位置扰动型电液伺服力加载控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞行模拟器中的操纵负荷力加载伺服系统是一典型的位置扰动型施力系统,它要求施力系统根据被加载对象(驾驶杆)位移的大小给驾驶杆施加相应的力。由于位置扰动,施力系统会产生一个很大的力干扰,即多余力,如果处理不当,这种多余力会比系统所要施加的力还要大。多余力的存在,将影响力伺服系统的跟踪精度,进而影响加载系统的品质。操纵负荷力加载系统的品质会极大地影响到操纵负荷系统对驾驶杆力的仿真效果,从而影响整个飞行模拟器的品质。
     本文以飞行模拟器中的操纵负荷系统为研究背景,对位置扰动型电液伺服力加载系统进行了深入的研究。建立了操纵负荷力加载系统的数学模型,重点分析系统中由于位置扰动而产生的多余力问题、电液伺服阀非线性问题、以及液压缸摩擦力对系统性能的影响,并针对这些问题提出相应控制策略,进行误差补偿。
     针对系统的多余力问题,本文采用结构不变性原理进行补偿;针对电液伺服阀的非线性因素及负载流量的时变性,采用改进型结构不变性原理与PID结合的复合控制策略进行误差补偿;针对液压缸摩擦力问题,则基于LuGre模型和状态观测理论设计了摩擦力状态观测器。仿真结果表明,结构不变性原理能够有效的抑制多余力;电液伺服阀的非线性因素对系统产生了显著的影响;将结构不变性原理进行改进后与PID结合,可以较好抑制多余力的产生,但对非线性因素引起的实际输出力曲线振荡现象无法完全消除;对系统进行摩擦补偿,可以进一步降低系统输出误差,提高系统的跟踪精度。
The force loading control servo system of flight simulator is a typical position disturbance type of force loading system. In this system the corresponding force needed to the pilot stick should be loaded according to the displacement of stick. Due to the motion of object, a high displacement disturbance would be produced, called as extraneous force, which could be larger than the need force if correct treatments are absent. In many cases, the extraneous force will reduced the precision of the system. The extraneous force will affect track precision of the system. The quality of the force loading control system will have a great impact on the effect of simulation to the pilot stick, and then the quality of the flight simulator.
     With the background of control loading system of flight simulator, the position disturbance type of electro-hydraulic servo force loading system is studied deeply in this thesis. A mathematical model of force loading control system has been established. And then analyses are placed on the extraneous force due to position disturbance, non-liner of electro-hydraulic servo-valve and the impact of friction of hydraulic cylinder. Aiming at these factors, controlling strategies were put forward to compensate them.
     For the problem of extraneous force, the structure-invariable principle is used for compensation. And with a hybrid control strategy of the improved structure-invariable principle and the Proportional-Integral-Differential (PID), errors of the electro-hydraulic servo-valve’s non-liner and real-time of the load flux are compensated. With regard to the hydraulic cylinder’s friction force, a friction observer is designed based on LuGre model and theory of state observation. The simulation results indicated that the extraneous force can be restrained effectively by the structure-invariable principle; the non-liner factor of electro-hydraulic servo-valve has a great impact on the system; and the combination of improved structure-invariable principle with PID could cut down extraneous force sharply, but do not have a remarkable effect on reducing track error resulting from non-liner factor; and that compensating system for the friction could further reduce output error and improve the track precision of system.
引文
[1] L. D. Allen. Evolution of Flight Simulation[J]. American Institute of Aeronautics and Astronautics,1993:1-11
    [2]李杨,王占林. TMS320C30在液压伺服控制中的应用—液压负载模拟器控制器设计[J].数据采集与处理,1998,13(3):258-262
    [3] Matthew W Blake. The NASA Advanced Concepts Flight Simulator– A Unique Transport Aircraft Research Environment, AIAA Flight Simulation Technologies Conference, San Diego, 1996, 385-392
    [4]刘长年.液压伺服系统优化设计理论[M].北京:冶金工业出版社,1989
    [5]于慈远.电液负载仿真台控制策略的研究[D]:[博士学位论文].哈尔滨:哈尔滨工业大学,1998.
