基于地基GPS的实时遥感水汽的理论与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水汽随时空的变化对气象预报特别是对水平尺度100km左右、生命史只有几小时的中小尺度灾害性天气(暴雨、冰雹、雷雨、大风、龙卷风等)的监视和预报有特别重要的指示意义。地基GPS作为一种新型的大气探测手段,其时间分辨率高、不需要标定、设备可综合利用,已成为大气探测手段的重要补充,且对完善气象预报预测业务系统,加强短时临近天气预报系统建设,做好灾害性、关键性、转折性重大天气预报警报和旱涝趋势气候预测具有极大的促进作用。地基GPS应用将使我国的防灾减灾、可持续发展上升到一个新的台阶,从而取得重要的社会经济效益。
     目前国内外已开展了大量地基GPS遥感水汽研究,并逐步走向业务运行,但目前地基GPS遥感水汽技术还没有在国内完全达到应用阶段,如何进一步提高地基GPS遥感水汽的精度以及实时监测大气水汽仍然需要对现有的理论算法进行进一步完善。
     本文针对目前地基GPS遥感水汽技术中影响天顶总延迟精度的若干因素、映射函数关键技术进行了分析和研究,并基于实时气象业务预报的需要研究了实时遥感水汽的方法。
     本文主要研究:
     1.详细地阐述了地基GPS遥感天顶水汽PWV的方法。重点介绍遥感天顶对流层总延迟获取、天顶湿延迟的方法及PWV获取的方法。
     2.分析了地基GPS遥感天顶水汽精度的若干因素。重点研究星历误差、大气荷载、大洋荷载、绝对天顶延迟获取因素进行了深入研究,并进行算例分析。
     3.重点介绍了对流层延迟中映射函数及其在低高度时的选择。首先介绍了常用的映射函数模型,其次结合MODIS影像水气变化图与GPS PWV分析了在低高度时对不同映射函数的选择,得出VMF1映射函数更能满足实时气象水汽变化的需要但其需要外部数据,且精度最高,GMF映射函数精度次之,其可在事后数据处理上代替VMF1映射函数,NMF映射函数精度最弱。
     4.根据气象预报的实时性需要针对实时获取PWV进行了研究。首先,针对目前湿延迟模型精度偏低,提出使用外部气象数据近实时反演湿延迟。对基于欧洲ECMWF水汽资料获取湿延迟的可靠性和插值算法进行了分析研究,并顾及了高差对插值算法的影响;其次对MODIS影像反演湿延迟,并将其与GPS获取的真值进行比较分析,拟合了二者之间的相关关系,并提出把外部气象资料求取湿延迟并将其融合,建立区域对流层近实时湿延迟模型用于单历元算法和精密单点定位(PPP)中;最后,研究基于地基GPS双差Kalman滤波的方法实时动态监测水汽变化的方法,并验证这种方法实时动态监测大气水汽变化的正确性和可行性。
Water vapor changes in time and space weather forecasting especially around 100km horizontal scale, life history only a few hours of small-scale severe weather (rain, hail, thunderstorms, strong winds, tornadoes, etc.) monitoring and forecasting are particularly important implications. As a new foundation GPS atmospheric sounding instruments, its high time resolution, does not require calibration, device utilization, has become an important complement to atmospheric sounding instruments, and the weather forecast predicted on improving business systems, enhance short-term weather forecasts near system construction, good disaster, critical, major weather shifts and trends in drought and flood warning and forecast climate into the role great. Will allow our disaster prevention and mitigation, sustainable development to a new level, so as to achieve important social and economic benefits.
     At home and abroad have carried out a large number of ground GPS water vapor remote sensing research, and to business operations, but how to further improve the accuracy of ground GPS water vapor sensing and real-time monitoring of changes in atmospheric water vapor existing theories still need to further improve the algorithm.
     In this paper, the current GPS ground water vapor remote sensing technology in some of the key technologies of analysis and research, and based on real-time weather forecasting business needs of the real-time remote sensing of water vapor method.
     This paper studies:
     1. Detailed description of the ground water vapor PWV GPS zenith remote sensing methods. Focuses on remote sensing of total zenith tropospheric delay in the acquisition, the zenith wet delay means and methods of PWV obtained.
