小鼠口腔阴道双部位白念珠菌感染模型的构建及不同部位来源白念珠菌的毒力差异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Establishment of a Mouse Model of Candidiasis with Concurrent Oral and Vaginal Mucosal Infection&Virulence Comparison of Candida Albicans Isolated from Different Human Candidiasis
  • 作者:王乐
  • 论文级别:博士
  • 学科专业名称:皮肤病与性病学
  • 学位年度:2014
  • 导师:刘维达
  • 学科代码:100206
  • 学位授予单位:北京协和医学院
  • 论文提交日期:2014-05-01
摘要
第一章小鼠口腔和阴道双部位念珠菌病模型的构建及其应用
     第一节小鼠口腔和阴道双部位白念珠菌感染模型的构建
     目的探索构建小鼠口腔和阴道双部位白念珠菌感染模型的方法。方法设置单独泼尼松龙处理组、单独雌激素处理组以及联合用药组,通过在接种后4天和7天的临床表现、真菌直接镜检、组织真菌载量测定以及组织病理学检查比较三种不同方法的建模效果,选择其中的最佳方案。结果联合用药组小鼠在接种后第4天舌背粘膜表面出现白斑,阴道口红斑、有白色分泌物,双部位真菌镜检均见大量菌丝,双部位可分离较高的真菌载量,可达105~106cfu/g,组织病理学显示粘膜表面有较多菌丝覆盖,部分侵入上皮引起上皮结构破坏以及炎症细胞浸润。接种后第7天上述表现较接种后第4天有所消退。单独使用雌激素或泼尼松龙组的造模效果不及联合用药组。结论(1)泼尼松龙联合雌激素可成功构建小鼠口腔和阴道双部位念珠菌病感染模型;(2)泼尼松龙和雌激素联合用药的造模效果优于单独使用泼尼松龙或雌激素的方法。
     第二节泼尼松龙联合雌激素构建小鼠口腔和阴道双部位白念珠菌感染模型的动态研究
     目的观察泼尼松龙联合雌激素构建小鼠口腔和阴道双部位白念珠菌感染模型在不同时间的感染变化情况方法采用泼尼松龙联合雌激素的方法,对接种后1、3、5和7天进行连续观察,观察指标选取小鼠体重变化、口腔临床表现、双部位局部真菌载量以及组织病理学。结果接种后第1天开始,小鼠体重即呈现逐渐下降趋势,在第1-3天下降最为明显。舌背粘膜在接种后第2-3天开始出现白斑,第3-5天最为明显,白斑平均面积接近舌背面积的90%。双部位的菌量自接种后第1天开始上升,第3-5天最高(105~106cfu/g),之后下降。病理学检查显示接种后第1天舌背和阴道管腔中有酵母细胞,少见菌丝侵入上皮,第3-5天舌背可见有较厚菌丝团覆盖,菌丝较长并侵入上皮组织,伴随上皮结构对破坏和炎症细胞浸润。第7天时双部位菌丝明显减少,对上皮的破坏减轻,上皮开始恢复正常。结论泼尼松龙联合雌激素构建的小鼠双部位白念珠菌感染模型在接种后第3-5天最为明显,此后则渐恢复正常。
     第三节不同糖皮质激素联合雌激素构建不同品系小鼠的口腔和阴道双部位白念珠菌感染模型
     目的比较不同糖皮质激素联合雌激素构建不同品系小鼠口腔和阴道双部位白念珠菌感染模型的效果差异。方法设置泼尼松龙联合雌激素处理组、可的松联合雌激素处理组以及地塞米松联合雌激素组,通过对两种品系的小鼠接种后不同时间的体重变化以及3天时的组织真菌载量比较三种不同方法的建模效果。结果泼尼松龙联合雌激素组ICR小鼠的体重在接种后1天持续下降至7天,而可的松和地塞米松联合雌激素处理组在第3-5天时体重稳定并有轻度回升。泼尼松龙联合雌激素组真菌载量最高,在此条件下ICR小鼠感染ATCC62342(口腔1.05×106cfu/g,阴道5.50×105cfu/g)后的真菌载量较SC5314高(口腔4.79×10Scfu/g,阴道4.07×105cfu/g), BALB/c小鼠感染ATCC62342(口腔1.92x106cfu/g,阴道1.33×106cfu/g)后的真菌载量亦较SC5314高(口腔7.57×105cfu/g,阴道2.58×105cfu/g)。结论(1)泼尼松龙较可的松和地塞米松造模效果更佳:(2)白念珠菌/TCC62342较SC5314造模效果更好;(3)ICR小鼠和BALB/c小鼠均能成功构建模型,后者真菌载量略高。
     第四节环磷酰胺和糖皮质激素联合雌激素构建小鼠口腔和阴道双部位白念珠菌感染模型
     目的比较环磷酰胺和糖皮质激素联合雌激素构建小鼠口腔和阴道双部位白念珠菌感染模型的效果差异。方法设置泼尼松龙联合雌激素处理组、环磷酰胺联合雌激素处理组以及泼尼松龙和环磷酰胺联合雌激素用药组,通过对两种品系的小鼠接种后3天时的体重变化和组织真菌载量比较三种不同方法的建模效果。结果两种品系的小鼠在接种白念珠菌后第3天,体重均出现明显下降(低于接种当天体重的90%),其中BALB/c小鼠下降更为明显,联合用药组小鼠体重甚至不足接种当天的75%。在不同的处理因素中,联合用药组在不同品系小鼠和不同菌株条件下,体重下降均最明显。真菌载量方面,泼尼松龙联合雌激素组、泼尼松龙联合环磷酰胺以及雌激素组真菌载量最高,但后者在接种3天以后小鼠的死亡率较高。结论(1)泼尼松龙较环磷酰胺造模效果更佳;(2)泼尼松龙联合环磷酰胺以及雌激素造模效果亦较好,但该条件下小鼠死亡率较高。
     第五节小鼠口腔和阴道双部位感染白念珠菌模型的应用初探
     目的评价小鼠口腔和阴道双部位白念珠菌感染模型在药效学以及免疫学研究方面的应用。方法首先选用ICR小鼠通过泼尼松龙联合雌激素构建双部位感染模型。(1)通过在小鼠饮水中添加一定浓度的氟康唑进行治疗,在接种后第3天和第5天测定双部位的真菌载量,评价治疗效果;(2)在接种后不同时间点采集小鼠的口腔和阴道组织,匀浆后使用Elisa方法测定组织中IL-17和IL-23的含量,观察其感染过程中的动态表达水平。结果(1)接种SC5314的ICR小鼠和BALB/c小鼠经氟康唑治疗3天即出现菌量明显下降,至第5天可完全清除真菌;而接种ATCC62342的两个品系小鼠经氟康唑治疗无效,接种后的菌量变化与未治疗组无差异;(2)在感染建立后,口腔组织中IL-17的表达水平开始升高,以第3~-5天达到高峰,而阴道组织中的IL-17仅在接种后1天升高,此后即恢复正常水平;口腔和阴道双部位中的IL-23含量自感染开始即明显升高,且维持较高的表达水平可达接种后2周。结论本实验构建的小鼠口腔和阴道双部位白念珠菌感染模型可用于药效学及宿主-真菌相互作用等免疫学研究。
     第二章不同感染部位来源的白念珠菌毒力相关性状研究
     第一节不同感染部位来源的白念珠菌胞外水解酶毒力研究
     目的探索不同部位来源白念珠菌胞外水解酶的差异。方法收集64株来自于血液、阴道、口腔和支气管肺泡灌洗的白念珠菌菌株。菌株在YEPD培养基中37℃培养48h。制备1×107CFU/mL的白念珠菌菌悬液,分别取51μl点滴于卵黄培养基、胎牛白蛋白培养基、吐温-80培养基、溶血素培养基表面。前三种常态37℃培养,最后一种培养基在5%C02环境下培养。分别于第5天、5天、10天、2天观察酶活力。结果口腔、阴道来源的白念珠菌产生蛋白酶的能力强于血液来源。血液、口腔来源的白念珠菌产生磷脂酶的能力最强,阴道株最弱。白念珠菌血液株分泌酯酶的能力最强,阴道来源分泌最低。口腔、阴道来源的白念珠菌溶血素分泌能力强于血液来源株。结论不同部位来源的白念珠菌在产生毒力因子蛋白酶、磷脂酶、酯酶和溶血素方面存在着一定的差异。
     第二节不同感染部位来源的白念珠菌药物敏感性研究
     目的探索不同部位来源白念珠菌对抗真菌药物敏感性的差异性。方法收集分别来自于血液、阴道、口腔和支气管肺泡灌洗的白念珠菌菌株,参照CLSI M27-A2方案对上述菌株进行药物敏感性实验。实验药物包括两性霉素B、氟康唑、伊曲康唑、伏立康唑、特比萘芬、卡泊芬净和米卡芬净。结果两性霉素B对血液、口腔、阴道、支气管肺泡灌洗液来源的64株白念珠菌的MIC50、MIC90分别为0.25μg/ml、0.5μg/ml,0.5μg/ml、1.0μg/ml,0.25μg/ml、0.5μg/ml,0.25μg/ml、0.5μg/ml。伏立康唑对血液、口腔、阴道、支气管肺泡灌洗液来源的白念珠菌的MIC50、MIC90分别为0.03μg/ml、0.03μg/ml,0.125μg/ml、1μg/ml,0.03μg/ml、0.03μg/ml,0.03μg/ml、0.03μg/ml。伊曲康唑对血液、口腔、阴道、支气管肺泡灌洗液来源的白念珠菌的MIC50、MIC90分别为0.03μg/ml、0.03μg/ml,0.06μg/ml、0.125μg/ml,0.06μg/ml、2μg/ml。氟康唑对血液、口腔、阴道、支气管肺泡灌洗液来源的白念珠菌的MIC50、MIC90分别为0.25μg/ml、0.25μg/ml,0.5μg/ml、32μg/ml,1μg/ml、8μg/ml,0.25μg/ml、0.25μg/ml。特比萘芬对血液、口腔、阴道、支气管肺泡灌洗液来源的白念珠菌的MIC50、MIC90分别为0.125μg/ml、0.5μg/ml,0.03μg/ml、0.125μg/ml,0.125μg/ml、4μg/ml,0.03μg/ml、0.125μg/ml。卡泊芬净对血液、口腔、阴道、支气管肺泡灌洗液等来源的64株白念珠菌的MIC50、MIC90分别为0.03μg/ml、0.125μg/ml,0.03μg/ml、0.03μg/ml,0.03μg/ml、0.06μg/ml,0.03μg/ml、0.125μg/ml。米卡芬净对血液、口腔、阴道、支气管肺泡灌洗液等来源的64株白念珠菌的MIC50、MIC90分别为0.03μg/ml、0.03μg/ml,0.03μg/ml、0.03μg/ml,0.03μg/ml、0.03μg/ml,0.03μg/ml、0.03μg/ml。结论不同抗真菌药物对不同部位来源菌株的药物敏感性存在着一定的差异,口腔、阴道来源的白念珠菌相对血液、肺泡灌洗液来源的白念珠菌出现耐药的频率更高。
Chapter Ⅰ Establishment and application of a mouse model of candidiasis with concurrent oral and vaginal mucosal infection
     Section Ⅰ Establishment of a mouse model of candidiasis with concurrent oral and vaginal mucosal infection
     Objective To establish a mouse model of candidiasis with concurrent oral and vaginal mucosal infection. Methods Three groups were set as prednisolone alone, estrogen alone and combinational scheme. These groups were compared and the best one was selected based on clinical manifestation, fungal direct KOH examination, tissue fungal burden and histopathological analysis. Results Mice from the combination group developed oral thrush and vaginal candidiasis at day4(relative to day of inoculation (Day0)). Direct fungal examination showed plenty of hyphae and fungal burden of oral and vaginal tissue reached a high level of105~106cfu/g. Histopathological examination also revealed mucosal epithelium was covered with thick pseudomembranous substance mainly consisting of hyphae accompanied by deep epithelial penetration by hyphae and PMN infiltration. However, these characterizations had a remission at day7. Outcomes from groups of prednisolone alone and estrogen alone were not as good as the combination group. Conclusion (1) Prednisolone combined with estrogen could successfully establish a mouse model of candidiasis with concurrent oral and vaginal mucosal infection;(2) The combinational scheme was superior than single treatment scheme.
     Section Ⅱ Dynamic investigation of mouse model with concurrent oral and vaginal mucosal candida albicans infection.
