永磁同步电动机数字化驱动系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电机制造技术、电力电子技术、微处理器技术和现代控制理论的发展,永磁交流伺服系统的技术已经达到了一定的水平,在现代工业生产中获得了广泛的应用。我国目前使用的高性能永磁同步电动机驱动系统绝大多数依赖进口,制约了我国在机器人和数控技术等相关领域的发展。
     本文分析了永磁同步电动机的数学模型基础,在此基础上介绍了永磁同步电动机矢量控制系统的三种常见策略,并对各自的特点进行了对比;接着验证了快速空间矢量脉宽调制法与经典空间矢量脉宽调制法的等效性。
     完成了硬件电路的设计,包括搭建以TMS320F2812为核心的控制系统,以SKHI22A为主的驱动系统,以及典型IGBT驱动电路分析与比较。最后结合快速空间矢量脉宽调制法,采用id=0的控制方案设计了系统的软件部分。
     提出了驱动系统中IGBT损耗计算的实用方法,并考虑了温度对各种损耗带来的影响。采用热阻等效电路法推导得出了散热器及功率器件各点温度的计算公式。接着对IGBT壳动态温度变化过程分析进行了理论分析,并对此进行了实验研究。
     介绍了驱动系统的死区补偿问题。采用平均电压的方法分析了死区效应的由来,提出误差电压矢量的概念。在对两种常见死区补偿方案进行分析与推导的基础上,提出了基于位置检测死区补偿的实现方案,实验验证了这种方法有良好的补偿效果;接着运用MATLAB/Simulink对基于时滞观测器的在线死区补偿进行了仿真研究,结果表明了该方法的有效性。
With the development of motor manufacture technology, power electronics technology, micro-processor technology and modern control technology, permanent magnet AC servo system has developed to a high level and has been applied broadly in modern industry manufactures. Nowadays, most of the AC servo systems used in China are imported from other countries. This situation restricts the development of Chinese robot, digital-control and factory automatic equipment.
     Firstly, on the basis of analyzing the PMSM mathematical model, three current control methods of PMSM vector control are discussed in details, and made a comparison of their characteristics respectively. Then the equivalence of a fast space vector pulse width modulation method and classical SVPWM is proved.
     Secondly, the design of practical circuit is recommend, including control system based on TMS320F2812 and drive system based on SKHI22A,then the differences of different driver circuits of IGBT is analyzed and compared. Finally the id=0 control method of the vector control system based on the fast space vector pulse width modulation method is selected and designed.
     Thirdly, a practical method to calculate losses of the IGBT used in the driver system is presented, and the influence of temperature to the losses is taken into account. The heat resistance equivalent circuit of the dissipation system is analyzed and the calculation formulas of the temperature of the dissipation system are derived. The temperature variety of IGBT’s carapace is analyzed theoretically, and the experiment is done.
     Finally, the problem of dead-time compensation in AC servo system is presented. The Error voltage vector of the inverter caused by dead-time effects is analyzed by the average value method. On the basis of analyzing and deriving of two familiar dead-time compensation methods, a novel method of dead-time compensation based on position measuration is proposed, the experimental results verify that this method has a good compensation effects. Then an on-line method of dead-time compensation based on Time delay control observer is proposed by MATLAB/Simulink, the simulation of the system is carried out, and the simulational results verify the availability of the method.
