抗肿瘤药物调控非小细胞肺癌细胞中DR5表达的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     细胞凋亡通路包括外源性死亡受体介导的信号通路和内源性线粒体信号通路。Death Receptor5(DR5)是TNFR家族的成员,包含一个细胞质内的死亡结构域(DD)。受体三聚化时,死亡结构域可以招募FADD以及pro-caspase8/10形成死亡诱导信号复合体(DISC)。随后,活化caspase并导致下游效应蛋白的切割。由于DR5对恶性肿瘤细胞有靶向选择性,很多促凋亡药物的研究都集中于DR5分子。抗凋亡蛋白c-FLIP可以阻止pro-caspase8组装入DISC进而抑制caspase8和下游效应蛋白的活化。
     Bcl-2家族既有抗凋亡蛋白也有促凋亡蛋白,二者的平衡对于内源性凋亡通路的调控十分重要。NOXA是一个只含BH3结构的促凋亡蛋白,是DNA损伤时p53的转录靶点。NOXA与化疗药物引起的凋亡有关,其可以与Bcl-2家族的促存活基因Mcl-1相互结合,将Bax从Mcl-1/Bax复合体中置换出来,游离的Bax进而触发内源性凋亡通路。NOXA和Mcl-1的结合也能够促进Mcl-1的蛋白酶体降解,进一步增强线粒体凋亡。
     很多化疗药物被报道可以诱导肿瘤细胞内质网应激(ER stress)。内质网应激多由错误折叠蛋白或未折叠蛋白在内质网腔上的聚集引起,主要包括3条信号通路,分别是蛋白激酶IRE1和PERK介导的信号通路以及转录因子ATF6介导的信号通路。
     错误折叠蛋白或未折叠蛋白不能降解时,内质网应激被延长并诱导凋亡。内质网应激可通过多条途径诱导凋亡,包括pro-caspasel2的切割活化、ASK1的活化等。很多研究集中在内质网应激的效应蛋白CHOP上。CHOP是ATF4的下游靶蛋白,可以作为一个含bZIP结构域的转录因子调控包括DR5和NOXA在内的凋亡相关基因。内质网应激诱导凋亡的分子机制还需要进一步的研究。
     肿瘤干细胞与干细胞有很多相似的特性。这类细胞具有自我更新和分化的能力,表达典型的干细胞标记物。肿瘤干细胞对药物有更强的抗性,被认为是肿瘤细胞的起源。很多报道指出肿瘤干细胞与欠佳的临床预后有关。因此,肿瘤干细胞有希望成为肿瘤治疗可行的靶点。
     Parthenolide (PTL)是一种来源于植物小白菊的倍半萜烯内酯。PTL因其可抑制NF-κB的活性而广泛应用与炎症的治疗。研究发现PTL还具有促进细胞分化、引起细胞周期阻滞、诱导凋亡等功能。关于其促进肿瘤细胞凋亡功能的研究发现PTL可以触发内源性线粒体信号通路,上调细胞内活性氧(ROS)水平,改变Bcl-2家族蛋白的表达。近年来有研究报道PTL可以选择性的杀伤急性骨髓性白血病干细胞和祖细胞。PTL还可以优先抑制乳腺癌类干细胞,但详细的分子机制未知。
     细胞内膜系统各个组分之间的物质传递常常通过膜泡运输的方式进行。膜泡运输是一种高度有组织的定向运输,马达蛋白水解ATP提供能量,使有被小泡沿着细胞内的微管被运输到靶细胞器。
     膜泡运输可以分为外排和内吞。其中内吞又可以根据衣被蛋白的不同分为clathrin依赖的内吞和clathrin非依赖的内吞。
     受体介导的内吞是细胞依靠膜表面受体特异性地摄取细胞外蛋白质或其他化合物的过程。内吞后的受体可以通过再循环途径回到质膜,也可以通过晚期内体进入溶酶体降解。内吞运输可调节多条信号通路,对细胞的极化、运动、信号传递的调控和正常细胞的生长都十分重要。
     不少研究认为DR5是多种不同细胞中导致死亡的首选受体。DR5也被认为是开发抗体药物治疗的首要靶点。DR5需要在膜上恰当的表达才能传递配体的凋亡信号。有研究发现,有些乳腺癌等DR5膜表面缺失的细胞系对TRAIL和受体的相关抗体有较强抗性。
     TRAIL处理时,TRAIL和受体DR5都迅速的内化。TRAIL能够同时通过clathrin依赖和非依赖的内吞内化。有研究发现死亡受体的活化导致了clathrin依赖的内吞中几个蛋白以caspase依赖的方式切割,抑制内吞可增强死亡受体下游caspase的活化,进一步放大了细胞凋亡
     但也有资料显示,有些细胞内clathrin和衔接蛋白AP2的总蛋白水平并不与细胞膜表面DR5直接相关,说明其他元件可能也参与受体的表面缺失过程。关于内吞和运输途径中导致细胞膜表面DR5缺失的分子机制需要更多的研究。这些研究对于恰当的抗肿瘤药物的选择和设计意义重大。
     Numb最初在果蝇中被定义为一个重要的细胞命运决定子。Numb蛋白具有调控细胞不对称分裂、决定细胞命运、内吞、细胞粘附、细胞迁移、特定底物的泛素化等功能。
     Numb可作为内吞蛋白,在内吞小体、clathrin有被小泡和膜泡中都有分布。内吞的全部线路中,Numb都与被内化的货物共定位,共同从中间型膜泡运输至内体。Numb可以通过与Eps15相互结合而被招募入内吞的细胞器,但Numb与Eps15不能定位在同一有被小泡,揭示了Numb可能与其他内吞机制的元件相互结合。
     研究方法
     1.肿瘤细胞培养;
     2. SRB和MTT比色法检测肿瘤细胞存活率;
     3.流式细胞术检测细胞周期
     4. Western Blot检测细胞内相关蛋白的表达;
     5.流式细胞术检测细胞凋亡;
     6. RNAi抑制相关基因的表达;
     7.基因克隆;
     8.流式细胞术检测膜表面DR5;
     9.基因过表达检测对相关蛋白的影响;
     10.免疫荧光检测膜表面DR5;
     11.免疫沉淀检测蛋白相互作用。
     实验结果
     1.PTL可明显抑制非小细胞肺癌细胞Calu-1、H1792、A549、H1299、H157和H460的存活率,这种抑制作用具有浓度依赖性;
     2.PTL以浓度依赖方式诱导A549细胞G0/G1细胞周期阻滞,诱导H1792细胞G2/M细胞周期阻滞;
     3.PTL在A549、Calu-1、H1299和H1792中以浓度和时间依赖的方式激活了促凋亡蛋白caspase的级联反应;
     4.PTL以浓度和时间依赖的方式促进了A549、Calu-1、H1299和H1792细胞中死亡受体DR5的表达,敲除DR5可抑制PTL诱导的caspase级联反应和细胞凋亡;
     5.PTL抑制了A549、Calu-1、H1299、H1792和H157细胞中抗凋亡蛋白c-FLIP的表达,这种抑制作用具有浓度和时间依赖性,过表达c-FLIP可抑制PTL诱导的caspase级联反应和细胞凋亡;
     6.PTL以浓度和时间依赖的方式促进了A549、Calu-1、H1299和H1792细胞中促凋亡蛋白NOXA的表达,抑制抗凋亡蛋白Mcl-1的表达,敲除NOXA可以上调Mcl-1,抑制PTL诱导的caspase级联反应和细胞凋亡;
     7.PTL上调内质网应激通路中的效应蛋白ATF4年CHOP的表达,这种上调具有浓度和时间依赖性,敲除ATF4抑带CHOP的表达和PTL诱导的caspase级联反应,敲除CHOP抑制了DR5和NOXA的表达,抑制了PTL诱导的caspase级联反应;
     8.PTL以浓度和时间依赖的方式上调了内质网应激通路中IRE1α、Bip、 p-eIF2α的表达;
     9.A549细胞中E-cad缺失上调干细胞标记物Oct4和Sox2表达;
     10.相同浓度PTL对A549/shE-cad细胞存活有更强的抑制作用,并在A549/shE-cad细胞中诱导更强的caspase级联反应;
     11.PTL诱导的促凋亡蛋白NOXA的上调、抗凋亡蛋白c-FLIP和Mcl-1的下调在A549/shE-cad细胞增强;
     12.PTL诱导的内质网应激相关蛋白p-eIF2α、ATF4和CHOP的上调在A549/shE-cad细胞增强,敲除CHOP可抑制PTL诱导的NOXA的上调以及caspase3和ARP的切割;
     13. SAHA以浓度梯度依赖的方式激活非小细胞肺癌细胞A549, H1792caspase级联反应;
     14. SAHA以浓度梯度和时间梯度依赖的方式上调A549、Calu-1、H1299和H1792细胞中DR5的表达,敲除DR5对SAHA诱导的caspase级联反应有更强的抑制作用;
     15.抗肿瘤药物SAHA和PEM处理可上调A549和H1792细胞膜上的DR5;
     16. Bafilomycin-A1和MG132可增强PEM诱导的A549细胞中DR5的表达,E-64d和MG132可增强SAHA诱导的A549和H1792细胞中DR5的表达;
     17. SAHA、PEM都以浓度梯度依赖的方式下调非小细胞肺癌A549和H1792细胞中Numb和NumbL的表达,
     18.敲除Numb和NumbL可增强抗肿瘤药物诱导的DR5表达和caspase级联反应,过表达Numb和NumbL可抑制抗肿瘤药物诱导的DR5表达和caspase级联反应;
     19.过表达Numb和NumbL可下调细胞膜上的DR5;
     20. Numb和NumbL可以与DR5相互结合。
     结论
     1.PTL具有抗肿瘤作用,其发挥抗肿瘤作用通过诱导细胞凋亡和细胞周期阻滞;
     2. C-FLIP和死亡受体DR5在PTL诱导的外源性凋亡中发挥重要作用;
     3.PTL通过NOXA-Mcl-1轴诱导内源性凋亡;
     4.PTL通过触发内质网应激诱导细胞凋亡;
     5.PTL在类肿瘤干细胞中诱导更强的内质网应激和凋亡;
     6.抗肿瘤药物SAHA、PEM通过上调死亡受体DR5的表达诱导非小细胞肺癌细胞凋亡;
     7. SAHA和PEM上调非小细胞肺癌细胞膜表面DR5,抑制溶酶体途径和蛋白酶体途径降解可增强抗肿瘤药物诱导的DR5表达;
     8.抗肿瘤药物通过抑制内吞蛋白Numb和NumbL上调DR5和凋亡;
     9.过表达Numb和NumbL减少DR5在膜上的表达;
     10. Numb与NumbL可以与DR5相互结合。
