船用GPS平台罗经系统研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用GPS实现航向指示的设备称为卫星罗经(GPS罗经),由于其具有体积小、精度高、速度快、易安装、免维护、价格低廉、不受磁场分布影响、没有累积误差等优势,可以成为传统电/磁罗经的主要替代设备。低成本航向确定技术在民用船舶导航上的应用一直是国际导航界研究的热点问题,因此使用GPS进行载体姿态测量是近年来GPS应用技术领域的重要方向,并且越来越多的应用于航海、航天等领域。该方法主要是利用安装在载体上的多个GPS天线接收到的载波相位等信息进行差分解算,实时求解载体两维或者三维度姿态角信息。而在姿态测量的整体算法中,关键技术在于初始时刻整周模糊度的解算和姿态/航向确定算法。
     本文主要包括GPS测姿基本原理、载波相位差分技术、整周模糊度搜索以及仿真、实时姿态测量算法的实验验证及分析研究。本文在以下几个理论方面问题进行了深入研究,首先在姿态方程解算方面,本文对姿态测量方程的传统求解原理和方法进行介绍,重点对公式解析法进行深入研究。其次,对于整周模糊度搜索算法的研究,本论文首先对传统方法进行研究(如LAMBDA、最小二乘法等),在此基础上提出限制基线长的解析公式法,并将其应用到实际系统软件中。同时,本文讨论针对双差模型测姿过程中,利用进行线性组合的方法避免整周模糊度重新初始化。最后,对于RAIM算法引入姿态测量的应用进行了分析和实验,减小计算量、提高了解算速度、精度和稳定度。实验方面,在由三块SuperStar II OEM接收机、PC104工控机等搭建的测姿系统平台上,进行了实地数据采集以及实时处理等实验。实验结果验证:基于公式解析法的船用GPS罗经系统输出可以达到0.1°至0.2°的测姿精度。本文对实验中采集的结果、卫星数据及结果误差进行了深入的分析,并对该系统的下一步应用开发提出了规划和设计思路。
GPS gyrocompass is a crucial instrument used in navigation and attitude determination aspects. It has many advantages such as little volume, high precision, convenient, uninfluenced by magnetic field and no errors accumulation and so on. An essential trend is noticed that GPS gyrocompass will replace the traditional compass in some applications. Low-cost direction determination for civil ship has long been an issue of great interest in navigation. Recently, the attitude determination study has been focused more and more in the application of GPS study. The main idea of this method is to calculate the attitude parameters of the differencing equations by the observations received from GPS broadcast. The most important and difficult point of this technology is to find out the integer ambiguity combinations and resolve the attitude angles accurately in a short time.
     The main work in this paper includes the principle of attitude determination, carrier differencing method, integer ambiguity searching algorithm and attitude determination test. The major contributions and roadmap of the thesis are summarized as follows. Firstly, having a deep study and discussing about the hybrid analytical method. This method can help advance the real-time calculation and optimize the process of the searching work. Secondly, along with a length constraint of baseline, the improved algorithm can reduce the search span effectively, and this method will be important for the initialization step. Thirdly, a new method which reduces the times of restart in many different environments is discussed in the paper. The fourth one is the RAIM algorithm which is introduced to help advance the accuracy and stability of attitude results. The fifth part of the paper gives the experiment process in attitude determination. The test is carried out in the campus environment and the main equipments we used in the experiment are Super-Star II receivers and PC-104 machine. Results of this system are analyzed and compared with the traditional method in detail, while the precision of the system can be up to 0.1°to 0.2°rms around. Finally, it should be noticed that the study in this paper should not only be used on ship navigation but also could be applied to airocraft in the future.
引文
[1]王惠南,GPS导航原理与应用,北京,科学出版社,2003.8
    [2]刘若普,GPS三维姿态测量技术研究,上海,2007
    [3] Cannon, M. E., Berry, E. and King, M. Testing a lightweight GPS/GIS Terminal for Sub-Meter DGPS Positioning. Proceedings of the sixth International Technical Meeting of the Satellite Division of the ION, GPS-93, Salt Lake City, Utah, 22-24 September 1993.