     Objective To observe the changes of mouse model with concurrent oral and vaginal mucosal candida albicans infection at different time points. Methods Establishment the mouse model with concurrent oral and vaginal mucosal candida albicans infection using the combinational scheme and observe the changes such as weight, clinical manifestations, tissue fungal burden and histopathological examination at day1,3,5and7. Results The weight of mice gradually descended after inoculation, especially from day1to3. Pseudomembranous lesions appeared on dorsal mucosa of tongue at day2-3and had a more prominent manifestation between day3and day5that covering nearly90%of the whole mucosal surface. Tissue fungal burden had a upward tendency from day1and reached a maximum between day3and5(about105~106cfu/g), while the values descended after day5. Histopathological examination showed yeast cells existing on the mucosal surface of tongue and in the vaginal lumen with rare hyphae invading epithelium. Then thick layer of hyphae had formed on the mucosal surface since day3and hyphae invaded deeply into the local tissue accompanied by destruction of epithelium and inflammatory infiltration. The epithelium of both anatomical tissues began to recover after day5and had a prominent recession at day7. Conclusion The mouse model with concurrent oral and vaginal mucosal candida albicans infection had the most typical manifestation from day3to5after infection using the method of combinational scheme.
     Section Ⅲ Establishment of a mouse model of candidiasis with concurrent oral and vaginal mucosal infection using different glucocorticoids with estrogen.
     Objective To explore the best regimen among different glucocorticoids to establish mouse model with concurrent oral and vaginal mucosal candida albicans infection. Methods Two kinds of mice were used and separately divided into three groups of prednisolone with estrogen, cortisone with estrogen and dexamethasone with estrogen. The best one was chosen mainly based on results of weight loss and fugal burden at day3. Results The weight had a persistent loss from day1to7during group of ICR mice treated with prednisolone and estrogen, while the weight loss of the other two groups stopped and rebounded from day3-5. Both kinds of mice treated with prednisolone and estrogen had the highest fungal burden and the results of ICR mice were ATCC62342(oral,1.05×106cfu/g; vagina,5.50×105cfu/g) Vs SC5314(oral,4.79×105cfu/g; vagina 4.07×105cfu/g). As to BALB/c mice, the outcomes were ATCC62342(oral,1.92×106cfu/g; vagina,1.33×106cfu/g) Vs SC5314(oral,7.57×105cfu/g; vagina,2.58x105cfu/g). Conclusion (1) Prednisolone was most suitable for model establishment;(2) ATCC62342had a more favorable result than SC5314;(3) Both ICR mice and BALB/c mice were suitable for model establishment.
     Section IV Establishment of a mouse model of candidiasis with concurrent oral and vaginal mucosal infection using cyclophosphamide and (or) prednisolone combined with estrogen.
     Objective To explore the best regimen using cyclophosphamide (CTX) and (or) prednisolone combined with estrogen to establish mouse model with concurrent oral and vaginal mucosal candida albicans infection. Methods Two kinds of mice were used and separately divided into three groups of prednisolone with estrogen, CTX with estrogen and CTX combined with prednisolone and estrogen. The best one was chosen mainly based on results of weight loss and fugal burden at day3. Results The weight had a prominent loss at day3among all groups of mice, especially during BALB/c mice. All mice had a weight loss than10%refer to the weight before infection and BALB/c mice treated with the combinational scheme were75percent of initial weight. The effects of combinational scheme were the most striking in two strains of mice and candida albicans. As to fungal burden, prednisolone combined with estrogen and the combinational scheme had the most values, while the latter also had a high mortality of mice. Conclusion (1) Prednisolone was more suitable for model establishment than CTX;(2) The scheme of prednisolone combined with CTX and estrogen had a prominent fatal effect on mice though the fungal burden was synchronously favorable.
     Section V Application of the mouse model of candidiasis with concurrent oral and vaginal mucosal infection using prednisolone with estrogen.
     Objective To explore the probable applications of mouse model with concurrent oral and vaginal mucosal candida albicans infection. Methods ICR mice were first used to establish the model under the treatment of prednisolone with estrogen. Then (1) Fluconazole was used for the therapeutic assessment to candida albicans infection;(2) Oral and vaginal tissue were resected and the following homogenates were examined for the dynamic changes of IL-17and IL-23using the method of Elisa. Results (1) Both strains of mice infected by SC5314had a prominently declined fungal burden at day3through fluconazole therapy and candida albicans could be totally cleared out at day5. On the contrary, mice infected by ATCC62342failed to reduce the fungal burden throughout one week;(2) IL-17in oral tissue began to rise after infection and reached maximum between day3and5, while IL-17in vaginal tissue have a elevated value only at day1and then descend to normal level. IL-23from both sites had a prominent elevation throughout the total observation time. Conclusion The mouse model with concurrent oral and vaginal mucosal infection was suitable for research of in vivo pharmacodynamics and mucosal immunology.
     Chapter II Virulence comparison of candida albicans isolated from different human candidiasis Section I Evaluation of extracellular enzymatic activities of candida albicans isolated from different human candidiasis
     Objective To investigate the enzymatic activities of64candida albicans isolated from different human candidiasis. Methods The egg yolk agar, bovine serum albumin agar, tween-80agar and blood agar were used to detect phopholipase, proteinase, esterase and haemolytic activities, respectively. Results (1) Phospholipase activities:strains from blood and oral mucosa showed most powerful, while vaginal mucosa the weakest;(2) Proteinase activities:strains from oral and vaginal mucosa revealed stronger proteinase activities than blood strains;(3) Esterase activities:strains isolated blood showed strongest activity than strains from other sources;(4) Haemolytic activities:isolations from oral and vaginal mucosa revealed stronger proteinase activities than blood isolations Conclusion Candida albicans from different origins had great variations in the activities of extracellular enzymes.