     综上所述,本研究发现PTL通过诱导细胞凋亡和周期阻滞发挥抗肿瘤作用,并且提出了PTL诱导非小细胞肺癌细胞凋亡的分子机制:PTL激活内质网应激,上调ATF4和CHOP的表达;CHOP作为转录因子上调死亡受体DR5和促凋亡蛋白NOXA的表达,从而分别诱导外源性和内源性的细胞凋亡。抗凋亡蛋白c-FLIP参与了PTL诱导的外源性细胞凋亡。本研究还发现PTL在类肿瘤细胞中诱导更强的内质网应激和凋亡,为PTL选择性杀伤作用提供了可能的分子机制。
     内吞蛋白Numb和NumbL可以与死亡受体DR5结合。抗肿瘤药物通过下调Numb和NumbL,上调细胞内总的和膜表面DR5,进而诱导非小细胞肺癌细胞凋亡。抑制溶酶体途径和蛋白酶体途径降解增强抗肿瘤药物诱导的DR5表达。Numb和NumbL可能通过促进DR5的内吞,下调膜表面DR5。内吞后DR5可通过溶酶体途径降解。本研究丰富了对DR5内吞和运输途径中导致细胞膜表面DR5缺失的分子机制的认知。
Background
     Apoptosis consists of two major signal pathways:the extrinsic death receptor pathway and the intrinsic mitochondrial pathway. Death receptor5(DR5) is a protein that belongs to tumor necrosis factor receptor (TNFR) superfamily. It contains a cytoplasmic death domain (DD) which can recruit Fas-Associated Death Domain (FADD) and pro-caspase8/10to form the Death-Inducing Signal Complex (DISC) when the receptor is trimerized. Subsequently, initiator caspase proteins are activated to lead the cleavage of downstream effectors. Development of pro-apoptotic agonists has been focused on DR5because of its target selectivity for malignant over normal cells. The activation of caspase8and downstream effectors can be inhibited by anti-apoptosis protein c-FLIP which prevents recruitment of pro-caspase8to DISC.
     The imbalance among the Bcl-2family members which have been defined as either anti-apoptotic or pro-apoptotic is essential for the modulation of intrinsic apoptosis signal pathway. The BH3-only protein NOXA is a p53transcriptional target in response to DNA damage. It has been reported to be involved in chemotherapeutic agent-induced apoptosis. NOXA can interact with pro-survival Bcl-2family protein Mcl-1, results in displacing Bax from the Mcl-1/Bax complex and freeing Bax to trigger the intrinsic pathway. This combination between NOXA and Mcl-1also promote proteasomal degradation of Mcl-1to enhance the mitochondrial apoptosis.
     Many chemotherapy drugs have been reported to induce ER stress response in cancer cells. ER stress is usually caused by accumulation of misfolded or unfolded proteins in the ER lumen. Three signal pathways are involved in ER stress. The transducers protein kinases IRE1and PERK and the transcription factor ATF6regulate the ER stress through their respective signaling cascades.
     When those misfolded or unfolded proteins are not resolved, ER stress is prolonged and then induces apoptosis. There are several mechanisms linking ER stress to apoptosis such as cleavage and activation of pro-caspase12, activation of ASK1and so on. Many studies have focused on the ER stress effector CHOP, which is a downstream target of ATF4. CHOP is a bZIP-containing transcription factor that can target several apoptotic genes including DR5and NOXA. The molecular mechanisms of ER stress-induced apoptosis is remain unclear.
     Cancer stem cells have many similar aspects with stem cells. Those cells express typical markers of stem cells and have the ability of self-renewal and differentiation. Cancer stem cells are also considered to be the origin of cancer cells and have more resistance to anti-cancer drugs. Many reports have indicated that cancer stem cells are correlated with poor prognosis. So, targeting cancer stem cell may be a promising strategy for cancer therapy.
     Parthenolide is a sesquiterpene lactone derived from the plant feverfew. It has been used to treat inflammation due to its ability of inhibiting NF-κB activity. Parthenolide has also been reported to play other roles such as promoting cellular differentiation, causing cell cycle arrest and inducing apoptosis. Its pro-apoptotic effect on cancer cells is known to trigger the intrinsic apoptotic pathway by elevating levels of intracellular reactive oxygen species (ROS) and alterating of Bcl-2family proteins. What's more, recent studies have revealed that PTL could selectively eradicate acute myelogenous leukemia stem and progenitor cells. It is also demonstrated that PTL could preferentially inhibit breast cancer stem-like cells, but the molecular mechanism is still unclear.
     The transfer among components of cell plasma membrane system is often executed by vesicular transport. Vesicular transport is a highly organized orientational process. With energy provided by the hydrolysis of ATP, vesicular transport makes coated pits transport to the target organelle via the microtubules.
