173, TPO) is marked as SE-2
    [73]Puntes V F, Krishnan K M, Alivisatos A P. Colloidal Nanocrystal Shape and Size Control: the Case of Cobalt [J]. Science,2001,291 (5511):2115-2117.
    [74]Templeton A C, Chen S, Murray R W, et al. Water-Soluble, Isolable Gold Clusters Protected by Tiopronin and Coenzyme a Monolayers [J]. Langmuir,1999,15 (1):66-76.
    [75]Hussain I, Graham S, Wang Z X, et al. Size-Controlled Synthesis of near-Monodisperse Gold Nanoparticles in the 1-4 nm Range Using Polymeric Stabilizers [J]. J. Am. Chem. Soc.,2005,127 (47):16398-16399.
    [76]Link S, El-Sayed M A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nano-dots and Nano-rods [J]. J. Phys. Chem. B,1999,103 (40):8410-8426.
    [77]Mohamed M B, Volkov V, El-Sayed M A, et al. The'Lightning' Gold Nanorods: Fluorescence Enhancement of over a Million Compared to the Gold Metal [J]. Chem. Phys. Lett.,2000,317 (6):517-523.
    [78]Van der Zande B M I, Bohmer M R, Fokkink L G J, etal. Aqueous Gold Sols of Rod-Shaped Particles [J]. J. Phys. Chem. B,1997,101 (6):852-854.
    [79]Link S, Mohamed M B, El-Sayed M A. Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant [J]. J. Phys. Chem. B,1999,103 (16):3073-3077.
    [80]Daniel M C, Astruc D. Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nano-Technology [J]. Chem. ReV.,2004,104 (1):293-346.
    [81]Brust M, Walker A, Bethell D, et al. Synthesis of Thiol Derivatised Gold Nanoparticles in a Two-Phase Liquid-Liquid System [J]. J. Chem, Soc. Chem. Commun.,1994 (7): 801-802.
    [82]张聪惠,兰新哲,刘江.纳米金溶胶制备研究[J].有色金属,2002,54(增刊):62-63.
    [83]Brown K R, Natan M J. Hydtoxylamine Seeding of Colloidal Au Nanoparticles in Solution and on Surface [J]. Langmuir,1998,14 (4):726-728.
    [84]曹林有,朱涛,刘忠范.晶种法合成金溶胶过程中非球形粒子的抑制切[J].物理化学学报,2004,20(2):211-213.
    [85]Mallick K, Wang Z L, Pal T. Seed-Mediated Successive Growth of Gold Particles Accomplished Photochemical Approach for Size-Controlled Synthesis [J]. J. Photochem. Photobiol. A,2001,140 (1):75-80.
    [86]Sau T K, Pal A, Jana N R, et al. Size Controlled Synthesis of Gold Nanoparticles Using Photochemically Prepared Seed Particles [J]. J. Nanopart. Res.,2001,3 (4):257-261.
    [87]刘庆业,覃爱苗,蒋治等.聚乙二醇光化学法制备金纳米微粒及共振散射光谱研究[J].光谱学与光谱分析,2005,25(11):1857-1860.
    [88]吴泓橙,董守安,董颖男等.金纳米粒子的阳光光化学合成和晶种媒介生长[J].高等学校化学学报.2007,28(1):10-15.
    [89]Wagner J, Khler J M. Continuous Synthesis of Gold Nanoparticles in a Microreactor [J]. Nano Lett.,2005,5 (4):685-691.
    [90]Shalom D, Wootton R C R, Winkle R F, et al. Synthesis of Thiol Functionalized Gold Nanoparticles Using a Continuous Flow Microfluidic Reactor [J]. Mater. Lett.,2007,61 (4-5):1146-1150.
    [91]Tsunoyama H, Ichikuni N, Tsukuda T. Microfluidic Synthesis and Catalytic Application of PVP-Stabilized,#1 nm Gold Clusters [J]. Langmuir,2008,24 (20):11327-11330.
    [92]周全法,尚通明.金纳米粒子的催化特性及其应用[J].黄金,2003,24(2):6-9.
    [93]Faraday M. The Bakerian Lecture:Experimental Relations of Gold (and Other Metals) to Light [J]. Philos. Trans. R. Soc. Lond. A,1857,147,145-181.
    [94]Turkevich J, Stevenson P C, Hillier. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold [J]. J. Discuss. Faraday Soc.,1951,11,55-75.
    [95]Munro C H, Smith W E, White P C, et al. Characterization of the Surface of a Citrate-Reduced Colloid Optimized for Use as a Substrate for Surface-Enhanced Resonance Raman Scattering [J]. Langmuir,1995,11 (10):3712-3720.
    [96]Henglein A, Giersig M. Formation of Colloidal Silver Nanoparticles Capping Action of Citrate [J]. J. Phys. Chem. B,1999 103 (44):9533-9539.
    [97]Wang S, Li Y L, Du C M, et al. Self-Organization of Gold Nanoparticles Protected by 9-(5-Thiopentyl)-Carbazole [J]. Chin. Chem. Lett.,2001,12 (12):1141-1144.
    [98]Esumi K, Hosoya T, Suzki A, et al. Preparation of Hydrophobically Modified Poly(amidoamine) Dendrimer-Encapsulated Gold Nanoparticles in Organic Solvents [J]. J. Colloid Interface Sci.,2000,229 (1):303.
    [99]朱健,王永昌,王勤.胶体金纳米颗粒的荧光光谱特性[J].光子学报,2003,32(3):58-62.