     Section II Antifungal susceptibility profiling of candida albicans isolated from different human candidiasis
     Objective To profile the susceptibility of candida albicans isolated from different human candidiasis to seven commonly used antifungal agents. Methods The antifungal susceptibility tests were performed according to the CLSI-A2protocol. The tested antifungal agents included amphotericin B, fluconazole, itraconazole, voriconazole, terbinafine, caspofungin and micafungin. Results All isolates of candida albicans were susceptible to amphotericin B, caspofungin and micafungin. Five strains resisted to fluconazole (1isolated from blood,1isolated from oral and3isolated from vagina); Six strains resisted to itraconazole (2isolated from blood,2isolated from oral and2isolated from vagina); Two strains resisted to voriconazole (1isolated from blood and1isolated from oral); Nine strains resisted to terbinafine (2isolated from blood,5isolated from oral and2isolated from vagina). Conclusion Candida albicans had variable susceptibility to different antifungal agents. There are also differences of in vitro antifungal susceptibility among candida albicans isolated from different origin to fluconazole, itraconazole, voriconazole and terbinafine. Strains of candida albicans from superficial candidiasis seemed more likely resisting to antifungal agents than strains from invasive candidiasis.
引文
[1]Ashman RB. Protective and pathologic immune responses against Candida albicans infection. Front Biosci.2008.13:3334-3351.
    [2]Sobel JD. Vulvovaginal candidosis. Lancet.2007.369(9577):1961-1971.
    [3]Fidel PL Jr. Host defense against oropharyngeal and vaginal candidiasis:Site-specific differences. Rev Iberoam Micol.1999.16(1):8-15.
    [4]Coronado-Castellote L, Jimenez-Soriano Y. Clinical and microbiological diagnosis of oral candidiasis. J Clin Exp Dent. 2013.5(5):e279-e286.
    [5]Thanyasrisung P, Kesakomol P, Pipattanagovit P, Youngnak-Piboonratanakit P, Pitiphat W, Matangkasombut O. Oral Candida carriage and immune status in Thai HIV-infected individuals.LID-10.1099/jmm.0.069773-0 [doi]. J Med Microbiol. 2014.
    [6]Mardh PA, Rodrigues AG, Genc M, Novikova N, Martinez-de-Oliveira J, Guaschino S. Facts and myths on recurrent vulvovaginal candidosis-a review on epidemiology, clinical manifestations, diagnosis, pathogenesis and therapy. Int J STD AIDS.2002. 13(8):522-539.
    [7]Ilkit M, Guzel AB. The epidemiology, pathogenesis, and diagnosis of vulvovaginal candidosis:a mycological perspective. Crit Rev Microbiol.2011.37(3):250-261.
    [8]Schaller M, Zakikhany K, Naglik JR, Weindl G, Hube B. Models of oral and vaginal candidiasis based on in vitro reconstituted human epithelia. Nat Protoc.2006.1(6): 2767-2773.
    [9]Junqueira JC. Models hosts for the study of oral candidiasis. Adv Exp Med Biol. 2012.710:95-105.
    [10]de Repentigny L. Animal models in the analysis of Candida host-pathogen interactions. Curr Opin Microbiol.2004.7(4):324-329.
    [11]Samaranayake YH, Samaranayake LP. Experimental oral candidiasis in animal models. Clin Microbiol Rev.2001.14(2):398-429.
    [12]Costa AC, Pereira CA, Junqueira JC, Jorge AO. Recent mouse and rat methods for the study of experimental oral candidiasis. Virulence.2013.4(5):391-399.
    [13]Conti HR, Gaffen SL. Host responses to Candida albicans:Th17 cells and mucosal candidiasis. Microbes Infect.2010.12(7):518-27.
    [14]Khader SA, Gaffen SL, Kolls JK. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol.2009.2(5): 403-411.
    [15]Hernandez-Santos N, Gaffen SL. Th17 cells in immunity to Candida albicans. Cell Host Microbe.2012.11(5):425-435.
    [16]Rahman D, Mistry M, Thavaraj S, Challacombe SJ, Naglik JR. Murine model of concurrent oral and vaginal Candida albicans colonization to study epithelial host-pathogen interactions. Microbes Infect.2007.9(5):615-622.
    [17]Brown AJ, Odds FC, Gow NA. Infection-related gene expression in Candida albicans. Curr Opin Microbiol.2007.10(4):307-313.
    [18]Naglik JR, Fidel PL Jr, Odds FC. Animal models of mucosal Candida infection. FEMS Microbiol Lett.2008.283(2):129-139.
    [19]Williams LC, Nesbitt LT Jr. Update on systemic glucocorticosteroids in dermatology. Dermatol Clin.2001.19(1):63-77.
    [20]Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids-new mechanisms for old drugs. N Engl J Med.2005.353(16):1711-1723.
    [1]Ashman RB. Protective and pathologic immune responses against Candida albicans infection. Front Biosci.2008.13:3334-3351.
    [2]Fidel PL Jr. Host defense against oropharyngeal and vaginal candidiasis:Site-specific differences. Rev Iberoam Micol.1999.16(1):8-15.
    [3]Naglik JR, Fidel PL Jr, Odds FC. Animal models of mucosal Candida infection. FEMS Microbiol Lett.2008.283(2):129-139.
    [4]de Repentigny L. Animal models in the analysis of Candida host-pathogen interactions. Curr Opin Microbiol.2004.7(4):324-329.
    [5]Fidel PL Jr, Cutright J, Steele C. Effects of reproductive hormones on experimental vaginal candidiasis. Infect Immun.2000.68(2):651-657.
    [6]Hamad M. Estrogen treatment predisposes to severe and persistent vaginal candidiasis in diabetic mice. J Diabetes Metab Disord.2014.13(1):15.
    [7]Kamai Y, Kubota M, Kamai Y, Hosokawa T, Fukuoka T, Filler SG. New model of oropharyngeal candidiasis in mice. Antimicrob Agents Chemother.2001.45(11): 3195-3197.
    [8]Solis NV, Filler SG. Mouse model of oropharyngeal candidiasis. Nat Protoc.2012. 7(4):637-642.
    [9]Takakura N, Sato Y, Ishibashi H, et al. A novel murine model of oral candidiasis with local symptoms characteristic of oral thrush. Microbiol Immunol.2003.47(5): 321-326.
    [10]Okada M, Hisajima T, Ishibashi H, Miyasaka T, Abe S, Satoh T. Pathological analysis of the Candida albicans-infected tongue tissues of a murine oral candidiasis model in the early infection stage. Arch Oral Biol.2013.58(4):444-450.
    [11]Rahman D, Mistry M, Thavaraj S, Challacombe SJ, Naglik JR. Murine model of concurrent oral and vaginal Candida albicans colonization to study epithelial host-pathogen interactions. Microbes Infect.2007.9(5):615-622.
    [12]Edmond MB, Wallace SE, McClish DK, Pfaller MA, Jones RN, Wenzel RP. Nosocomial bloodstream infections in United States hospitals:a three-year analysis. Clin Infect Dis. 1999.29(2): 239-244.
    [13]赵敬军,沈永年,陈伟,刘维达.白念珠菌性阴道炎动物模型的构建.中华皮 肤科杂志.2002.35(5):346-348.
    [14]Styrt B, Sugarman B. Estrogens and infection. Rev Infect Dis. 1991. 13(6): 1139-1150.
    [15]Zhang X, Essmann M, Burt ET, Larsen B. Estrogen effects on Candida albicans: a potential virulence-regulating mechanism. J Infect Dis. 2000.181(4): 1441-1446.
    [16]Werth VP. Management and treatment with systemic glucocorticoids. Adv Dermatol. 1993. 8: 81-101; discussion 102-103.
    [17]Taylor BN, Staib P, Binder A, et al. Profile of Candida albicans-secreted aspartic proteinase elicited during vaginal infection. Infect Immun. 2005. 73(3): 1828-1835.
    [18]Samonis G, Anaissie EJ, Rosenbaum B, Bodey GP. A model of sustained gastrointestinal colonization by Candida albicans in healthy adult mice. Infect Immun. 1990. 58(6): 1514-1517.
    [19]Ishibashi H, Hisajima T, Hu W, Yamaguchi H, Nishiyama Y, Abe S. Amurine model of esophageal candidiasis with local characteristic symptoms. Microbiol Immunol. 2007. 51(5): 501-506.
    [20]Takakura N, Sato Y, Ishibashi H, et al. A novel murine model of oral candidiasis with local symptoms characteristic of oral thrush. Microbiol Immunol. 2003. 47(5): 321-326.
    [21]Taylor BN, Fichtenbaum C, Saavedra M, et al. In vivo virulence of Candida albicans isolates causing mucosal infections in people infected with the human immunodeficiency virus. J Infect Dis. 2000. 182(3): 955-959.
    [1]Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis:a persistent public health problem. Clin Microbiol Rev.2007.20(1):133-163.