     Vesicular transport includes exocytosis and endocytosis. Based on the difference of coat proteins, endocytosis can be divided into clathrin-dependent endocytosis and clathrin-independent endocytosis.
     Receptor-mediated endocytosis is a program by which cells ingest extracellular proteins and other compounds depended on specific receptors on the cell surface. After endocytosis, receptors can be recycled back to the plasma membrane, or transferred from the late-endosome to lysosome for degradation. Endocytosis regulates multiple signaling pathways and is important to modulate cell polarization, movement, signal transmission, and growth.
     Many studies considered DR5to be the pivotal death receptor in a variety of cells. DR5is also considered to be the preferred target to exploit antibodies for cancer therapy. The localization appropriacy on plasma membrane is necessary for DR5to transfer ligand signals. Studies have found that some cancer cells without surface DR5such as breast cancer cells have stronger resistance to antibodies of TRAIL and its receptors.
     TRAIL and its receptor DR5can be rapidly internalized after TRAIL treated. The internalization can go through both the clathrin-dependent and the clathrin-independent endocytosis. It has been reported that activation of death receptor results in cleavage of several proteins in clathrin-dependent endocytosis by a caspase-denpendent machine. Inhibition of endocytosis can enhance the activation of caspase, and enlarge cell death furthermore.
     However, there are also data showed that in some cells, the total protein level of clathrin and adapter protein AP2is not directly related to the surface expression of DR4and DR5on plasma membrane. Other components of clathrin-dependent endocytosis may also participate in the process by which receptors are deficiency on plasma membrane. More research about endocytosis and related molecules involved in the lack of surface TRAIL receptor is required. Those research are important for the proper selection and design of anti-cancer drug.
     Numb is originally defined as an important molecule that decideed cell fate in Drosophila. Numb has a variety of abilities, including the decision of cell fate, regulation of asymmetric cell division, endocytosis, cell adhesion, cell migration, specific ubiquitin of substrates and so on.
     Numb can act as an endocytic protein, it exists on endosome, clathrin pits and vesicles. Numb is co-located with internalized cargos, and transfer from middle vesicle to endosome through all processes of endocytosis. Numb can be recruited to endocytosis organelles by combining with Eps15, but Numb and Eps15cannot be located in a same vesicle, indicating that Numb may be combined with other components of endocytosis.
     Methods
     1. The culture of tumor cells;
     2. SRB and MTT assays were executed to detect the survival of tumor cells;
     3. Flow cytometry assay were carried out to detect the cell cycle;
     4. The expression level of relevant proteins in cells were detected by western blot asssays;
     5. Apoptosis was detected by flow cytometry assay;
     6. RNAi technology was used to inhibit the expression of related genes;
     7. Gene cloning;
     8. Surface expression of DR5was detected by flow cytometry assay;
     9. Over-expression of genes was used to assay the effects on related proteins;
     10. Immunofluorescence was used to test surface expression of DR5;
     11. Immunoprecipitation was carried out to examine the interactions between proteins.
     Results
     1. PTL can obviously inhibit the cell survival of non-small cell lung cancer cells such as Calu-1,H1792A549, H1299, H157and H460, this inhibition was in a concentration dependent manner;
     2. PTL induced G0/G1cell cycle arrest in A549cells in a concentration dependent manner while induced G2/M cell cycle arrest in H1792cells;
     3. In A549, Calu-1, H1299and H1792cells, PTL induced the activation of pro-apoptosis protein caspases in a concentration and time dependent manner;
     4. PTL up-regulated the expression of death receptor5in A549, Calu-1, H1299and H1792cells in a concentration and time dependent manner, knocking-down of DR5significantly inhibited the caspase cascade activation and cell apoptosis induced by PTL;
     5. PTL inhibited the expression of anti-apoptosis protein c-FLIP in A549, Calu-1, H1299, H1792and H157cells, this inhibition is in a concentration and time dependent manner, over-expressing of c-FLIP could significantly inhibit the caspase cascade activation and apoptosis induced by PTL;
     6. PTL up-regulated the expression of pro-apoptosis protein NOXA in A549, Calu-1, H1299and H1792cells in a concentration and time dependent manner, while the expression of anti-apoptosis protein Mcl-1was inhibited in an opposite manner, knocking-down of NOXA up-regulated the expression of Mcl-1and inhibited the caspase cascade activation and cell apoptosis induced by PTL
     7. PTL up-regulated the expression of ATF4and CHOP, which are effector proteins endoplasmic reticulum stress pathway. This up-regulation were in a concentration and time dependent manner. Knocking-down of ATF4inhibited the expression of CHOP and PTL inducing caspase cascade actication, knocking-down of CHOP inhibited the expression of DR5and NOXA and the caspase cascade activation induced by PTL;
     8. PTL up-regulated the expression of endoplasmic reticulum stress pathway proteins such as IRE1α, Bip, p-eIF2a in a concentration and time dependent manner;
     9. Deletion of E-cad increases expression of stem cell marker Oct4and Sox2in A549cells;
     10. The same concentration of PTL had a stronger inhibitory effect on cell survival and caspase cascade activation in A549/shE-cad cells;
     11. The up-regulation of pro-apoptosis protein NOXA as well as down-regulation of anti-apoptosis protein c-FLIP and Mcl-1induced by PTL were enhanced in A549/shE-cad cells;
     12. The up-regulation of endoplasmic reticulum stress related proteins p-eIF2a, ATF4and CHOP induced by PTL were enhanced in A549/shE-cad cells, knocking-down of CHOP inhibits the up-regulation of NOXA and the activation of caspase3and PARP induced by PTL.
     13. In A549, Calu-1, H1299and H1792cells, SAHA induced the activation of caspases in a concentration dependent manner;
     14. SAHA up-regulated the expression of death receptor5in A549and H1792cells in a concentration dependent manner, knocking-down of DR5had a stronger effect in the inhibition of the caspase cascade activation induced by SAHA;
     15. Anti-cancer drugs SAHA and PEM increased surface expression of DR5in A549and H1792cells;
     16. Bafilomycin A1and MG132could strengthen the up-regulated expression of DR5induced by PEM in A549cells, E-64d and MG132could strengthen the up-regulated expression of DR5induced by SAHA in both A549and H1792cells;
     17. In A549and H1792cells, SAHA and PEM inhibited the expression of Numb and NumbL in a concentration dependent manner;
     18. Knocking-down of Numb and NumbL enhanced the expression of DR5and caspase cascade activation induced by SAHA and PEM; while over-expression of Numb and NumbL increased the expression of DR5and caspase cascade activation induced by SAHA and PEM;
     19. Numb and NumbL inhibited surface expression of DR5;
     20. Numb and NumbL could interact with DR5.
     Conclusion
     1. PTL has significant anti-cancer effect, which is carried out by inducing apoptosis and cell cycle arrest;
     2. C-FLIP and DR5play an important role in the extrinsic apoptosis induced by PTL;
     3. PTL induces intrinsic apoptosis through NOXA-Mcl-1axis;
     4. PTL induces endoplasmic reticulum stress and then trigger apoptosis;
     5. PTL induces stronger endoplasmic reticulum stress and apoptosis in cancer stem like cells.
     6. An-cancer drugs SAHA and PEM induce apoptosis in non-small cell lung cancer cells by up-regulation of DR5;
     7. SAHA and PEM increase the surface expression of DR5, inhibition degradation through lysosome pathway and proteasome pathway can enhance the DR5expression induced by anti-cancer drugs;
     8. Anti-cancer drugs up-regulate DR5and caspase cascade activation by inhibiting Numb and NumbL;
     9. Numb and NumbL inhibited surface expression of DR5;
     10. Numb and NumbL can interact with DR5.
     To sum up, our study found that PTL has the ability of anti-cancer by inducing apoptosis and cell cycle arrest, we propose the molecular mechanism by which PTL inducing apoptosis in non-small cell lung cancer cells:PTL activates the endoplasmic reticulum stress, increases the expression of ATF4and CHOP; CHOP serves as a transcription factor to increase expression of pro-apoptosis proteins DR5and NOXA, which were then cause extrinsic and intrinsic apoptosis. Anti-apoptosis protein c-FLIP participates in the PTL induced extrinsic apoptosis. We also found that PTL induces stronger endoplasmic reticulum stress and apoptosis in cancer stem-like cells, which provides a possible molecular mechanism to the selective effect of PTL towards cancer stem-like cells.