引文
1郭庆鼎,王成元.交流伺服及系统.机械工业出版社, 1994:83~122
    2杨川.基于DSP的通用型全数字智能交流伺服控制系统的开发研究.西安交通大学博士论文. 2000:1~16
    3唐任远.现代永磁电机理论与设计.机械工业出版社, 1997:1~18
    4李夙.异步电动机直接转矩控制.机械工业出版社, 1998:10~23
    5 M. Depenbrock. Direct self-controlled of inverter-fed induction machine. IEEE Trans. on Power Electronics. 1998,4(3):683~690
    6 Ku-Kai Shyu, Chiu-Keng Lai, Yao-Wen Tsai. A Newly Robust Controller Design for the Position Control of Permanent-magnet Synchronous Motor. IEEE Trans. on Industry Applications. 2002,49(3):558~565
    7 Tomonobu Senjyu, Kaname Kinjo, Naomitsu Urasski, Katsumi Uezato. Parameter Measurement for PMSM Using Adaptive Identification. ISIE, 2002:711~716
    8 B.Nahid Mobarakeh, F.Meibody-Tabar, F.M.Sargos. On-line Identification of PMSM Electrical Parameters Based on Decoupling Control. Thirty-Sixth IAS Annual Meeting, 2001:266~273
    9 Yamamoto K, Shinohara K. Makishima H. Comparison between Flux Weakening and PWM Inverter with Voltage Booster for Permanent Magnet Synchronous Motor Drive. PCC-Osaka. 2002, (11):161~166
    10 Paolo Mattavelli, Luca Tubiana, Mauro Zigliotto. Torque-Ripple Reduction in PM Synchronous Motor Drives Using Repetitive Current Control. IEEE Trans. on Power Electronics. 2005,20(6):1423~1431
    11 Zhong L, Eahman M.F, Hu W.Y. Analysis of Direct Torque Control in Permanent Magnet Synchronous Motor Drives. IEEE Trans. on Power Electronics, 1997,3(12):528~536
    12 Hyun-Soo Kim, Hyung-Tae Moon, Myung-Joong Youn. On-Line Dead-Time Compensation Method Using Disturbance Observer. IEEE Trans. on Power Electronics, 2003,18(6):1336~1345
    13 Alfredo R, Munoz, Thomas A Lipo. On-Line Dead-Time Compensation Technique for Open-Loop PWM-VSI Drives. IEEE Trans. on Power Electronics,1999,14(4):683~389
    14 French C, Acarnley P. Control of Permanent Magnet Motor Drives Using a New Position Estimation Technique. IEEE Trans. on Industry Applications. 1996,32 (5):1089~1097
    15 N.Ertugrul, P.P. Acarnley. A New Algorithm Sensorless Operation of permanent Magnet Synchronous Motors. IEEE Trans. on Industry Applications 1994,30(1):126~133
    16 Takashi A, Akio T, Takao Y. Sensorless torque control of salient-pole synchronous motor at zero-speed operation. IEEE Trans. on Power Electronics. 1999, 14(1):202~208
    17 Ng C.H,Rashed M, Vas P. A novel MRAS current-based sensorless vector controlled PMLSM drive for low speed operation. Electric Machines and Drives Conference, 2003, 3:1889~1894
    18 Low T S, Lee T H, Chang K T. A Nonlinear Speed Observer for Permanent magnet Synchronous Motors. IEEE Trans. on Industry Applications. 1993,40 (3):307~316
    19 Kan-Ping Chin, Zong-Hwang Hong, Hong-Ru Wang. Shaft-sensorless Control of Permanent Magnet Synchronous Motors Using a sliding Observer. Proceedings of the 1998 IEEE International Conference. 1998,(1):388~392
    20 Corley M J, Lorenz R D. Rotor Position and Velocity Estimation for a Permanent Magnet Synchronous Machine at Standstill and High Speeds. IEEE IAS Annual Meeting. 1996,(1):36~41
    21 Hyunbae Kim, Harke M C, Lorenz R D. Sensorless control of interior permanent-magnet machine drives with zero-phase lag position estimation. IEEE Trans. on Industry Applications. 2003,9(6):1726~1733