    [2]Edmond MB, Wallace SE, McClish DK, Pfaller MA, Jones RN, Wenzel RP. Nosocomial bloodstream infections in United States hospitals:a three-year analysis. Clin Infect Dis.1999.29(2):239-244.
    [3]Sobel JD. Vulvovaginal candidosis. Lancet.2007.369(9577):1961-1971.
    [4]Mardh PA, Rodrigues AG, Genc M, Novikova N, Martinez-de-Oliveira J, Guaschino S. Facts and myths on recurrent vulvovaginal candidosis--a review on epidemiology, clinical manifestations, diagnosis, pathogenesis and therapy. Int J STD AIDS.2002. 13(8):522-539.
    [5]Ilkit M, Guzel AB. The epidemiology, pathogenesis, and diagnosis of vulvovaginal candidosis:a mycological perspective. Crit Rev Microbiol.2011.37(3):250-261.
    [6]Naglik JR, Fidel PL Jr, Odds FC. Animal models of mucosal Candida infection. FEMS Microbiol Lett.2008.283(2):129-139.
    [7]Kamai Y, Kubota M, Kamai Y, Hosokawa T, Fukuoka T, Filler SG. New model of oropharyngeal candidiasis in mice. Antimicrob Agents Chemother.2001.45(11): 3195-3197.
    [8]Rahman D, Mistry M, Thavaraj S, Challacombe SJ, Naglik JR. Murine model of concurrent oral and vaginal Candida albicans colonization to study epithelial host-pathogen interactions. Microbes Infect.2007.9(5):615-622.
    [9]Hisajima T, Ishibashi H, Yamada T, et al. Invasion process of Candida albicans to tongue surface in early stages of experimental murine oral candidiasis. Med Mycol. 2008.46(7):697-704.
    [10]Takakura N, Sato Y, Ishibashi H, et al. A novel murine model of oral candidiasis with local symptoms characteristic of oral thrush. Microbiol Immunol.2003.47(5): 321-326.
    [11]Okada M, Hisajima T, Ishibashi H, Miyasaka T, Abe S, Satoh T. Pathological analysis of the Candida albicans-infected tongue tissues of a murine oral candidiasis model in the early infection stage. Arch Oral Biol.2013.58(4):444-450.
    [1]Williams LC, Nesbitt LT Jr. Update on systemic glucocorticosteroids in dermatology. Dermatol Clin.2001.19(1):63-77.
    [2]Rugstad HE. Antiinflammatory and immunoregulatory effects of glucocorticoids: mode of action. Scand J Rheumatol Suppl.1988.76:257-264.
    [3]Rosen T, Krikun G, Ma Y, Wang EY, Lockwood CJ, Guller S. Chronic antagonism of nuclear factor-kappaB activity in cytotrophoblasts by dexamethasone:a potential mechanism for antiinflammatory action of glucocorticoids in human placenta. J Clin Endocrinol Metab.1998.83(10):3647-3652.
    [4]Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids-new mechanisms for old drugs. N Engl J Med.2005.353(16):1711-1723.
    [5]Kamai Y, Kubota M, Kamai Y, Hosokawa T, Fukuoka T, Filler SG. New model of oropharyngeal candidiasis in mice. Antimicrob Agents Chemother.2001.45(11): 3195-3197.
    [6]Okada M, Hisajima T, Ishibashi H, Miyasaka T, Abe S, Satoh T. Pathological analysis of the Candida albicans-infected tongue tissues of a murine oral candidiasis model in the early infection stage. Arch Oral Biol.2013.58(4):444-450.
    [7]Takakura N, Sato Y, Ishibashi H, et al. A novel murine model of oral candidiasis with local symptoms characteristic of oral thrush. Microbiol Immunol.2003.47(5): 321-326.
    [8]Tan J, Li J, Chen S, et al. Susceptibility to vaginal candidiasis under different conditions in mice. J Huazhong Univ Sci Technolog Med Sci.2005.25(6):744-746.
    [9]Yano J, Fidel PL Jr. Protocols for vaginal inoculation and sample collection in the experimental mouse model of Candida vaginitis.LID-10.3791/3382 [doi]LID-3382 [pii].J Vis Exp.2011.(58).
    [10]Mosci P, Pietrella D, Ricci G, et al. Mouse strain-dependent differences in estrogen sensitivity during vaginal candidiasis. Mycopathologia.2013.175(1-2):1-11.
    [11]Calderon L, Williams R, Martinez M, Clemons KV, Stevens DA. Genetic susceptibility to vaginal candidiasis. Med Mycol.2003.41(2):143-147.
    [12]Clemons KV, Spearow JL, Parmar R, Espiritu M, Stevens DA. Genetic susceptibility of mice to Candida albicans vaginitis correlates with host estrogen sensitivity. Infect Immun.2004.72(8):4878-4880.
    [1]Ahmed AR, Hombal SM. Cyclophosphamide (Cytoxan). A review on relevant pharmacology and clinical uses. J Am Acad Dermatol.1984.11(6):1115-1126.
    [2]McDonald CJ. Cytotoxic agents for use in dermatology. I. J Am Acad Dermatol.1985. 12(5 Pt 1):753-775.
    [3]Martinez M, Chen V, Tong AJ, Hamilton K, Clemons KV, Stevens DA. Experimental evidence that granulocyte transfusions are efficacious in treatment of neutropenic hosts with pulmonary aspergillosis. Antimicrob Agents Chemother.2013.57(4): 1882-1887.
    [4]Lewis RE, Albert NP, Liao G, Wang W, Prince RA, Kontoyiannis DP. High-dose induction liposomal amphotericin B followed by de-escalation is effective in experimental Aspergillus terreus pneumonia. J Antimicrob Chemother.2013.68(5): 1148-1151.
    [5]Shin SH, Lee YS, Shin YP, et al. Therapeutic efficacy of halocidin-derived peptide HG1 in a mouse model of Candida albicans oral infection. J Antimicrob Chemother. 2013.68(5):1152-1160.
    [6]Tevyashova AN, Olsufyeva EN, Solovieva SE, et al. Structure-antifungal activity relationships of polyene antibiotics of the amphotericin B group. Antimicrob Agents Chemother.2013.57(8):3815-3822.
    [7]Koh AY, Kohler JR., Coggshall KT, Van Rooijen N, Pier GB. Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog.2008. 4(2):e35.
    [8]Matsubara VH, Silva EG, Paula CR, Ishikawa KH, Nakamae AE. Treatment with probiotics in experimental oral colonization by Candida albicans in murine model (DBA/2). Oral Dis.2012.18(3):260-264.
    [9]Mellado E, Cuenca-Estrella M, Regadera J, Gonzalez M, Diaz-Guerra TM, Rodriguez-Tudela JL. Sustained gastrointestinal colonization and systemic dissemination by Candida albicans, Candida tropicalis and Candida parapsilosis in adult mice. Diagn Microbiol Infect Dis.2000.38(1):21-28.
    [10]Luo G, Gebremariam T, Lee H, et al. Efficacy of liposomal amphotericin B and posaconazole in intratracheal models of murine mucormycosis. Antimicrob Agents Chemother.2013.57(7):3340-3347.
    [11]Lewis RE, Liao G, Hou J, Chamilos G, Prince RA, Kontoyiannis DP. Comparative analysis of amphotericin B lipid complex and liposomal amphotericin B kinetics of lung accumulation and fungal clearance in a murine model of acute invasive pulmonary aspergillosis. Antimicrob Agents Chemother.2007.51(4):1253-1258.
    [12]Zhang CR, Lin JC, Xu WM, et al. Interleukin-12 and interleukin-2 alone or in combination against the infection in invasive pulmonary aspergillosis mouse model. Mycoses.2013.56(2):117-122.
    [1]de Repentigny L. Animal models in the analysis of Candida host-pathogen interactions. Curr Opin Microbiol.2004.7(4):324-329.
    [2]Naglik JR, Fidel PL Jr, Odds FC. Animal models of mucosal Candida infection. FEMS Microbiol Lett.2008.283(2):129-139.
    [3]Ninomiya K, Maruyama N, Inoue S, et al. The essential oil of Melaleuca alternifolia (tea tree oil) and its main component, terpinen-4-ol protect mice from experimental oral candidiasis. Biol Pharm Bull.2012.35(6):861-865.
    [4]Hayama K, Ishibashi H, Ishijima SA, et al. A D-octapeptide drug efflux pump inhibitor acts synergistically with azoles in a murine oral candidiasis infection model. FEMS Microbiol Lett.2012.328(2):130-137.
    [5]Hisajima T, Maruyama N, Tanabe Y, et al. Protective effects of farnesol against oral candidiasis in mice. Microbiol Immunol.2008.52(7):327-333.
    [6]Robledo-Avila F, Perez-Tapia M, Limon-Flores A, et al. Low-dose amphotericin B and murine dialyzable spleen extracts protect against systemic candida infection in mice. Clin Dev Immunol.2013.2013:194064.
    [7]Flattery AM, Hickey E, Gill CJ, et al. Efficacy of caspofungin in a juvenile mouse model of central nervous system candidiasis. Antimicrob Agents Chemother.2011. 55(7):3491-3497.