     Endocytic protein Numb and NumbL can combine with death receptors DR5. Anti-tumor drugs can increase the total and surface expression of DR5by inhibition of Numb and NumbL, then induce apoptosis in non-small cell lung cancer cells. Inhibition of lysosome and proteasome degradation pathway can enhance the DR5expression induced by anti-cancer drugs, Numb and NumbL reduce the surface expression of DR5probably by promoting endocytosis of DR5. Our study enriches understanding about endocytosis and related molecules involved in the lack of surface TRAIL receptor.
引文
1. Magrath, I., et al., Cancer funding in developing countries:the next health-care crisis? Lancet,2010.376(9755):p.1827.
    2. Hannun, Y.A., Apoptosis and the dilemma of cancer chemotherapy. Blood, 1997.89(6):p.1845-53.
    3. Quoix, E. and E. Lemarie, [Epidemiological novelties in lung cancer]. Rev Mal Respir,2011.28(8):p.1048-58.
    4. Jemal, A., et al., Cancer statistics,2010. CA Cancer J Clin,2010.60(5):p. 277-300.
    5. Bach, P.B., et al., Benefits and harms of CT screening for lung cancer:a systematic review. JAMA,2012.307(22):p.2418-29.
    6. Dempke, W.C., T. Suto, and M. Reck, Targeted therapies for non-small cell lung cancer. Lung Cancer,2010.67(3):p.257-74.
    7. Decoster, L., I. Wauters, and J.F. Vansteenkiste, Vaccination therapy for non-small-cell lung cancer:review of agents in phase III development. Ann Oncol,2012.23(6):p.1387-93.
    8. Beland, M.D., et al., Primary non-small cell lung cancer:review of frequency, location, and time of recurrence after radiofrequency ablation. Radiology, 2010.254(1):p.301-7.
    9. Herbst, R.S., et al., Vandetanib plus docetaxel versus docetaxel as second-line treatment for patients with advanced non-small-cell lung cancer (ZODIAC):a double-blind, randomised, phase 3 trial. Lancet Oncol,2010.11(7):p.619-26.
    10. Elmore, S., Apoptosis:a review of programmed cell death. Toxicol Pathol, 2007.35(4):p.495-516.
    11. Falschlehner, C., et al., TRAIL signalling:decisions between life and death. Int J Biochem Cell Biol,2007.39(7-8):p.1462-75.
    12. Chaudhary, P.M., et al., Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway. Immunity,1997.7(6):p.821-30.
    13. Chen, C.Y., et al., Isoobtusilactone A sensitizes human hepatoma Hep G2 cells to TRAIL-induced apoptosis via ROS and CHOP-mediated up-regulation of DR5. J Agric Food Chem,2012.60(13):p.3533-9.
    14. Lee, T.J., et al., Withaferin A sensitizes TRAIL-induced apoptosis through reactive oxygen species-mediated up-regulation of death receptor 5 and down-regulation of c-FLIP. Free Radic Biol Med,2009.46(12):p.1639-49.
    15. Jung, E.M., et al., Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through reactive oxygen species-mediated upregulation of death receptor 5 (DR5). Carcinogenesis,2005.26(11):p.1905-13.
    16. Ullenhag, G.J., et al., Overexpression of FLIPL is an independent marker of poor prognosis in colorectal cancer patients. Clin Cancer Res,2007.13(17):p. 5070-5.
    17. Safa, A.R., c-FLIP, a master anti-apoptotic regulator. Exp Oncol,2012.34(3): p.176-84.
    18. Safa, A.R. and K.E. Pollok, Targeting the Anti-Apoptotic Protein c-FLIP for Cancer Therapy. Cancers (Basel),2011.3(2):p.1639-71.
    19. Bagnoli, M., S. Canevari, and D. Mezzanzanica, Cellular FLICE-inhibitory protein (c-FLIP) signalling:a key regulator of receptor-mediated apoptosis in physiologic context and in cancer. Int J Biochem Cell Biol,2010.42(2):p. 210-3.
    20. Kim, S., et al., Overexpression of cFLIPs inhibits oxaliplatin-mediated apoptosis through enhanced XIAP stability and Akt activation in human renal cancer cells. J Cell Biochem,2008.105(4):p.971-9.
    21. Saelens, X., et al., Toxic proteins released from mitochondria in cell death. Oncogene,2004.23(16):p.2861-74.
    22. Garrido, C., et al., Mechanisms of cytochrome c release from mitochondria. Cell Death Differ,2006.13(9):p.1423-33.
    23. Schimmer, A.D., Inhibitor of apoptosis proteins:translating basic knowledge into clinical practice. Cancer Res,2004.64(20):p.7183-90.
    24. Ekert, P.G. and D.L. Vaux, The mitochondrial death squad:hardened killers or innocent bystanders? Curr Opin Cell Biol,2005.17(6):p.626-30.
    25. Joza, N., et al., Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature,2001.410(6828):p.549-54.
    26. Li, L.Y., X. Luo, and X. Wang, Endonuclease G is an apoptotic DNase when released from mitochondria. Nature,2001.412(6842):p.95-9.
    27. Enari, M., et al., A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature,1998.391(6662):p.43-50.
    28. Cory, S. and J.M. Adams, The Bcl2 family:regulators of the cellular life-or-death switch. Nat Rev Cancer,2002.2(9):p.647-56.
    29. Schuler, M. and D.R. Green, Mechanisms of p53-dependent apoptosis. Biochem Soc Trans,2001.29(Pt 6):p.684-8.
    30. Yang, T., K.M. Kozopas, and R.W. Craig, The intracellular distribution and pattern of expression of Mcl-1 overlap with, but are not identical to, those of Bcl-2. J Cell Biol,1995.128(6):p.1173-84.
    31. Germain, M. and V. Duronio, The N terminus of the anti-apoptotic BCL-2 homologue MCL-1 regulates its localization and function. J Biol Chem,2007. 282(44):p.32233-42.
    32. Rinkenberger, J.L., et al., Mcl-1 deficiency results in peri-implantation embryonic lethality. Genes Dev,2000.14(1):p.23-7.
    33. Opferman, J.T., et al., Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature,2003.426(6967):p.671-6.
    34. Edwards, S.W., et al., Regulation of neutrophil apoptosis by Mcl-1. Biochem Soc Trans,2004.32(Pt3):p.489-92.
    35. Opferman, J.T., et al., Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science,2005.307(5712):p.1101-4.
    36. Thomas, L.W., C. Lam, and S.W. Edwards, Mcl-1; the molecular regulation of protein function. FEBS Lett,2010.584(14):p.2981-9.
    37. Oda, E., et al., Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science,2000.288(5468):p.1053-8.
    38. Wang, Z. and Y. Sun, Identification and characterization of two splicing variants of human Noxa. Anticancer Res,2008.28(3A):p.1667-74.
    39. Willis, S.N., et al., Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev,2005.19(11):p. 1294-305.
    40. Czabotar, P.E., et al., Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc Natl Acad Sci U S A,2007.104(15):p.6217-22.