    22 J L Barnette, A Nahar, M R Zolghadri, A Homaifar, Lorenz R D, F C Lee. Relative temperature control in parallel-acting power modules. Proc. of Annual Conf. of the Center for Power Electronic Systems. 2005:243~252
    23 Lorenz R D. Key Technologies for Future Motor Drives. International Conference on Electrical Machines and Systems. 2005:1~6
    24许大中.交流电机调速理论.浙江大学出版社, 1994:1~13
    25陈荣.永磁同步电机伺服系统研究.南京航空航天大学博士论文. 2000:10~13
    26陈晓青.高性能交流伺服系统的研究与开发.浙江大学博士论文. 1996:33~36
    27秦峰.基于电力电子系统集成概念的PMSM无传感器控制研究.浙江大学博士论文. 2006:70~75
    28林伟杰.永磁同步电机伺服系统控制策略的研究.浙江大学博士论文. 2005:31~36
    29窦汝振.高性能永磁交流伺服系统及其新型控制策略的研究.天津大学博士论文. 2002:68~85
    30王丽梅.基于高频信号注入的永磁同步电动机无位置传感器控制.沈阳工业大学博士论文. 2005:11~17
    31王宏.永磁交流伺服系统及其控制技术的研究.哈尔滨工业大学博士论文. 2004:49~55
    32胡建辉.交流永磁同步电动机的精确模型与非线性控制的研究.哈尔滨工业大学博士论文. 2005:78~83
    33杨贵杰,孙力.空间矢量脉宽调制方法的研究.中国电机工程学报. 2001, 21(10):79~83
    34杨旭.电力电子装置强制风冷散热方式的研究.电力电子技术. 2000,(8):36~38
    35王丹,毛承雄,范澎,马海晶.高压变频器散热系统的设计.电力电子技术. 2005,(4):115~117
    36曹永娟,李强,林明耀.基于PSPICE仿真的IGBT功耗计算.微电机. 2004, (6):40~42
    37 M. K. Kim, K. Y. Jang. A novel IGBT inverter module for low-power drive applications. PESC, 2002:115~117
    38郑琼林.电力电子电路精选.电子工业出版社, 1996:219~230
    39谢少英,王世萍.散热器的优化设计.电子机械工程. 2001,(6):28~32
    40付桂翠,高泽溪.影响功率器件散热器散热性能的几何因素分析.电子器件. 2003,(12):354~357
    41俞佐平.传热学.人民教育出版社, 1989:175~177
    42程福秀,林金铭.现代电机设计.机械工业出版社, 1997:145~159
    43 Seung Gi Jeong, Min-Ho Park. The analysis and compensation of dead-time effects in PWM inverters. IEEE Trans. on Industrial Electronics. 1991,8(2):108~114
    44 Attaianese C, Tomasso G. Predictive compensation of dead-time effects in VSI feeding induction motors. IEEE Trans. on Industry Applications. 2001,37(3): 856~863
    45 Hyun-Soo Kim, Kyeong-Hwa Kim, Myung-Joong Youn. On-line dead-time compensation method based on time delay control. IEEE Trans. on Control System. 2003,11(2):279~285
    46 Jong-Lick Lin. A new approach of dead-time compensation for PWM voltage inverters. IEEE Trans. on Circuits and Systems. 2002, 9(4):476~483
    47金舜,钟彦儒.一种新颖的同时考虑中点电位平衡和窄脉冲消除及死区补偿的三电平空间电压矢量脉宽调制方法.中国电机工程学报. 2005,25(6):60~66
    48吴茂刚,赵荣祥,汤新舟.正弦和空间矢量PWM逆变器死区效应分析与补偿中国电机工程学报. 2005,26(12):101~105
    49胡庆波,吕征宇.一种新颖的基于空间矢量PWM的死区补偿方法.中国电机工程学报. 2005,25(3):13~17
    50 Hengbing Zhao, Q. M. Jonathan Wu, Atsuo Kawamura. An Accurate Approach of Nonlinearity Compensation for VSI Inverter Output Voltage. IEEE Trans. on Power Electronics. 2004,19(4):1029~1035
    51 N. Urasaki, T. Senjyu, T. Kinjo, T. Funabashi, H.Sekine. Dead-time compensation strategy for permanent magnet synchronous motor drive taking zero-current clamp and parasitic capacitance effects into account. IEEE Trans. on Power Electronics. 2005,15(4):845~853
    52 Jong-Woo C, Seung-Ki S. Inverter output voltage synthesis using novel dead time compensation. IEEE Trans. on Power Electronics.1996,11(2):221~227
    53 Naomitsu Urasaki, Tomonobu Senjyu, Katsumi Uezato, Toshihisa Funabashi. An Adaptive Dead-Time Compensation Strategy for Voltage Source Inverter Fed Motor Drives. IEEE Trans. on Power Electronics. 2005,20(5):1150~1160

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700