    [8]Gonzalez GM, Robledo E, Saldivar D, Gonzalez G, Bosques F, Garza E. Therapeutic efficacy of posaconazole against isolates of Candida albicans with different susceptibilities to fluconazole in a vaginal model. Med Mycol.2007.45(3):221-224.
    [9]Gonzalez GM, Portillo OJ, Uscanga GI, et al. Therapeutic efficacy of voriconazole against a fluconazole-resistant Candida albicans isolate in a vaginal model. J Antimicrob Chemother.2009.64(3):571-573.
    [10]Kamai Y, Kubota M, Kamai Y, Hosokawa T, Fukuoka T, Filler SG. New model of oropharyngeal candidiasis in mice. Antimicrob Agents Chemother.2001.45(11): 3195-3197.
    [11]Takakura N, Sato Y, Ishibashi H, et al. A novel murine model of oral candidiasis with local symptoms characteristic of oral thrush. Microbiol Immunol.2003.47(5): 321-326.
    [12]Gonzalez GM, Robledo E, Garza-Gonzalez E, Elizondo M, Gonzalez JG. Efficacy of albaconazole against Candida albicans in a vaginitis model. Antimicrob Agents Chemother.2009.53(10):4540-4541.
    [13]Uchida K, Shimogawara K, Yamaguchi H. Correlation of in vitro activity and in vivo efficacy of itraconazole intravenous and oral solubilized formulations by testing Candida strains with various itraconazole susceptibilities in a murine invasive infection. J Antimicrob Chemother.2011.66(3):626-634.
    [14]Conti HR, Gaffen SL. Host responses to Candida albicans:Th17 cells and mucosal candidiasis. Microbes Infect.2010.12(7):518-527.
    [15]Khader SA, Gaffen SL, Kolls JK. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol.2009.2(5): 403-411.
    [16]Hernandez-Santos N, Gaffen SL. Th17 cells in immunity to Candida albicans. Cell Host Microbe.2012.11(5):425-435.
    [17]Ho AW, Shen F, Conti HR, et al. IL-17RC is required for immune signaling via an extended SEF/IL-17R signaling domain in the cytoplasmic tail. J Immunol.2010. 185(2):1063-1070.
    [18]Hernandez-Santos N, Huppler AR, Peterson AC, Khader SA, McKenna KC, Gaffen SL. Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections. Mucosal Immunol.2013.6(5):900-910.
    [19]Conti HR, Shen F, Nayyar N, et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med.2009.206(2): 299-311.
    [20]Pietrella D, Rachini A, Pines M, et al. Th17 cells and IL-17 in protective immunity to vaginal candidiasis. PLOS ONE.2011.6(7):e22770.
    [21]Yano J, Kolls JK, Happel KI, Wormley F, Wozniak KL, Fidel PL Jr. The acute neutrophil response mediated by S100 alarmins during vaginal Candida infections is independent of the Th17-pathway. PLOS ONE.2012.7(9):e46311.
    [22]Yano J, Noverr MC, Fidel PL Jr. Cytokines in the host response to Candida vaginitis: Identifying a role for non-classical immune mediators, S100 alarmins. Cytokine. 2012.58(1):118-128.
    [1]Edmond MB, Wallace SE, McClish DK, Pfaller MA, Jones RN, Wenzel RP. Nosocomial bloodstream infections in United States hospitals:a three-year analysis. Clin Infect Dis.1999.29(2):239-244.
    [2]Pfaller MA, Jones RN, Messer SA, Edmond MB, Wenzel RP. National surveillance of nosocomial blood stream infection due to Candida albicans:frequency of occurrence and antifungal susceptibility in the SCOPE Program. Diagn Microbiol Infect Dis.1998.31(1):327-332.
    [3]Cutler JE. Putative virulence factors of Candida albicans. Annu Rev Microbiol.1991. 45:187-218.
    [4]Gropp K, Schild L, Schindler S, Hube B, Zipfel PF, Skerka C. The yeast Candida albicans evades human complement attack by secretion of aspartic proteases. Mol Immunol.2009.47(2-3):465-475.
    [5]Hube B, Monod M, Schofield DA, Brown AJ, Gow NA. Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol.1994.14(1):87-99.
    [6]De Bernardis F, Chiani P, Ciccozzi M, et al. Elevated aspartic proteinase secretion and experimental pathogenicity of Candida albicans isolates from oral cavities of subjects infected with human immunodeficiency virus. Infect Immun.1996.64(2): 466-471.
    [7]de Bernardis F, Mondello F, Scaravelli G, et al. High aspartyl proteinase production and vaginitis in human immunodeficiency virus-infected women. J Clin Microbiol. 1999.37(5):1376-1380.
    [8]De Bernardis F, Boccanera M, Rainaldi L, Guerra CE, Quinti I, Cassone A. The secretion of aspartyl proteinase, a virulence enzyme, by isolates of Candida albicans from the oral cavity of HIV-infected subjects. Eur J Epidemiol.1992.8(3):362-367.
    [9]Wu T, Samaranayake LP, Cao BY, Wang J. In-vitro proteinase production by oral Candida albicans isolates from individuals with and without HIV infection and its attenuation by antimycotic agents. J Med Microbiol.1996.44(4):311-316.
    [10]Agatensi L, Franchi F, Mondello F, et al. Vaginopathic and proteolytic Candida species in outpatients attending a gynaecology clinic. J Clin Pathol.1991.44(10): 826-830.
    [11]De Bernardis F, Agatensi L, Ross IK, et al. Evidence for a role for secreted aspartate proteinase of Candida albicans in vulvovaginal candidiasis. J Infect Dis.1990. 161(6):1276-1283.
    [12]Hanel H, Menzel I, Holzmann H. [High phospholipase A-activity of Candida albicans isolated from the intestines of psoriatic patients]. Mycoses.1988.31(9): 451-453.
    [13]Lane T, Garcia JR. Phospholipase production in morphological variants of Candida albicans. Mycoses.1991.34(5-6):217-220.
    [14]Samaranayake LP, Raeside JM, MacFarlane TW. Factors affecting the phospholipase activity of Candida species in vitro. Sabouraudia.1984.22(3): 201-207.
    [15]Williamson MI, Samaranayake LP, MacFarlane TW. Phospholipase activity as a criterion for biotyping Candida albicans. Journal of medical and veterinary mycology:bi-monthly publication of the International Society for Human and Animal Mycology.1986.24(5):415-417.
    [16]Djordjevic JT. Role of phospholipases in fungal fitness, pathogenicity, and drug development-lessons from cryptococcus neoformans. Front Microbiol.2010.1: 125.
    [17]Morrow B, Ramsey H, Soll DR. Regulation of phase-specific genes in the more general switching system of Candida albicans strain 3153 A. Journal of medical and veterinary mycology:bi-monthly publication of the International Society for Human and Animal Mycology.1994.32(4):287-94.
    [18]Berman J, Sudbery PE. Candida albicans:a molecular revolution built on lessons from budding yeast. Nat Rev Genet.2002.3(12):918-930.
    [19]Price MF, Wilkinson ID, Gentry LO. Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia.1982.20(1):7-14.
    [20]Ghannoum MA. Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev.2000.13(1):122-143, table of contents.
    [21]Rudek W. Esterase activity in Candida species. J Clin Microbiol.1978.8(6): 756-759.
    [22]Slifkin M. Tween 80 opacity test responses of various Candida species. J Clin Microbiol.2000.38(12):4626-4628.
    [23]Tsuboi R, Komatsuzaki H, Ogawa H. Induction of an extracellular esterase from Candida albicans and some of its properties. Infect Immun.1996.64(8): 2936-2940.
    [24]Schaller M, Borelli C, Korting HC, Hube B. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses.2005.48(6):365-377.
    [25]Watanabe T, Takano M, Murakami M, et al. Characterization of a haemolytic factor from Candida albicans. Microbiology (Reading, England).1999.145 (Pt 3): 689-694.
    [26]Manns JM, Mosser DM, Buckley HR. Production of a hemolytic factor by Candida albicans. Infect Immun.1994.62(11):5154-5156.
    [27]Tanaka WT, Nakao N, Mikami T, Matsumoto T. Hemoglobin is utilized by Candida albicans in the hyphal form but not yeast form. Biochem Biophys Res Commun. 1997.232(2):350-353.
    [28]Pendrak ML, Yan SS, Roberts DD. Sensing the host environment:recognition of hemoglobin by the pathogenic yeast Candida albicans. Arch Biochem Biophys. 2004.426(2):148-156.
    [29]Luo G, Samaranayake LP, Yau JY. Candida species exhibit differential in vitro hemolytic activities. J Clin Microbiol.2001.39(8):2971-2974.
    [30]Chin VK, Foong KJ, Maha A, et al. Candida albicans isolates from a Malaysian hospital exhibit more potent phospholipase and haemolysin activities than non-albicans Candida isolates. Trop Biomed.2013.30(4):654-662.