    41. Wong, R.S., Apoptosis in cancer:from pathogenesis to treatment. J Exp Clin Cancer Res,2011.30:p.87.
    42. Lowe, S.W. and A.W. Lin, Apoptosis in cancer. Carcinogenesis,2000.21(3):p. 485-95.
    43. Vermeulen, K., D.R. Van Bockstaele, and Z.N. Berneman, The cell cycle:a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif, 2003.36(3):p.131-49.
    44. Levine, A.J., p53, the cellular gatekeeper for growth and division. Cell,1997. 88(3):p.323-31.
    45. Agarwal, M.L., et al., The p53 network. J Biol Chem,1998.273(1):p.1-4.
    46. Ko, L.J. and C. Prives, p53:puzzle and paradigm. Genes Dev,1996.10(9):p. 1054-72.
    47. Siliciano, J.D., et al., DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev,1997.11(24):p.3471-81.
    48. Oren, M., Regulation of the p53 tumor suppressor protein. J Biol Chem,1999. 274(51):p.36031-4.
    49. Zeng, Y., et al., Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cdsl or Chkl. Nature,1998.395(6701):p.507-10.
    50. Taylor, W.R. and G.R. Stark, Regulation of the G2/M transition by p53. Oncogene,2001.20(15):p.1803-15.
    51. McDonald, E.R.,3rd and W.S. El-Deiry, Cell cycle control as a basis for cancer drug development (Review). Int J Oncol,2000.16(5):p.871-86.
    52. Wolfel, R., et al., [Hemiprosthesis in femoral neck fracture]. Zentralbl Chir, 1995.120(9):p.721-4.
    53. Wolfel, T., et al., A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science,1995.269(5228):p.1281-4.
    54. Kim, J.H., et al., Amplified CDK2 and cdc2 activities in primary colorectal carcinoma. Cancer,1999.85(3):p.546-53.
    55. Motokura, T., et al., A novel cyclin encoded by a bcll-linked candidate oncogene. Nature,1991.350(6318):p.512-5.
    56. Loda, M., et al., Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med,1997.3(2):p.231-4.
    57. Dobashi, Y., et al., Active cyclin A-CDK2 complex, a possible critical factor for cell proliferation in human primary lung carcinomas. Am J Pathol,1998. 153(3):p.963-72.
    58. Hoffmann, N., A. Steinbuchel, and B.H. Rehm, Homologous functional expression of cryptic phaG from Pseudomonas oleovorans establishes the transacylase-mediated polyhydroxyalkanoate biosynthetic pathway. Appl Microbiol Biotechnol,2000.54(5):p.665-70.
    59. Galaktionov, K., X. Chen, and D. Beach, Cdc25 cell-cycle phosphatase as a target of c-myc. Nature,1996.382(6591):p.511-7.
    60. Kamb, A., Cyclin-dependent kinase inhibitors and human cancer. Curr Top Microbiol Immunol,1998.227:p.139-48.
    61. Kleizen, B. and I. Braakman, Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol,2004.16(4):p.343-9.
    62. Molinari, M., N-glycan structure dictates extension of protein folding or onset of disposal. Nat Chem Biol,2007.3(6):p.313-20.
    63. Ma, Y. and L.M. Hendershot, ER chaperone functions during normal and stress conditions. J Chem Neuroanat,2004.28(1-2):p.51-65.
    64. Kincaid, M.M. and A.A. Cooper, Misfolded proteins traffic from the endoplasmic reticulum (ER) due to ER export signals. Mol Biol Cell,2007. 18(2):p.455-63.
    65. Malhotra, J.D. and R.J. Kaufman, ER stress and its functional link to mitochondria:role in cell survival and death. Cold Spring Harb Perspect Biol, 2011.3(9):p.a004424.
    66. Ron, D. and P. Walter, Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol,2007.8(7):p.519-29.
    67. Kaufman, R.J., Orchestrating the unfolded protein response in health and disease. J Clin Invest,2002.110(10):p.1389-98.
    68. Li, X., K. Zhang, and Z. Li, Unfolded protein response in cancer:the physician's perspective. J Hematol Oncol,2011.4:p.8.
    69. Mori, K., et al., A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell,1993.74(4): p.743-56.
    70. Cox, J.S., C.E. Shamu, and P. Walter, Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell,1993.73(6):p.1197-206.
    71. Shi, Y., et al., Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol,1998.18(12):p.7499-509.
    72. Haze, K., et al., Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell,1999.10(11):p.3787-99.
    73. Szegezdi, E., et al., Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep,2006.7(9):p.880-5.
    74. Wang, G., Z.Q. Yang, and K. Zhang, Endoplasmic reticulum stress response in cancer:molecular mechanism and therapeutic potential. Am J Transl Res, 2010.2(1):p.65-74.
    75. Kaufman, R.J., Regulation of mRNA translation by protein folding in the endoplasmic reticulum. Trends Biochem Sci,2004.29(3):p.152-8.
    76. Okada, T., et al., Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem J,2002.366(Pt 2):p.585-94.
    77. Zhang, K. and R.J. Kaufman, Identification and characterization of endoplasmic reticulum stress-induced apoptosis in vivo. Methods Enzymol, 2008.442:p.395-419.
    78. Hetz, C., et al., Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE 1 alpha. Science,2006.312(5773):p. 572-6.
    79. Kawamori, D., et al., Oxidative stress induces nucleo-cytoplasmic translocation of pancreatic transcription factor PDX-1 through activation of c-Jun NH(2)-terminal kinase. Diabetes,2003.52(12):p.2896-904.
    80. Rutkowski, D.T., et al., Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol, 2006.4(11):p. e374.
    81. Ron, D. and J.F. Habener, CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev,1992.6(3): p.439-53.
    82. Oyadomari, S. and M. Mori, Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ,2004.11(4):p.381-9.
    83. Maytin, E.V., et al., Stress-inducible transcription factor CHOP/gadd153 induces apoptosis in mammalian cells via p38 kinase-dependent and-independent mechanisms. Exp Cell Res,2001.267(2):p.193-204.
    84. Wang, X.Z. and D. Ron, Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science,1996. 272(5266):p.1347-9.
    85. Ubeda, M., et al., Stress-induced binding of the transcriptional factor CHOP to a novel DNA control element. Mol Cell Biol,1996.16(4):p.1479-89.
    86. Ubeda, M., M. Vallejo, and J.F. Habener, CHOP enhancement of gene transcription by interactions with Jun/Fos AP-1 complex proteins. Mol Cell Biol,1999.19(11):p.7589-99.
    87. Marciniak, S.J., et al., CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev,2004.18(24): p.3066-77.
    88. Schoch, S., et al., Modular structure of cAMP response element binding protein 2 (CREB2). Neurochem Int,2001.38(7):p.601-8.
    89. Ameri, K. and A.L. Harris, Activating transcription factor 4. Int J Biochem Cell Biol,2008.40(1):p.14-21.
    90. Luo, J., N.L. Solimini, and S.J. Elledge, Principles of cancer therapy: oncogene and non-oncogene addiction. Cell,2009.136(5):p.823-37.
    91. Lee, A.S. and L.M. Hendershot, ER stress and cancer. Cancer Biol Ther,2006. 5(7):p.721-2.
    92. Quintana, E., et al., Efficient tumour formation by single human melanoma cells. Nature,2008.456(7222):p.593-8.
    93. Gage, F.H., Mammalian neural stem cells. Science,2000.287(5457):p. 1433-8.
    94. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science,1999.284(5411):p.143-7.
    95. Fuchs, E., T. Tumbar, and G. Guasch, Socializing with the neighbors:stem cells and their niche. Cell,2004.116(6):p.769-78.
    96. Soltysova, A., V. Altanerova, and C. Altaner, Cancer stem cells. Neoplasma, 2005.52(6):p.435-40.
    97. Clarke, M.F., et al., Cancer stem cells--perspectives on current status and future directions:AACR Workshop on cancer stem cells. Cancer Res,2006. 66(19):p.9339-44.