     2. Analysis of remote sensing ground GPS accuracy of the zenith water vapor number of factors. Focuses on ephemeris error, atmospheric loading, ocean loading, to obtain the absolute zenith delay factors in-depth research and analysis for example.
     3. Focuses on the tropospheric delay in the mapping function and its low height option. First introduced the commonly used mapping function models, followed by the combination of changes in water vapor image MODIS maps and GPS PWV analysis in the low-altitude mapping functions for different choices, come VMF1 real-time weather mapping function to better meet the changing needs of water vapor, but their needs external data, and the highest accuracy, GMF mapping function accuracy of the second, it can be replaced after the data processing VMF1 mapping function, NMF mapping function accuracy of the weakest.
     4. According to the weather forecast for the real needs of real-time access to PWV were studied. First, wet delay for the current model of low precision and made use of external inversion of wet weather data in near real time delay. Based on the European ECMWF water vapor data for the reliability of the wet delay and interpolation algorithm analysis, and taking into account the impact of elevation on the interpolation algorithm; followed by inversion of the MODIS images wet delay with GPS and access to the true value comparative analysis, fitting the relationship between the two and make the external meteorological data to calculate the wet delay and the integration of regional wet tropospheric delay model for near real-time single epoch algorithm, and precise point positioning (PPP) in; Finally, the research foundation based GPS double difference method of Kalman filter real-time dynamic monitoring of changes in the method of water vapor, and verify that this method changes in real-time dynamic monitoring of atmospheric water vapor the correctness and feasibility.
引文
[1]Arthur Niell. Global mapping functions for the atmosphere delay at radio wavelengths [J]. JGR,1996,101, B2,3227~3246.
    [2]Arthur Niell. Improved atmospheric mapping functions for VLBI and GPS [J]. Earth Planets Space,2000,52:699~702.
    [3]Bevis M S, Chiswell B S. Mapping zenith wet delays onto perceptible water [J]. J.Appl.Meteor.1994,33:379~386.
    [4]Bar-Sever Y E, Kroger P M, Borjesson J A. Estimating horizontal gradients of tropospheric path delay with a single GPS receiver [J]. Journal of Geophysical Research, 1998,103(B3):5019~5035.
    [5]Braun John Joseph. Remote Sensing of Atmospheric Water Vapor with the Global Positioning System [D]. Faculty of the Graduate School of the University of Colorado, 2004.
    [6]Flores A, Ruffini G. and Rius A.4D tropospheric tomography using GPS slant wet delays [J]. Ann. Geophys.,2000,18:223~234.
    [7]Flores A,de Arellano, J.V. G, Gradinarsky, L.P. and Rius, A. Tomography of the lower troposphere using a small dense network of GPS receivers [J].IEEE transactions on geoscience and remote sensing,2001,39(2):439~447.
    [8]Foster J, Bevis M, Businger S. GPS meteorology:Sliding-window analysis [J]. Journal of Atmospheric and Oceanic Technology,2005,22(6):687~695.
    [9]Ge M, Calais E, Haase J. Automatic Orbit Quality Control for Near Real-Time GPS Zenith Tropospheric Delay Estimation [J]. Physics and Chemistry of the Earth(A),2001, 26:177~181.
    [10]Johannes Boehm and Harald Schuh. Vienna mapping functions in VLBI analyses [J]. Geophysical Research Letters,2004,31(1):doi:10.1029/2003GL018984.
    [11]Johannes Boehm, Arthur Niell, Paul Tregoning and Harald Schuh. Global Mapping Function (GMF):A new empirical mapping function based on numerical weather model data [J]. GRL,2006,33:L07304, doi:10.1029/2005GL025546.
    [12]Johannes Boehm, J. Kouba, and H. Schuh. Forecast Vienna Mapping Functions 1 for real-time analysis of space geodetic observations [J]. Journal of Geodesy,2008, doi: 10.1007/s00190-008-0216-y.
    [13]Nilsson T, Gradinarsky L and Elgered G. Water vapour tomography using GPS phase observations:Results from the ESCOMPTE experiment [J]. Tellus A,2007.59(5), 674-682.