    [31]Mane A, Gaikwad S, Bembalkar S, Risbud A. Increased expression of virulence attributes in oral Candida albicans isolates from human immunodeficiency virus-positive individuals. J Med Microbiol.2012.61 (Pt 2):285-290.
    [1]Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis:a persistent public health problem. Clin Microbiol Rev.2007.20(1):133-163.
    [2]Kibbler CC, Seaton S, Barnes RA, et al. Management and outcome of bloodstream infections due to Candida species in England and Wales. J Hosp Infect.2003.54(1): 18-24.
    [3]Wenzel RP. Nosocomial candidemia:risk factors and attributable mortality. Clin Infect Dis.1995.20(6):1531-1534.
    [4]Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals:analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis.2004.39(3):309-317.
    [5]Pfaller MA. Antifungal drug resistance:mechanisms, epidemiology, and consequences for treatment. Am J Med.2012.125(1 Suppl):S3-13.
    [6]Schaude M, Mlineritsch W, Mandak B. In vitro effect of terbinafine on human leukocyte chemotaxis and chemiluminescence. Mycoses.1988.31(5):259-267.
    [7]Richardson K, Brammer KW, Marriott MS, Troke PF. Activity of UK-49,858, a bis-triazole derivative, against experimental infections with Candida albicans and Trichophyton mentagrophytes. Antimicrob Agents Chemother.1985.27(5):832-825.
    [8]Odds FC, Webster CE, Abbott AB. Antifungal relative inhibition factors:BAY 1-9139, bifonazole, butoconazole, isoconazole, itraconazole (R 51211), oxiconazole, Ro 14-4767/002, sulconazole, terconazole and vibunazole (BAY n-7133) compared in vitro with nine established antifungal agents. J Antimicrob Chemother.1984.14(2): 105-114.
    [9]Sanati H, Belanger P, Fratti R, Ghannoum M. A new triazole, voriconazole (UK-109,496), blocks sterol biosynthesis in Candida albicans and Candida krusei. Antimicrob Agents Chemother.1997.41(11):2492-2496.
    [10]Regli P, Ferrari H. [In vitro action spectrum of a new antifungal agent derived from morpholine:amorolfin]. Pathologie-biologie.1989.37(5 Pt 2):617-620.
    [11]Blum G, Hortnagl C, Jukic E, et al. New insight into amphotericin B resistance in Aspergillus terreus. Antimicrob Agents Chemother.2013.57(4):1583-1588.
    [12]Stone EA, Fung HB, Kirschenbaum HL. Caspofungin:an echinocandin antifungal agent. Clin Ther.2002.24(3):351-377; discussion 329.
    [13]Fromtling RA. Micafungin sodium (FK-463). Drugs of today (Barcelona, Spain: 1998).2002.38(4):245-257.
    [14]Denning DW. Echinocandins:a new class of antifungal. J Antimicrob Chemother. 2002.49(6):889-891.
    [15]Gupta AK, Williams JV, Zaman M, Singh J. In vitro pharmacodynamic characteristics of griseofulvin against dermatophyte isolates of Trichophyton tonsurans from tinea capitis patients. Medical mycology.2009.47(8):796-801.
    [16]Leem SH, Park JE, Kim IS, Chae JY, Sugino A, Sunwoo Y. The possible mechanism of action of ciclopirox olamine in the yeast Saccharomyces cerevisiae. Mol Cells. 2003.15(1):55-61.
    [17]Maiti P, Das S, Ghosh T, Dey R. Effects of potassium iodide on low avid immunological reactions:probable mechanism of action on selective fungal infections. Ann Med Health Sci Res.2013.3(3):397-401.
    [18]Espinel-Ingroff A, Barchiesi F, Cuenca-Estrella M, et al. International and multicenter comparison of EUCAST and CLSI M27-A2 broth microdilution methods for testing susceptibilities of Candida spp. to fluconazole, itraconazole, posaconazole, and voriconazole. J Clin Microbiol.2005.43(8):3884-3889.
    [19]Horn DL, Neofytos D, Anaissie EJ, et al. Epidemiology and outcomes of candidemia in 2019 patients:data from the prospective antifungal therapy alliance registry. Clin Infect Dis.2009.48(12):1695-1703.
    [20]Kett DH, Azoulay E, Echeverria PM, Vincent JL. Candida bloodstream infections in intensive care units:analysis of the extended prevalence of infection in intensive care unit study. Crit Care Med.2011.39(4):665-670.
    [21]Diekema DJ, Messer SA, Brueggemann AB, et al. Epidemiology of candidemia: 3-year results from the emerging infections and the epidemiology of Iowa organisms study. J Clin Microbiol.2002.40(4):1298-1302.
    [22]Holley A, Dulhunty J, Blot S, et al. Temporal trends, risk factors and outcomes in albicans and non-albicans candidaemia:an international epidemiological study in four multidisciplinary intensive care units. Int J Antimicrob Agents.2009.33(6): 554.e1-7.
    [23]Yap HY, Kwok KM, Gomersall CD, et al. Epidemiology and outcome of Candida bloodstream infection in an intensive care unit in Hong Kong. Hong Kong medical journal= Xianggang yi xue za zhi/Hong Kong Academy of Medicine.2009.15(4): 255-261.
    [24]Li S, An YZ. [Retrospective analysis of invasive fungal infection in surgical intensive care unit]. Zhonghua yi xue za zhi.2010.90(6):382-385.
    [25]Chervenak FA, Isaacson G, Mahoney MJ. Advances in the diagnosis of fetal defects. N Engl J Med Overseas Ed.1986.315(5):305-307.
    [26]Liu W, Tan J, Sun J, et al. Invasive candidiasis in intensive care units in China:in vitro antifungal susceptibility in the China-SCAN study. J Antimicrob Chemother. 2014.69(1):162-167.
    [27]Nweze EI, Ogbonnaya UL. Oral Candida isolates among HIV-infected subjects in Nigeria. J Microbiol Immunol Infect.2011.44(3):172-177.
    [28]Muthig M, Hebestreit A, Ziegler U, Seidler M, Muller FM. Persistence of Candida species in the respiratory tract of cystic fibrosis patients. Medical mycology.2010. 48(1):56-63.
    [29]Gonzalez GM, Elizondo M, Ayala J. Trends in species distribution and susceptibility of bloodstream isolates of Candida collected in Monterrey, Mexico, to seven antifungal agents:results of a 3-year (2004 to 2007) surveillance study. J Clin Microbiol.2008.46(9):2902-2905.
    [30]Sojakova M, Liptajova D, Borovsky M, Subik J. Fluconazole and itraconazole susceptibility of vaginal yeast isolates from Slovakia. Mycopathologia.2004.157(2): 163-169.
    [31]Sobel JD, Zervos M, Reed BD, et al. Fluconazole susceptibility of vaginal isolates obtained from women with complicated Candida vaginitis:clinical implications. Antimicrob Agents Chemother.2003.47(1):34-38.
    [32]Richter SS, Galask RP, Messer SA, Hollis RJ, Diekema DJ, Pfaller MA. Antifungal susceptibilities of Candida species causing vulvovaginitis and epidemiology of recurrent cases. J Clin Microbiol.2005.43(5):2155-2162.
    [33]Mondello F, De Bernardis F, Girolamo A, Cassone A, Salvatore G. In vivo activity of terpinen-4-ol, the main bioactive component of Melaleuca alternifolia Cheel (tea tree) oil against azole-susceptible and-resistant human pathogenic Candida species. BMC Infect Dis.2006.6:158.
    [34]Cernicka J, Subik J. Resistance mechanisms in fluconazole-resistant Candida albicans isolates from vaginal candidiasis. Int J Antimicrob Agents.2006.27(5): 403-408.
    [35]Ozhak-Baysan B, Ogunc D, Colak D, et al. Distribution and antifungal susceptibility of Candida species causing nosocomial candiduria. Medical mycology.2012.50(5): 529-532.
    [36]Muthig M, Hebestreit A, Ziegler U, Seidler M, Muller FM. Persistence of Candida species in the respiratory tract of cystic fibrosis patients. Medical mycology.2010. 48(1):56-63.
    [1]Edmond MB, Wallace SE, McClish DK, Pfaller MA, Jones RN, Wenzel RP. Nosocomial bloodstream infections in United States hospitals:a three-year analysis. Clin Infect Dis.1999.29(2):239-244.
    [2]Deslauriers N, Coulombe C, Carre B, Goulet JP. Topical application of a corticosteroid destabilizes the host-parasite relationship in an experimental model of the oral carrier state of Candida albicans. FEMS Immunol Med Microbiol.1995. 11(1):45-55.
    [3]Kamai Y, Kubota M, Kamai Y, Hosokawa T, Fukuoka T, Filler SG. New model of oropharyngeal candidiasis in mice. Antimicrob Agents Chemother.2001.45(11): 3195-3197.
    [4]Solis NV, Filler SG. Mouse model of oropharyngeal candidiasis. Nat Protoc.2012. 7(4):637-642.
    [5]Takakura N, Sato Y, Ishibashi H, et al. A novel murine model of oral candidiasis with local symptoms characteristic of oral thrush. Microbiol Immunol.2003.47(5): 321-326.