    98. Bhardwaj, G., et al., Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol,2001.2(2):p. 172-80.
    99. Spink, K.E., P. Polakis, and W.I. Weis, Structural basis of the Axin-adenomatous polyposis coli interaction. EMBO J,2000.19(10):p. 2270-9.
    100. Lee, C.S., L. Buttitta, and C.M. Fan, Evidence that the WNT-inducible growth arrest-specific gene 1 encodes an antagonist of sonic hedgehog signaling in the somite. Proc Natl Acad Sci U S A,2001.98(20):p.11347-52.
    101. Willert, K., et al., Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature,2003.423(6938):p.448-52.
    102. Bonnet, D. and J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med,1997. 3(7):p.730-7.
    103. Dalerba, P. and M.F. Clarke, Cancer stem cells and tumor metastasis:first steps into uncharted territory. Cell Stem Cell,2007.1(3):p.241-2.
    104. Dalerba, P., et al., Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A,2007.104(24):p.10158-63.
    105. Li, L., et al., Expression of seven stem-cell-associated markers in human airway biopsy specimens obtained via fiberoptic bronchoscopy. J Exp Clin Cancer Res,2013.32:p.28.
    106. Miura, N., et al., Clinicopathological significance of Sip1-associated epithelial mesenchymal transition in non-small cell lung cancer progression. Anticancer Res,2009.29(10):p.4099-106.
    107. Reya, T., et al., Stem cells, cancer, and cancer stem cells. Nature,2001. 414(6859):p.105-11.
    108. Gimenez-Bonafe, P., A. Tortosa, and R. Perez-Tomas, Overcoming drug resistance by enhancing apoptosis of tumor cells. Curr Cancer Drug Targets, 2009.9(3):p.320-40.
    109. Dean, M., ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia,2009.14(1):p.3-9.
    110. Donnenberg, V.S., E.M. Meyer, and A.D. Donnenberg, Measurement of multiple drug resistance transporter activity in putative cancer stem/progenitor cells. Methods Mol Biol,2009.568:p.261-79.
    111. Martin, V., et al., Tie2-mediated multidrug resistance in malignant gliomas is associated with upregulation of ABC transporters. Oncogene,2009.28(24):p. 2358-63.
    112. Hosonuma, S., et al., Clinical significance of side population in ovarian cancer cells. Hum Cell,2011.24(1):p.9-12.
    113. Backos, D.S., C.C. Franklin, and P. Reigan, The role of glutathione in brain tumor drug resistance. Biochem Pharmacol,2012.83(8):p.1005-12.
    114. Wu, W.J., et al., beta-phenylethyl isothiocyanate reverses platinum resistance by a GSH-dependent mechanism in cancer cells with epithelial-mesenchymal transition phenotype. Biochem Pharmacol,2013.85(4):p.486-96.
    115. Kamazawa, S., et al., Multidrug resistance gene-1 is a useful predictor of Paclitaxel-based chemotherapy for patients with ovarian cancer. Gynecol Oncol,2002.86(2):p.171-6.
    116. Jedlitschky, G., et al., ATP-dependent transport of glutathione S-conjugates by the multidrug resistance-associated protein. Cancer Res,1994.54(18):p. 4833-6.
    117. Lessard, J. and G. Sauvageau, Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature,2003.423(6937):p.255-60.
    118. Liu, J., et al., Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature,2009.459(7245):p.387-92.
    119. Wicha, M.S., S. Liu, and G. Dontu, Cancer stem cells:an old idea--a paradigm shift. Cancer Res,2006.66(4):p.1883-90; discussion 1895-6.
    120. Sell, S. and G.B. Pierce, Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest,1994.70(1):p.6-22.
    121. Mani, S.A., et al., The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell,2008.133(4):p.704-15.
    122. Gupta, P.B., et al., Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell,2009.138(4):p.645-59.
    123. Liu, X. and L. Su, Loss of CDH1 up-regulates epidermal growth factor receptor via phosphorylation of YBX1 in non-small cell lung cancer cells. FEBS Lett,2013.587(24):p.3995-4000.
    124. Kwok, B.H., et al., The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IkappaB kinase. Chem Biol,2001.8(8):p.759-66.
    125. Ghosh, S., M.J. May, and E.B. Kopp, NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol, 1998.16:p.225-60.
    126. Mercurio, F., et al., IKK-1 and IKK-2:cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science,1997.278(5339):p.860-6.
    127. Karin, M. and M. Delhase, The I kappa B kinase (IKK) and NF-kappa B:key elements of proinflammatory signalling. Semin Immunol,2000.12(1):p. 85-98.
    128. Maniatis, T., Catalysis by a multiprotein IkappaB kinase complex. Science, 1997.278(5339):p.818-9.
    129. Rothwarf, D.M., et al., IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature,1998.395(6699):p.297-300.
    130. Yamaoka, S., et al., Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell,1998.93(7): p.1231-40.
    131. Liu, J.W., et al., Parthenolide induces proliferation inhibition and apoptosis of pancreatic cancer cells in vitro. J Exp Clin Cancer Res,2010.29:p.108.
    132. Kurland, J.F., et al., NF-kappaB1 (p50) homodimers contribute to transcription of the bcl-2 oncogene. J Biol Chem,2001.276(48):p.45380-6.
    133. Catz, S.D. and J.L. Johnson, Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene,2001.20(50): p.7342-51.
    134. Fahy, B.N., et al., Targeting BCL-2 overexpression in various human malignancies through NF-kappaB inhibition by the proteasome inhibitor bortezomib. Cancer Chemother Pharmacol,2005.56(1):p.46-54.
    135. Kim, I.H., et al., Parthenolide-induced apoptosis of hepatic stellate cells and anti-fibrotic effects in an in vivo rat model. Exp Mol Med,2012.44(7):p. 448-56.
    136. Zhang, S., et al., Suppressed NF-kappaB and sustained JNK activation contribute to the sensitization effect of parthenolide to TNF-alpha-induced apoptosis in human cancer cells. Carcinogenesis,2004.25(11):p.2191-9.
    137. Karin, M. and A. Lin, NF-kappaB at the crossroads of life and death. Nat Immunol,2002.3(3):p.221-7.
    138. Cheng, G. and L. Xie, Parthenolide induces apoptosis and cell cycle arrest of human 5637 bladder cancer cells in vitro. Molecules,2011.16(8):p.6758-68.
    139. Carlisi, D., et al., Parthenolide sensitizes hepatocellular carcinoma cells to TRAIL by inducing the expression of death receptors through inhibition of STAT3 activation. J Cell Physiol,2011.226(6):p.1632-41.
    140. Blair, A., et al., Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood, 1997.89(9):p.3104-12.
    141. Blair, A. and H.J. Sutherland, Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). Exp Hematol,2000.28(6):p.660-71.
    142. Jordan, C.T., et al., The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia,2000.14(10):p. 1777-84.
    143. Guzman, M.L., et al., Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood,2001.98(8):p. 2301-7.
    144. Guzman, M.L., et al., The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood,2005.105(11):p.4163-9.
    145. Howe, H.L., et al., Annual report to the nation on the status of cancer (1973 through 1998), featuring cancers with recent increasing trends. J Natl Cancer Inst,2001.93(11):p.824-42.
    146. Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A,2003.100(7):p.3983-8.
    147. Ponti, D., et al., Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res,2005.65(13):p. 5506-11.
    148. Jonker, J.W., et al., Contribution of the ABC transporters Bcrpl and Mdrla/lb to the side population phenotype in mammary gland and bone marrow of mice. Stem Cells,2005.23(8):p.1059-65.