    [4] Fenton, P. C., Falkenberg, B., Ford, T., VanDierendonck, A. J. NoVatel’s GPS Receiver - The High Performance OEM Sensor of the Future, Proceedings of the Fourth International Technical Meeting of the Satellite Division of the ION, GPS-91, Albuquerque, N. M. 11-13 September 1991.
    [5] Lu, G., Cannon, M. E., Lachapelle, G. and Kielland, P. Attitude Determination in a Survey Launch Using Multi-Antenna GPS Technologies. Proceedings of National Technical Meeting of The Institute of Navigation,1993, pp. 251- 260.
    [6] Jiunhan Keong, Lachapelle, G. Heading and Pitch Determination Using GPS/GLONASS. GPS Solutions. 2000, 3(3):26-36.
    [7] Li, Y., Zhang, K., Roberts, C., Murata, M. On-the-fly GPS-based attitude determination using single- and double-differenced carrier phase measurements. GPS Solutions, 8: 93-102.
    [8]段志勇. GPS航姿系统及多天线GPS/惯性组合技术研究[博士论文].南京:南京航空航天大学. 2000.
    [9]许江宁.基于遗传算法的GPS姿态测量技术研究[博士论文].东南大学,2002.
    [10]邢佩旭.世界主要几种卫星导航定位系统的现状与发展.港工技术,2003(1):52-55
    [11]周忠謨,易杰军.GPS卫星测量原理与应用.测绘出版社出版,1992。
    [12] Spilker,J.Jr, GPS Signal Structure and Performance Characteristics, GPS Papers in Navigation, Vol.1, Institute of Navigation, 1980.
    [13] DOD,NAVSTAR GPS User Equipment Introduction ( Public Release Version ), GPS Joint Program Office, Feb.1991.
    [14] Elliott D.Kaplan, Christopher J.Hegary.Undestanding GPS Principles and Applications, 2nd Edition. Boston, Artech House,2006.
    [15] Yang,Y., Tightly Integrated Attitude Determination Methods for Low-Cost Inertial Navigation:Two-Antenna GPS/Magnetometer, Ph.D. Dissertation, Dept. of ElectricalEngineering, University of California, Riverside, CA June 2001.
    [16] Jiunhan Keong. Determining Heading and Pitch Using a Single Difference GPS/GLONASS Approach. MSc Thesis. Department of Geomatics Engineering, University of Calgary.1999.
    [17]王永泉,长航时高动态条件下GPS/GLONASS姿态测量研究[博士论文]。上海交通大学,2008.
    [18]朱涛,许江宁,田华明,卞鸿巍. GPS双星航姿测量研究.海军工程大学学报.2002, 14(3):67-70.
    [19] Golub,G.H., and C. F. Van Loan, Matrix Computations, 2nd Edition, Baltimore, MD:The Johns Hopkins Universtiy Press, 1989.
    [20] Potter, J., and M. Suman,“Threshholdless Redundancy Management with Arrays of Skewed Instruments”, AGARD Monograph, No.224, NATO, Neuilly sur Seine, France, 1979.
    [21] Sorenson, H. W., Kalman Filtering:Theory and Applications, New York: IEEE Press, 1985.
    [22]付梦印,邓志红,张继伟。, Kalman滤波理论及其在导航系统中的应用。北极:科学出版社,2003,10.
    [23]刘延利,杨文辉,康建荣,蒋天林。GPS姿态测量系统中的误差分析及摇摆实验。导航,2002,2:25-32.
    [24]杨铁军。GPS实时姿态测量技术与多路径误差研究。电子科技大学博士论文,1999.
    [25] Hyung, K.L., Jang, Gyu Lee,Gyu-In,Jee, GPS multipath detection based on sequence of successive-time double-differences. IEEE Signal Processing Letters.Mar. 2004,11(3):316-319.
    [26] B.Hofmann-Wellenhof, H.Linchtenegger, J.Collins. Global Positioning System Theory and Practice. 1997.
    [27] Counselman C.C, Gourevitch SA. Miniature Interferometer Teerminals for Earth Surveying:Ambiguity and Multipath with the Global Positioning System[J]. IEEE Transactions on Geoscience and Remote Sensing. 1981, GE-19(4):244-252.