    [6]史维祥等,杜彦亭.电液伺服系统自适应控制的新发展[J].机床与液压,1995(1):1-12
    [7]蔡永强,裘丽华,王占林.力伺服系统的模糊自适应控制[J].北京航空航天大学学报,1999,25(1):22-25
    [8]蔡永强.电液力伺服系统的鲁棒预测控制[J].机械工程学报,1999,35(6):81-84
    [9] Miroslav Mihajlov, Vlastimir Nikoli?, Dragan Anti?. Position Control of an Electro-Hydraulic Servo System Using Sliding Mode Control Enhanced by Fuzzy PI Controller, Mechanical Engineering, 2002, 1(9): 1217-1230
    [10] Jayesh Amin, Bernard Frieldland, Avraham Harnoy. Implementation of a Friction Estimation and Compensation Technique, IEEE Control Systems, 1997, 8: 71-76
    [11]王晓东.基于二次调节原理的电液加载系统研究[D]:[博士学位论文].北京:北京航空航天大学,2003
    [12]苏东海.提高电液负载仿真台控制性能的研究[D]:[博士学位论文].哈尔滨:哈尔滨工业大学,1998
    [13] H.Ohuchi, Han Jukui. K.Inatomi and H. Ikai. Model Reference Adaptive Control of a Hydraulic Load Simulator. New Achievement in Fluid Power Engineering (“93ICFP), Hangzhou. 1993:136-140
    [14]张立勋.电液负载模拟器多余力的研究[D]:[博士学位论文].哈尔滨:哈尔滨工业大学,1994
    [15]王安敏.电液伺服负载模拟器加载特性的研究[D]:[博士学位论文].哈尔滨:哈尔滨工业大学,1995
    [16]李运华.负载模拟器多余力矩的抑制方法研究[J].机床与液压,1999,27(2):27-30
    [17]沈东凯,华清,王占林.基于神经网络的电动加载系统[J].航空学报,2002,23(6):525-529
    [18] Jiao Zongxia. The Velocity Synchronizing Control on the Electro-Hydraulic Load Simulator[J]. CHINESE JOURNAL OF AERONAUTICS, 2004,17(1):39-46
    [19]华清,电液负载模拟器关键技术的研究[D]:[博士学位论文].北京:北京航空航天大学,2001,9
    [20]焦宗夏,华清,王晓东.负载模拟器的评价指标体系[J].机械工程学报,2002,38(11):26-29
    [21]华清,焦宗夏,王晓东.电液负载模拟器的精确数学模型[J].机械工程学报,2002,38(11):31-35
    [22]焦宗夏,华清.电液负载模拟器的RBF神经网络控制[J].机械工程学报,2003,39(1):10-14
    [23]华清,焦宗夏.负载模拟器的DRNN神经网络控制[J].机械工程学报,2003,39(1):15-19
    [24]焦宗夏,华清,王晓东等.电液负载模拟器的复合控制[J].机械工程学报,2002,38(12):34-37
    [25]王晓东,华清,焦宗夏等.负载模拟器中的摩擦力及其补偿控制[J].中国机械工程,2003,14(6):511-514
    [26]叶正茂,李洪人,王经甫,基于CMAC的船舶操舵系统负载模拟器复合控制[J],工程设计学报,2002,9(3):147-150
    [27]叶正茂,李洪人,王经甫.基于CMAC的电液负载模拟器自学习控制[J].控制与决策,2003,18(3):343-347
    [28]王经甫,叶正茂,李洪人.双阀并联控制在船舶舵机电液负载模拟器多余力抑制中的研究[J].机械工程学报,2005,41(4):229-233
    [29]王行仁.飞行实时仿真系统及技术[M].北京:北京航空航天大学出版社,1998
    [30]王成,王广怀.负载模拟器多余力抑制的探讨[J].机械工程师,2003,(12):38-40
    [31]苏东海,刘峰,王洁.被动式加载系统多余力矩的本质特征分析[J].沈阳工业大学学报,2001,(06):449-451
    [32]黄忠霖.控制系统MATLAB计算及仿真[M].北京:国防工业出版社,2004
    [33]王沫然. Simulink 4建模及动态仿真[M].北京:电子工业出版社,2002
    [34]王春行.液压控制系统[M].北京:机械工业出版社,1999
    [35]袁兵.考虑非线性摩擦转矩的液压马达低速性能仿真[J].武汉理工大学学报(交通科学与工程版).2002,(2):277-279
    [36]张锦江,陈兴林,王常虹等.仿真转台克服低速滞滑的判据研究[J].系统工程与电子技术. 2000,(7):53-56
    [37]张锦江,吴宏鑫,李季苏等.高精度伺服系统低速问题研究[J].自动化学报. 2002,(3):431-434
    [38]谷云彪,王旭永,李尚义等.马达摩擦转矩对电液位置伺服系统低速性能的影响[J].机械工程师. 1995,(5):9-10
    [39] G.Brandenburg and U. Sch?fer. Influence and Compensation of Coulomb Friction in Industrial Pointing and Tracking Systems[J]. IEEE Transactions on Automatic Control. 1991:1407-1413
    [40]王旭永,付永领,刘庆和.电液马达位置伺服系统低速运动的初步试验研究[J].机床与液压, 1994, (6):331-335
    [41]李运华.近代液压伺服系统控制策略的现状与展望[J].液压与气动,1995:1-6
    [42]黄静,叶尚辉.含摩擦环节伺服系统的分析及控制补偿研究[J].机械科学与技术,1999,18(1):1-3
    [43] Armstrong-Helouvry B, Dupont P, Canudas de Wit C A survey of Models[J], Analysis Tools and Compensation Methods for the Control of Machines with Friction. Automatic, 1994, 30(7):1083-1138
    [43] Barian Armstrong-Helouvry. Stick-Slip Arsing from Stribeck Friction[J]. IEEE Transactions on Automatic Control. 1990.
    [45] Jayesh Amin, Bernard Friedland, Avraham Harnoy, Implementation of a Friction Estimation and Compensation Technique[J], IEEE Control Systems, 1997, 8: 71-76
    [46]肖祥麟.摩擦学导论[M].上海:同济大学出版社,1990
    [47] William S Owen, Elizabeth A Croft and James R McFarlane. Reducing Stick-Slip Friction in Hydraulic Actuators[J]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics Proceedings. 2001,(7):642-643.
    [48] C.Canudas de wit. H Olsson, K.J. Astrom, P.Lischinsky. A new model for control of systems with friction[J]. IEEE Trans. On Automatic Control. 1995,40(3):419-425
    [49] Willems. Dissipative dynamical systems part 1:Gnenral theory. Arch. Rational Mech. Aral. 1972,(45):321-351
    [50]谷云彪,凌林本.三轴转台执行机构起动摩擦特性的测试与研究[J].中国惯性技术学报. 1999,7(4):84-87
    [51]王中华,王兴松,王群等.新型摩擦模型的参数辨识及补偿实验研究[J].制造业自动化,2001,23(6):30-32
    [52]薛晓虎.机械设备液压阀控马达回路动态特性的分析和研究[J].现代机械,2002,(3):70-74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700