    149. Patrawala, L., et al., Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2-cancer cells are similarly tumorigenic. Cancer Res,2005.65(14):p.6207-19.
    150. Zhou, J., et al., NF-kappaB pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res Treat,2008.111(3):p.419-27.
    151. Bonifacino, J.S. and J. Lippincott-Schwartz, Coat proteins:shaping membrane transport. Nat Rev Mol Cell Biol,2003.4(5):p.409-14.
    152. Cai, H., K. Reinisch, and S. Ferro-Novick, Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell,2007.12(5):p.671-82.
    153. Springer, S., A. Spang, and R. Schekman, A primer on vesicle budding. Cell, 1999.97(2):p.145-8.
    154. Pearse, B.M., Coated vesicles from pig brain:purification and biochemical characterization. J Mol Biol,1975.97(1):p.93-8.
    155. Owen, D.J., B.M. Collins, and P.R. Evans, Adaptors for clathrin coats: structure and function. Annu Rev Cell Dev Biol,2004.20:p.153-91.
    156. Rothman, J.E., Mechanisms of intracellular protein transport. Nature,1994. 372(6501):p.55-63.
    157. Hanson, P.I., et al., Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell,1997.90(3):p.523-35.
    158. Muller,O., et al., The Vtc proteins in vacuole fusion:coupling NSF activity to V(0) trans-complex formation. EMBO J,2002.21(3):p.259-69.
    159. Sollner, T., et al., SNAP receptors implicated in vesicle targeting and fusion. Nature,1993.362(6418):p.318-24.
    160. Broadie, K., et al., Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Neuron,1995.15(3):p.663-73.
    161. Lamaze, C., et al., Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol Cell,2001. 7(3):p.661-71.
    162. Motley, A., et al., Clathrin-mediated endocytosis in AP-2-depleted cells. J Cell Biol,2003.162(5):p.909-18.
    163. Conner, S.D. and S.L. Schmid, Differential requirements for AP-2 in clathrin-mediated endocytosis. J Cell Biol,2003.162(5):p.773-9.
    164. Pelkmans, L., J. Kartenbeck, and A. Helenius, Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol,2001.3(5):p.473-83.
    165. Conner, S.D. and S.L. Schmid, Regulated portals of entry into the cell. Nature, 2003.422(6927):p.37-44.
    166. Gonzalez-Gaitan, M. and H. Stenmark, Endocytosis and signaling:a relationship under development. Cell,2003.115(5):p.513-21.
    167. Bonifacino, J.S. and L.M. Traub, Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem,2003.72:p. 395-447.
    168. Sorkin, A. and M. von Zastrow, Endocytosis and signalling:intertwining molecular networks. Nat Rev Mol Cell Biol,2009.10(9):p.609-22.
    169. Salcini, A.E., et al., Binding specificity and in vivo targets of the EH domain, a novel protein-protein interaction module. Genes Dev,1997.11(17):p. 2239-49.
    170. Berdnik, D., et al., The endocytic protein alpha-Adaptin is required for numb-mediated asymmetric cell division in Drosophila. Dev Cell,2002.3(2): p.221-31.
    171. Austin, C.D., et al., Death-receptor activation halts clathrin-dependent endocytosis. Proc Natl Acad Sci U S A,2006.103(27):p.10283-8.
    172. Kerr, M.C. and R.D. Teasdale, Defining macropinocytosis. Traffic,2009. 10(4):p.364-71.
    173. Haga, Y., et al., CtBP1/BARS is an activator of phospholipase D1 necessary for agonist-induced macropinocytosis. EMBO J,2009.28(9):p.1197-207.
    174. Howes, M.T., S. Mayor, and R.G. Parton, Molecules, mechanisms, and cellular roles of clathrin-independent endocytosis. Curr Opin Cell Biol,2010. 22(4):p.519-27.
    175. Furthauer, M. and M. Gonzalez-Gaitan, Endocytosis, asymmetric cell division, stem cells and cancer:unus pro omnibus, omnes pro uno. Mol Oncol,2009. 3(4):p.339-53.
    176. Tam, C., et al., Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair. J Cell Biol,2010.189(6): p.1027-38.
    177. Gonzalez-Gaitan, M., Signal dispersal and transduction through the endocytic pathway. Nat Rev Mol Cell Biol,2003.4(3):p.213-24.
    178. Polo, S., S. Pece, and P.P. Di Fiore, Endocytosis and cancer. Curr Opin Cell Biol,2004.16(2):p.156-61.
    179. Dikic, I., I. Szymkiewicz, and P. Soubeyran, Cbl signaling networks in the regulation of cell function. Cell Mol Life Sci,2003.60(9):p.1805-27.
    180. Tice, D.A., et al., Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc Natl Acad Sci U S A,1999.96(4):p. 1415-20.
    181. Lozano, E., M. Betson, and V.M. Braga, Tumor progression:Small GTPases and loss of cell-cell adhesion. Bioessays,2003.25(5):p.452-63.
    182. Lipkowitz, S., The role of the ubiquitination-proteasome pathway in breast cancer:ubiquitin mediated degradation of growth factor receptors in the pathogenesis and treatment of cancer. Breast Cancer Res,2003.5(1):p.8-15.
    183. Algeciras-Schimnich, A., et al., Two CD95 tumor classes with different sensitivities to antitumor drugs. Proc Natl Acad Sci U S A,2003.100(20):p. 11445-50.
    184. Barnhart, B.C., E.C. Alappat, and M.E. Peter, The CD95 type I/type II model. Semin Immunol,2003.15(3):p.185-93.
    185. Lee, K.H., et al., The role of receptor internalization in CD95 signaling. EMBO J,2006.25(5):p.1009-23.
    186. Watanabe, N., et al., Continuous internalization of tumor necrosis factor receptors in a human myosarcoma cell line. J Biol Chem,1988.263(21):p. 10262-6.
    187. Mosselmans, R., et al., Endocytic pathway of recombinant murine tumor necrosis factor in L-929 cells. J Immunol,1988.141(9):p.3096-100.
    188. Schneider-Brachert, W., et al., Inhibition of TNF receptor 1 internalization by adenovirus 14.7K as a novel immune escape mechanism. J Clin Invest,2006. 116(11):p.2901-13.
    189. Micheau, O. and J. Tschopp, Induction of TNF receptor Ⅰ-mediated apoptosis via two sequential signaling complexes. Cell,2003.114(2):p.181-90.
    190. Zhang, Y. and B. Zhang, TRAIL resistance of breast cancer cells is associated with constitutive endocytosis of death receptors 4 and 5. Mol Cancer Res, 2008.6(12):p.1861-71.
    191. Singh, T.R., et al., Synergistic interactions of chemotherapeutic drugs and tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand on apoptosis and on regression of breast carcinoma in vivo. Cancer Res,2003. 63(17):p.5390-400.
    192. Yoshida, T., et al., Glycosylation modulates TRAIL-R1/death receptor 4 protein:different regulations of two pro-apoptotic receptors for TRAIL by tunicamycin. Oncol Rep,2007.18(5):p.1239-42.
    193. Wagner, K.W., et al., Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat Med,2007.13(9):p. 1070-7.
    194. Kulasingam, V. and E.P. Diamandis, Glucocorticoid receptor-mediated expression of kallikrein 10 in human breast cancer cell lines. Biol Chem,2007. 388(10):p.1113-9.
    195. Song, J.H., et al., Lipid rafts and nonrafts mediate tumor necrosis factor related apoptosis-inducing ligand induced apoptotic and nonapoptotic signals in non small cell lung carcinoma cells. Cancer Res,2007.67(14):p.6946-55.
    196. Kelley, R.F., et al., Receptor-selective mutants of apoptosis-inducing ligand 2/tumor necrosis factor-related apoptosis-inducing ligand reveal a greater contribution of death receptor (DR) 5 than DR4 to apoptosis signaling. J Biol Chem,2005.280(3):p.2205-12.