    [28] Clyde C.Goad and Benjamin W.Remondi. Initial relative positioning results using the global positioning system. Journal of Geodesy, 1984,58(2), 192-210.
    [29] Remondi B. W. Pseudo-kinematic GPS results using the ambiguity function method. Navigation, 1991, 38(1), 17-36.
    [30]刘基余, GPS卫星导航原理与方法,第二版.北京:科学出版社,2006.
    [31] Hatch, R. Ambiguity Resolution in the Fast Lane, Proceedings of the Second International Technical Meeting of the Satellite Division of the ION, GPS-89, Colorado Springs, CO, September 26-29, 1989.
    [32] Paul de Jonge,Christian Tiberius. The LAMBDA method for integer ambiguity estimation:implementation aspects, Delft University of Technology, 1996.
    [33] Shaowei Han, Chris Rizos. Improving the computational efficiency of the ambiguity function algorithm. Journal of Geodesy,1996 70(6):330-341.
    [34]王银华,胡小平. GPS精密定向研究的实验.宇航学报,2001,22(1):70-74,104.
    [35]许江宁,万德钧,王庆等.基于遗传算法的GPS姿态测量技术.中国惯性技术学报,2002,10(4),9-13.
    [36] Hassan A, Mezera D. Pseudo Randomized Search Strategy Algorithm in Resolving the Ambiguity Resolution. The ION GPS’97, Kansas, Missouri, 1997.
    [37] Jiangning Xu, T. Arslan, Qing Wang, Dejun Wan. An EHW Architecture for Real-Time GPS Attitude Determination Based on Parallel Genetic Algorithm[A]. 4th NASA/DoD Workshop on Evolvable Hardware[C], Alexandria, VA, USA:IEEE,2002. 133-141.
    [38] Erickson C. Investigations of C/A Code and Carrier Measurement and Techniques for Rapid Static GPS Surveys. MSc Thesis, Department of Geomatics Engineering, University of Calgary. 1992.
    [39]许江宁.基于遗传算法的GPS姿态测量技术研究[D].南京,91-92.
    [40] Keunjoo Park, John L. Crassidis. A Robust GPS Receiver Self Survey Algorithm. Journal of the Institute of Navigation. 2006, 53(4):259-268.
    [41] Peter Buist,The Baseline Constrained LAMBDA Method for Single Epoch, Single Frequency Attitude Determination Applications. ION GNSS 20th International Technical Meeting of the Satellite Division, 25-28,September 2007, Fort Worth, TX.
    [42] P. J. G. Teunissen, P. J. de Jonge, C. C. J. M. Tiberius. The least-squares ambiguity decorrelation adjustment:its performance on short GPS baselines and short observation spans. Journal of Geodesy(1997) 71:589-602.
    [43] Junjie NI, Yongxin ZHU, Wei GUO. An Improved RAIM Scheme for Processing Multiple Outliers in GNSS. 21st International Conference on Advanced Information Networking and Applications Workshops(AINAW’07). 2007 IEEE
    [44] J.Liu, M.Lu, X.Cui and Z.Feng. Theoretical analysis of RAIM in the occurrence ofsimultaneous two-satellite faults. IET Radar Sonar Navig.,2007,1,(2),pp.92-97
    [45] Young C.Lee. Receiver Autonomous Integrity Monitoring (RAIM) Capability for Sole-Means GPS Navigation in the Oceanic Phase of Flight. IEEE AES MAGAZINE, May 1992.
    [46]王永超,黄智刚.时钟改进模型辅助RAIM算法研究。电子学报,2007.6,第6期。
    [47]陈代强,李群,侯洪涛.导航系统全球完好性仿真分析的设计与实现[J].计算机仿真,2008.6,25(6):20-25.
    [48]陈小平,滕云龙.接收机自主完好性监测算法研究[J]。电子科技大学学报,2008.3,37(2):218-220.
    [49]郭睿,郑勇,杜兰.GPS和Galileo系统下RAIM算法可用性分析[J].测绘科学技术学报,2006.12,23(6):448-450.
    [50] JAMES BAO-YEN TSUI. Fundamentals of Global Positioning System Receivers A Software Approach, 2007.
    [51] Debra Diefes. GPS Based Attitude Determining System for Marine Navigation. IEEE Xplore.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700