    [6]Hu W, Ninomiya K, Ishibashi H, et al. A novel murine model of pharyngeal candidiasis with local symptoms characteristic of pharyngeal thrush produced by using an inhaled corticosteroid. Med Mycol.2007.45(2):143-148.
    [7]Yanagi M, Hisajima T, Ishibashi H, Amemiya A, Abe S, Watanabe M. Oral candidiasis deteriorated by local application of a glucocorticoid-containing film in a mouse model. Biol Pharm Bull.2008.31(2):278-283.
    [8]Farah CS, Hong S, Wanasaengsakul S, et al. Irradiation-induced oral candidiasis in an experimental murine model. Oral Microbiol Immunol.2001.16(6):358-363.
    [9]Deslauriers N, Cote L, Montplaisir S, de Repentigny L. Oral carriage of Candida albicans in murine AIDS. Infect Immun.1997.65(2):661-667.
    [10]de Repentigny L, Aumont F, Ripeau JS, et al. Mucosal candidiasis in transgenic mice expressing human immunodeficiency virus type 1. J Infect Dis.2002.185(8): 1103-1114.
    [11]Costa AC, Pereira CA, Junqueira JC, Jorge AO. Recent mouse and rat methods for the study of experimental oral candidiasis. Virulence.2013.4(5):391-399.
    [12]Rahman D, Mistry M, Thavaraj S, Challacombe SJ, Naglik JR. Murine model of concurrent oral and vaginal Candida albicans colonization to study epithelial host-pathogen interactions. Microbes Infect.2007.9(5):615-622.
    [13]Mosci P, Pericolini E, Gabrielli E, et al. A novel bioluminescence mouse model for monitoring oropharyngeal candidiasis in mice. Virulence.2013.4(3):250-254.
    [14]Ninomiya K, Maruyama N, Inoue S, et al. The essential oil of Melaleuca alternifolia (tea tree oil) and its main component, terpinen-4-ol protect mice from experimental oral candidiasis. Biol Pharm Bull.2012.35(6):861-865.
    [15]Hayama K, Ishibashi H, Ishijima SA, et al. A D-octapeptide drug efflux pump inhibitor acts synergistically with azoles in a murine oral candidiasis infection model. FEMS Microbiol Lett.2012.328(2):130-137.
    [16]Hisajima T, Maruyama N, Tanabe Y, et al. Protective effects of farnesol against oral candidiasis in mice. Microbiol Immunol.2008.52(7):327-333.
    [17]Shin SH, Lee YS, Shin YP, et al. Therapeutic efficacy of halocidin-derived peptide HG1 in a mouse model of Candida albicans oral infection. J Antimicrob Chemother. 2013.68(5):1152-1160.
    [18]Mima EG, Pavarina AC, Dovigo LN, et al. Susceptibility of Candida albicans to photodynamic therapy in a murine model of oral candidosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod.2010.109(3):392-401.
    [19]Dovigo LN, Carmello JC, de Souza Costa CA, et al. Curcumin-mediated photodynamic inactivation of Candida albicans in a murine model of oral candidiasis. Med Mycol.2013.51(3):243-251.
    [20]A IS, Hayama K, Ninomiya K, Iwasa M, Yamazaki M, Abe S. Protection of Mice from Oral Candidiasis by Heat-killed Enterococcus faecalis, possibly through its Direct Binding to Candida albicans. Med Mycol J.2014.55(1):E9-E19.
    [21]Wong SS, Kao RY, Yuen KY, et al. In Vitro and In Vivo Activity of a Novel Antifungal Small Molecule against Candida Infections. PLOS ONE.2014.9(1): e85836.
    [22]Nobile CJ, Solis N, Myers CL, et al. Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cell Microbiol.2008. 10(11):2180-2196.
    [23]Staab JF, Datta K, Rhee P. Niche-specific requirement for hyphal wall protein 1 in virulence of Candida albicans. PLOS ONE.2013.8(11):e80842.
    [24]Xu H, Sobue T, Thompson A, et al. Streptococcal co-infection augments Candida pathogenicity by amplifying the mucosal inflammatory response.LID 10.1111/cmi.12216 [doi]. Cell Microbiol.2013.
    [25]Hernandez-Santos N, Huppler AR, Peterson AC, Khader SA, McKenna KC, Gaffen SL. Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections. Mucosal Immunol.2013.6(5):900-910.
    [26]Bishu S, Hernandez-Santos N, Simpson-Abelson MR, et al. The Adaptor CARD9 Is Required for Adaptive but Not Innate Immunity to Oral Mucosal Candida albicans Infections. Infect Immun.2014.82(3):1173-1180.
    [27]Naglik JR, Fidel PL Jr, Odds FC. Animal models of mucosal Candida infection. FEMS Microbiol Lett.2008.283(2):129-139.
    [28]Styrt B, Sugarman B. Estrogens and infection. Rev Infect Dis.1991.13(6): 1139-1150.
    [29]Zhang X, Essmann M, Burt ET, Larsen B. Estrogen effects on Candida albicans:a potential virulence-regulating mechanism. J Infect Dis.2000.181(4):1441-1446.
    [30]Calderon L, Williams R, Martinez M, Clemons KV, Stevens DA. Genetic susceptibility to vaginal candidiasis. Med Mycol.2003.41(2):143-7.
    [31]Mosci P, Pietrella D, Ricci G, et al. Mouse strain-dependent differences in estrogen sensitivity during vaginal candidiasis. Mycopathologia.2013.175(1-2):1-11.
    [32]Fidel PL Jr, Cutright JL, Tait L, Sobel JD. A murine model of Candida glabrata vaginitis. J Infect Dis.1996.173(2):425-431.
    [33]佘晓东,沈永年,吕桂霞,符美华,陈伟,刘维达.光滑念珠菌性阴道炎小鼠模型的构建.中国麻风皮肤病杂志.2011.27(2):80-82.
    [34]Tan J, Li J, Chen S, et al. Susceptibility to vaginal candidiasis under different conditions in mice. J Huazhong Univ Sci Technolog Med Sci.2005.25(6):744-746.
    [35]Gonzalez GM, Robledo E, Garza-Gonzalez E, Elizondo M, Gonzalez JG. Efficacy of albaconazole against Candida albicans in a vaginitis model. Antimicrob Agents Chemother.2009.53(10):4540-4541.
    [36]Gonzalez GM, Portillo OJ, Uscanga GI, et al. Therapeutic efficacy of voriconazole against a fluconazole-resistant Candida albicans isolate in a vaginal model. J Antimicrob Chemother.2009.64(3):571-573.
    [37]Gonzalez GM, Robledo E, Saldivar D, Gonzalez G, Bosques F, Garza E. Therapeutic efficacy of posaconazole against isolates of Candida albicans with different susceptibilities to fluconazole in a vaginal model. Med Mycol.2007.45(3):221-224.
    [38]Ouyang W, Chen S, Li S. The effect of itraconazole on the vaginal candidiasis under different immunity conditions in mice. J Huazhong Univ Sci Technolog Med Sci. 2007.27(6):736-738.
    [39]Chen Z, Kong X. Study of Candida albicans vaginitis model in Kunming mice. J Huazhong Univ Sci Technolog Med Sci.2007.27(3):307-310.
    [40]Hamad M, Muta'eb E, Abu-Shaqra Q, Fraij A, Abu-Elteen K, Yasin SR. Utility of the oestrogen-dependent vaginal candidosis murine model in evaluating the efficacy of various therapies against vaginal Candida albicans infection. Mycoses.2006.49(2): 104-108.
    [41]Ibrahim AS, Luo G, Gebremariam T, et al. NDV-3 protects mice from vulvovaginal candidiasis through T-and B-cell immune response. Vaccine.2013.31(47): 5549-5556.
    [42]Taylor BN, Fichtenbaum C, Saavedra M, et al. In vivo virulence of Candida albicans isolates causing mucosal infections in people infected with the human immunodeficiency virus. J Infect Dis.2000.182(3):955-959.
    [43]Bader T, Schroppel K, Bentink S, Agabian N, Kohler G, Morschhauser J. Role of calcineurin in stress resistance, morphogenesis, and virulence of a Candida albicans wild-type strain. Infect Immun.2006.74(7):4366-4369.
    [44]Fu Y, Luo G, Spellberg BJ, Edwards JE Jr, Ibrahim AS. Gene overexpression/suppression analysis of candidate virulence factors of Candida albicans. Eukaryot Cell.2008.7(3):483-492.
    [45]Taylor BN, Staib P, Binder A, et al. Profile of Candidaalbicans-secreted aspartic proteinase elicited during vaginal infection. Infect Immun.2005.73(3):1828-1835.
    [46]Cheng G, Wozniak K, Wallig MA, Fidel PL Jr, Trupin SR, Hoyer LL. Comparison between Candida albicans agglutinin-like sequence gene expression patterns in human clinical specimens and models of vaginal candidiasis. Infect Immun.2005. 73(3):1656-1663.