    197. Leverkus, M., et al., TRAIL-induced apoptosis and gene induction in HaCaT keratinocytes:differential contribution of TRAIL receptors 1 and 2. J Invest Dermatol,2003.121(1):p.149-55.
    198. Horak, P., et al., Contribution of epigenetic silencing of tumor necrosis factor-related apoptosis inducing ligand receptor 1 (DR4) to TRAIL resistance and ovarian cancer. Mol Cancer Res,2005.3(6):p.335-43.
    199. Cheng, J., et al., Multiple mechanisms underlie resistance of leukemia cells to Apo2 Ligand/TRAIL. Mol Cancer Ther,2006.5(7):p.1844-53.
    200. Finnberg, N., A.J. Klein-Szanto, and W.S. El-Deiry, TRAIL-R deficiency in mice promotes susceptibility to chronic inflammation and tumorigenesis. J Clin Invest,2008.118(1):p.111-23.
    201. Nicholson, D.W., Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ,1999.6(11):p.1028-42.
    202. Varfolomeev, E., et al., Molecular determinants of kinase pathway activation by Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand. J Biol Chem,2005.280(49):p.40599-608.
    203. Kohlhaas, S.L., et al., Receptor-mediated endocytosis is not required for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. J Biol Chem,2007.282(17):p.12831-41.
    204. Santambrogio, L., et al., Involvement of caspase-cleaved and intact adaptor protein 1 complex in endosomal remodeling in maturing dendritic cells. Nat Immunol,2005.6(10):p.1020-8.
    205. Zhang, X.D., et al., Differential localization and regulation of death and decoy receptors for TNF-related apoptosis-inducing ligand (TRAIL) in human melanoma cells. J Immunol,2000.164(8):p.3961-70.
    206. Rhyu, M.S., L.Y. Jan, and Y.N. Jan, Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell,1994.76(3):p.477-91.
    207. Gulino, A., L. Di Marcotullio, and I. Screpanti, The multiple functions of Numb. Exp Cell Res,2010.316(6):p.900-6.
    208. Verdi, J.M., et al., Distinct human NUMB isoforms regulate differentiation vs. proliferation in the neuronal lineage. Proc Natl Acad Sci U S A,1999.96(18): p.10472-6.
    209. Santolini, E., et al., Numb is an endocytic protein. J Cell Biol,2000.151 (6):p. 1345-52.
    210. Owen, D.J., et al., A structural explanation for the binding of multiple ligands by the alpha-adaptin appendage domain. Cell,1999.97(6):p.805-15.
    211. McGill, M.A., et al., Numb regulates post-endocytic trafficking and degradation of Notch1. J Biol Chem,2009.284(39):p.26427-38.
    212. Dho, S.E., et al., Dynamic regulation of mammalian numb by G protein-coupled receptors and protein kinase C activation:Structural determinants of numb association with the cortical membrane. Mol Biol Cell, 2006.17(9):p.4142-55.
    213. Tokumitsu, H., et al., Phosphorylation of Numb family proteins. Possible involvement of Ca2+/calmodulin-dependent protein kinases. J Biol Chem, 2005.280(42):p.35108-18.
    214. Uemura, T., et al., numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell,1989.58(2):p.349-60.
    215. Cayouette, M. and M. Raff, Asymmetric segregation of Numb:a mechanism for neural specification from Drosophila to mammals. Nat Neurosci,2002. 5(12):p.1265-9.
    216. Wakamatsu, Y., et al., NUMB localizes in the basal cortex of mitotic avian neuroepithelial cells and modulates neuronal differentiation by binding to NOTCH-1. Neuron,1999.23(1):p.71-81.
    217. Shen, Q., et al., Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts. Development, 2002.129(20):p.4843-53.
    218. Zhou, Y., et al., The mammalian Golgi regulates numb signaling in asymmetric cell division by releasing ACBD3 during mitosis. Cell,2007. 129(1):p.163-78.
    219. Santolini, E., et al., The EH network. Exp Cell Res,1999.253(1):p.186-209.
    220. Artavanis-Tsakonas, S., M.D. Rand, and R.J. Lake, Notch signaling:cell fate control and signal integration in development. Science,1999.284(5415):p. 770-6.
    221. Talora, C., et al., Notch signaling and diseases:an evolutionary journey from a simple beginning to complex outcomes. Biochim Biophys Acta,2008.1782(9): p.489-97.
    222. Sestan, N., S. Artavanis-Tsakonas, and P. Rakic, Contact-dependent inhibition of cortical neurite growth mediated by notch signaling. Science,1999. 286(5440):p.741-6.
    223. Lee, C.Y., et al., Drosophila Aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. Genes Dev, 2006.20(24):p.3464-74.
    224. Yan, B., Numb--from flies to humans. Brain Dev,2010.32(4):p.293-8.
    225. Ding, X., et al., Numb protects renal proximal tubular cells from puromycin aminonucleoside-induced apoptosis through inhibiting Notch signaling pathway. Int J Biol Sci,2011.7(3):p.269-78.
    226. Rasin, M.R., et al., Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. Nat Neurosci, 2007.10(7):p.819-27.
    227. Jiang, J. and C.C. Hui, Hedgehog signaling in development and cancer. Dev Cell,2008.15(6):p.801-12.
    228. Di Marcotullio, L., et al., Numb is a suppressor of Hedgehog signalling and targets Glil for Itch-dependent ubiquitination. Nat Cell Biol,2006.8(12):p. 1415-23.
    229. Colaluca, I.N., et al., NUMB controls p53 tumour suppressor activity. Nature, 2008.451(7174):p.76-80.
    230. Petersen, P.H., et al., Continuing role for mouse Numb and Numbl in maintaining progenitor cells during cortical neurogenesis. Nat Neurosci,2004. 7(8):p.803-11.
    231. Purow, B.W., et al., Notch-1 regulates transcription of the epidermal growth factor receptor through p53. Carcinogenesis,2008.29(5):p.918-25.
    232. Tao, T., et al., Numbl inhibits glioma cell migration and invasion by suppressing TRAF5-mediated NF-kappaB activation. Mol Biol Cell,2012. 23(14):p.2635-44.
    233. Su, L., et al., Death receptor 5 and cellular FLICE-inhibitory protein regulate pemetrexed-induced apoptosis in human lung cancer cells. Eur J Cancer,2011. 47(16):p.2471-8.
    234. Nimmanapalli, R., et al., Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Blood,2003. 101(8):p.3236-9.
    235. Xu, L., L. Su, and X. Liu, PKCdelta regulates death receptor 5 expression induced by PS-341 through ATF4-ATF3/CHOP axis in human lung cancer cells. Mol Cancer Ther,2012.11(10):p.2174-82.
    236. Kim, D., S.H. Kim, and G.C. Li, Proteasome inhibitors MG132 and lactacystin hyperphosphorylate HSF1 and induce hsp70 and hsp27 expression. Biochem Biophys Res Commun,1999.254(1):p.264-8.
    237. van Deurs, B., P.K. Holm, and K. Sandvig, Inhibition of the vacuolar H(+)-ATPase with bafilomycin reduces delivery of internalized molecules from mature multivesicular endosomes to lysosomes in HEp-2 cells. Eur J Cell Biol,1996.69(4):p.343-50.
    238. van Weert, A.W., et al., Transport from late endosomes to lysosomes, but not sorting of integral membrane proteins in endosomes, depends on the vacuolar proton pump. J Cell Biol,1995.130(4):p.821-34.
    239. McGowan, E.B., E. Becker, and T.C. Detwiler, Inhibition of calpain in intact platelets by the thiol protease inhibitor E-64d. Biochem Biophys Res Commun, 1989.158(2):p.432-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700