    [100]Brown K R, Natan M J. Hydtoxylamine Seeding of Colloidal Au Nanoparticles in Solution and on Surface [J]. Langmuir,1998,14 (4):726-728.
    [101]宋香宁,王志才,杨文胜.柠檬酸钠还原法制备金纳米粒子的研究[D].吉林,吉林大学化学学院,2004.
    [102]Eumi K, Kameo A. Suzuki A, et al. Preparation of Gold Nanoparticles Using 2-Vinylpyridine Telomers Possessing Multmydrocarbon Chains as Stabilizer [J]. Colloid Surf. A,2001.176 (2-3):233-237.
    [103]Tsutsui G, Huang S J, Sakaue H, et al. Well-sized-Controlled Colloidal Gold Nanoparticles Dispersed in Organic Solvent [J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,2001,40 (1):346-349.
    [104]Che W, Cai W, Zhang L, et al. Sonochemical Processes and Formation of Gold Nanoparticles within Pores of Mesoporous Silica [J]. J. Colloid Interface Sc.,2001,238 (2):291-295.
    [105]王勇,彭英春Ps-b-PAA模板制备金纳米颗粒[J].高分子材料科学与工程,2004,20(2):195-197.
    [106]杨立平,涂伟霞,微波法合成纳米金胶体颗粒的调控研究[J].物理化学学报,2006,22(4):513-5116.
    [107]侯士敏,陶成钢,刘虹雯等.高定向石墨表面金纳米粒子和金纳米线的研究[J].物理学报,2001,50(2):223-226.
    [108]Mafune F, Kohno J, T akeda Y, et al. Formation of Gold Nanoparticles by Laser Ablation in Aqueous Solution of Surfactant [J]. J. Phys. Chem. B,2001,105 (22):5114-5120.
    [109]Jongen N, Donnet M Bowen P, et al. Development of a Continuous Segmented Flow Tubular Reactor and the "Scale-out" Concept-In Search of Perfect Powders [J]. Chem. Eng. Technol.,2003,26 (3):303-305.
    [110]Wang H Z, Nakamura H, Uehara M, et al. Preparation of Titania Particles Utilizing the Insoluble Phase Interface in a Microchannel Reactor [J]. Chem. Commun.,2002, (14): 1462-1463.
    [111]Wang H Z, Li X Y, Uehara M, et al. Continuous Synthesis of CdSe-ZnS Composite Nanoparticles in a Microfluidic Reactor [J]. Chem. Commun.,2004, (1):48-49.
    [112]Lin X Z, Terepka A D, Yang H. Synthesis of Silver Nanoparticles in a Continuous Flow Tubular Microreactor [J]. Nano Lett.,2004,4(11):2227-2232.
    [113]Song Y, Doomes E E, Prindle J, et al. Investigations into Sulfobetaine-Stabilized Cu
    Nanoparticle Formation:Toward Development of a Microfluidic Synthesis [J]. J. Phys. Chem. B,2005,109 (19):9330-9338.
    [114]Song Y, Modrow H, Laurence L, et al. Microfluidic Synthesis of Cobalt Nanoparticles [J]. Chem. Mater.,2006,18 (12):2817-2827.
    [115]Landon P, Collier P J, Papworth A J, et al. Direct Formation of Hydrogen Peroxide from H2/O2 Using a Gold Catalyst [J]. Chem. Commun.,2002,24 (18):2058-2059.
    [116]詹曦青,泰晓勇.免疫金标记技术在免疫检测中的应用与发展[J].现代中西医结合,2001,26(7):22-23.
    [117]Beggs M, Novotny M, Sampedor S, et al. A Self-Performing Chromatog-Raphy Immunoassay for the Quanlitative Determination of HCG in Urine and Serum [J]. Clin. Chem.,1990,36 (6):1084-1085.
    [118]Muler-Barderf M, Fretag H, Schefold T, et al. Development and Characterization of a Rapid Assay for bedside Determination of Cardiac Troponin T [J].Circulation,1995,92 (10):2869-2875.
    [119]Verheijen R, Osswad I K, Dietrich R, et al. Development of a One Step Strip Test for the Detection of (Dihydro) streptomycin Residues in Raw Milk [J]. Food Agric Immunol, 2000,12(1):31-40.
    [120]刘平,李玉光,刘梦友等.用生物电化学传感器检测牛奶中残留的青霉素[J].光散射学报,2005,17(1):61-63.
    [121]张英,袁若,柴雅琴等.纳米金修饰玻碳电极测定对苯二酚[J].西南师范大学学报:自然科学版,2006,31(1):86-90.
    [122]Obare S O, Hollo well R E, Murphy C J. Sensing Strategy for Lithium Ion Based on Gold. Nanoparticles [J]. Langmuir,2002,18 (26):10407-10410.
    [123]del Campo A, Arzt E. Fabrication Approaches for Generating Complex Micro-and Nanopatterns on Polymeric Surfaces [J]. Chem. Rev.,2008,108 (3):911-945.
    [124]Y Wang, Bachman M, Sims C E, et al. Simple Photografting Method to Chemically Modify and Micropattern the Surface of SU-8 Photoresist. Langmuir,2006,22 (6): 2719-2725.
    [125]Mallik K, Mandal M, Pradhan N, et al. Seed Mediated Formation of Bimetallic Nanoparticles by UV Irradiation:A Photochemical Approach for the Preparation of "Core-Shell" Type Structures [J]. Nano Letters,2001,1 (6):319-322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700