    [47]Pietrella D, Rachini A, Pines M, et al. Thl7 cells and IL-17 in protective immunity to vaginal candidiasis. PLOS ONE.2011.6(7):e22770.
    [48]Yano J, Kolls JK, Happel KI, Wormley F, Wozniak KL, Fidel PL Jr. The acute neutrophil response mediated by S100 alarmins during vaginal Candida infections is independent of the Thl7-pathway. PLOS ONE.2012.7(9):e46311.
    [49]Yano J, Noverr MC, Fidel PL Jr. Cytokines in the host response to Candida vaginitis: Identifying a role for non-classical immune mediators, S100 alarmins. Cytokine. 2012.58(1):118-128.
    [50]Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis:a persistent public health problem. Clin Microbiol Rev.2007.20(1):133-163.
    [51]Papadimitriou JM, Ashman RB. The pathogenesis of acute systemic candidiasis in a susceptible inbred mouse strain. J Pathol.1986.150(4):257-265.
    [52]MacCallum DM, Odds FC. Temporal events in the intravenous challenge model for experimental Candida albicans infections in female mice. Mycoses.2005.48(3): 151-161.
    [53]Spellberg B, Ibrahim AS, Edwards JE Jr, Filler SG. Mice with disseminated candidiasis die of progressive sepsis. J Infect Dis.2005.192(2):336-343.
    [54]Field LH, Pope LM, Cole GT, Guentzel MN, Berry LJ. Persistence and spread of Candida albicans after intragastric inoculation of infant mice. Infect Immun.1981. 31(2):783-791.
    [55]Koh AY, Kohler JR, Coggshall KT, Van Rooijen N, Pier GB. Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog.2008. 4(2):e35.
    [56]Clemons KV, Gonzalez GM, Singh G, et al. Development of an orogastrointestinal mucosal model of candidiasis with dissemination to visceral organs. Antimicrob Agents Chemother.2006.50(8):2650-2657.
    [57]Sandovsky-Losica H, Barr-Nea L, Segal E. Fatal systemic candidiasis of gastrointestinal origin:an experimental model in mice compromised by anti-cancer treatment. J Med Vet Mycol.1992.30(3):219-231.
    [58]Uno K, Sugiura S, Konishi M, Yasuda Y, Mikasa K, Kita E. Evaluation of diagnostic methods for Candida albicans translocation in a mouse model:seminested polymerase chain reaction, blood culture, and serological assays. J Infect Chemother. 2007.13(4):196-203.
    [59]Robledo-Avila F, Perez-Tapia M, Limon-Flores A, et al. Low-dose amphotericin B and murine dialyzable spleen extracts protect against systemic candida infection in mice. Clin Dev Immunol.2013.2013:194064.
    [60]Flattery AM, Hickey E, Gill CJ, et al. Efficacy of caspofungin in a juvenile mouse model of central nervous system candidiasis. Antimicrob Agents Chemother.2011. 55(7):3491-3497.
    [61]MacCallum DM, Castillo L, Nather K, et al. Property differences among the four major Candida albicans strain clades. Eukaryot Cell.2009.8(3):373-387.
    [62]Asmundsdottir LR, Erlendsdottir H, Agnarsson BA, Gottfredsson M. The importance of strain variation in virulence of Candida dubliniensis and Candida albicans:results of a blinded histopathological study of invasive candidiasis. Clin Microbiol Infect. 2009.15(6):576-585.
    [63]Arendrup M, Horn T, Frimodt-Moller N. In vivo pathogenicity of eight medically relevant Candida species in an animal model. Infection.2002.30(5):286-291.
    [64]Brieland J, Essig D, Jackson C, et al. Comparison of pathogenesis and host immune responses to Candida glabrata and Candida albicans in systemically infected immunocompetent mice. Infect Immun.2001.69(8):5046-5055.
    [65]Skrzypek MS, Arnaud MB, Costanzo MC, et al. New tools at the Candida Genome Database:biochemical pathways and full-text literature search. Nucleic Acids Res. 2010.38(Database issue):D428-432.
    [66]Andes D, Lepak A, Pitula A, Marchillo K, Clark J. A simple approach for estimating gene expression in Candida albicans directly from a systemic infection site. J Infect Dis.2005.192(5):893-900.
    [67]Fradin C, Kretschmar M, Nichterlein T, Gaillardin C, d'Enfert C, Hube B. Stage-specific gene expression of Candida albicans in human blood. Mol Microbiol. 2003.47(6):1523-1543.
    [68]MacCallum DM, Castillo L, Brown AJ, Gow NA, Odds FC. Early-expressed chemokines predict kidney immunopathology in experimental disseminated Candida albicans infections. PLOS ONE.2009.4(7):e6420.
    [69]Castillo L, MacCallum DM, Brown AJ, Gow NA, Odds FC. Differential regulation of kidney and spleen cytokine responses in mice challenged with pathology-standardized doses of Candida albicans mannosylation mutants. Infect Immun.2011.79(1):146-152.
    [70]Lionakis MS, Lim JK, Lee CC, Murphy PM. Organ-specific innate immune responses in a mouse model of invasive candidiasis. J Innate Immun.2011.3(2): 180-199.
    [71]Netea MG, Marodi L. Innate immune mechanisms for recognition and uptake of Candida species. Trends Immunol.2010.31(9):346-353.
    [72]Tsoni SV, Kerrigan AM, Marakalala MJ, et al. Complement C3 plays an essential role in the control of opportunistic fungal infections. Infect Immun.2009.77(9): 3679-185.
    [1]Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins.1986. J Immunol.2005.175(1):5-14.
    [2]Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol.2005.6(11):1133-1141.
    [3]Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol.2005.6(11):1123-1132.
    [4]Dong C. Diversification of T-helper-cell lineages:finding the family root of IL-17-producing cells. Nat Rev Immunol.2006.6(4):329-333.
    [5]Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Thl7 Cells. Annu Rev Immunol.2009.27:485-517.
    [6]Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol.2007.25: 821-852.
    [7]Khader SA, Gaffen SL, Kolls JK. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol.2009.2(5): 403-411.
    [8]Gaffen SL, Hernandez-Santos N, Peterson AC. IL-17 signaling in host defense against Candida albicans. Immunol Res.2011.50(2-3):181-187.
    [9]Hernandez-Santos N, Gaffen SL. Th17 cells in immunity to Candida albicans. Cell Host Microbe.2012.11(5):425-435.
    [10]Huang W, Na L, Fidel PL, Schwarzenberger P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis.2004.190(3): 624-631.
    [11]Zelante T, De Luca A, Bonifazi P, et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol.2007.37(10): 2695-2706.
    [12]Conti HR, Shen F, Nayyar N, et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med.2009.206(2): 299-311.
    [13]Kagami S, Rizzo HL, Kurtz SE, Miller LS, Blauvelt A. IL-23 and IL-17A, but not IL-12 and IL-22, are required for optimal skin host defense against Candida albicans. J Immunol.2010.185(9):5453-5462.
    [14]Igyarto BZ, Haley K, Ortner D, et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity. 2011.35(2):260-272.
    [15]Pietrella D, Rachini A, Pines M, et al. Th17 cells and IL-17 in protective immunity to vaginal candidiasis. PLOS ONE.2011.6(7):e22770.
    [16]De Luca A, Zelante T, D'Angelo C, et al. IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol.2010.3(4):361-373.
    [17]Zelante T, Iannitti R, De Luca A, Romani L. IL-22 in antifungal immunity. Eur J Immunol.2011.41(2):270-275.
    [18]Witte E, Witte K, Warszawska K, Sabat R, Wolk K. Interleukin-22:a cytokine produced by T, NK and NKT cell subsets, with importance in the innate immune defense and tissue protection. Cytokine Growth Factor Rev.2010.21(5):365-379.
    [19]Eyerich K, Foerster S, Rombold S, et al. Patients with chronic mucocutaneous candidiasis exhibit reduced production of Th17-associated cytokines IL-17 and IL-22. J Invest Dermatol.2008.128(11):2640-2645.
    [20]Pandiyan P, Conti HR, Zheng L, et al. CD4(+)CD25(+)Foxp3(+) regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Thl7 cell infection model. Immunity.2011.34(3):422-434.
    [21]Woellner C, Schaffer AA, Puck JM, et al. The hyper IgE syndrome and mutations in TYK2. Immunity.2007.26(5):535; author reply 536.
    [22]Ma CS, Chew GY, Simpson N, et al. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J Exp Med.2008.205(7):1551-1557.
    [23]Milner JD, Brenchley JM, Laurence A, et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature.2008.452(7188): 773-776.
    [24]Minegishi Y, Saito M, Morio T, et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity.2006.25(5):745-755.
    [25]Puel A, Doffinger R, Natividad A, et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med.2010.207(2):291-297.
    [26]Puel A, Cypowyj S, Bustamante J, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science (80-).2011. 332(6025):65-68.
    [27]Liu L, Okada S, Kong XF, et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med.2011. 208(8):1635-1648.
    [28]Glocker EO, Hennigs A, Nabavi M, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med.2009.361(18): 1727-1735.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700