    [14]GAO B C, AL EXANDER F H G. Column atmospheric water vapor and vegetat ion liquid water retrievals from airborne imaging spectrometer data [J].Journal of Geo Res, 1990,95 (2):354923564.
    [15]Gao B C,Kaufman YJ. The MODIS Near2IR Water Vapor Algorit hm[EB/ OL]. http://modis2atmos. gsfc.nasa.gov/docs/atbd_mod03.pdf,2007.
    [16]Rocken C, L Mervart, et. Testing a New Network RTK Software System[J] Journal of Global Positioning Systems 2004,3(1-2):218-225
    [17]T. A. Herring, R. W. King, S. C. McClusky. Documentation for the GAMIT GPS processing software, Release 10.3 [Report]. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology.2006.
    [18]Tobias Nilsson. Measuring and modeling variations in the distribution of atmospheric water vapor using GPS [D]. Department of Radio and Space Science in Chalmers University of Technology, Sweden,2008.
    [19]Ware R, Alber C, Rocken C, et al. Sensing integrated water vapor along GPS ray paths [J]. GRL,1997,24:417~420.
    [20]Wubbena, G, M. Schmitz, F. Menge, et al. Automated absolute Field Calibration of GPS antennas in Real-Time [J]. ION GPS 2000,19-22, September 2000, Salt Lake City, UT, PP.2512~2522.
    [21]Yuan, L. R. Anthes, R. Ware. Sensing climate change using the Global Positioning System [J]. J. Geophys. Res.1993,98:14952~14973.
    [22]Zhang jihong. Investigations into the Estimation of Residual Tropospheric Delays in a GPS Network [D]. Canada university of Calgary, September,1999.
    [23]陈俊勇.利用GPS反解大气水汽含量[J].测绘工程,1998,(2):6~8.
    [24]陈永奇,刘焱雄,王晓亚.香港实时GPS水汽监测系统的若干关键技术[J].测绘学报,2007,36(1):9~12.
    [25]陈永奇.用GPS观测反演大气中水汽的含量[J].现代测绘,2005,28(4):3-5.
    [26]党亚民,王权,冯金涛.利用GPS资料反演大气水汽含量的研究[J].测绘科技动态,1999,3.
    [27]杜瑞林,乔学军等.用地基GPS资料分析大气可降水汽总量[J].大地测量与地球动力学,2005,25(3):121~124.
    [28]葛茂荣.GPS卫星精密定轨理论及软件研究[D].湖北:武汉测绘科技大学,1995.
    [29]郭志梅.利用地基GPS资料反演大气可降水量的初步研究[D].江苏:南京信息工程大学,2005.
    [30]谷晓平.GPS水汽反演及降雨预报方法研究[D].北京:中国农业大学,2004.
    [31]宋淑丽.地基GPS网对水汽三维分布的监测及其在气象学中的应用[D].上海:中国科学院上海天文台,2004.
    [32]宋淑丽,朱文耀.区域GPS网实时计算可降水量的若干问题[J].中国科学院上海天文台年刊.2003,24:20~27.
    [33]宋淑丽,朱文耀,程宗颐,廖新浩.GPS信号斜路径方向水汽含量的计算方法[J].天文学报,2004,45(3):338~346.
    [34]苏小宁,孟国杰等。基于TRACK进行GPS单历元定位[J],大地测量与地球动力学,2009-06。
    [35]胡丛玮,刘大杰。单历元确定GPS整周模糊度的分析[J],南京航空航天大学学报,2001,33(3):268-271。
    [36]阳仁贵,欧吉坤,仁超。GPS单历元载波相位整周模糊度的计算方法研究[J],长江科学院院报,2005年01期。
    [37]金惠华,白征东等。地基GPS反演水汽影响因素分析[J],测绘科学,2008年。
    [38]王勇.地基GPS网气象应用研究[D].中国科学院测量与地球物理研究所,2006.
    [39]王敏.GPS数据处理方面的最新进展及其对定位结果的影响[J].国际地震动态.2007,343(7):3~8.
    [40]毕研盟.应用全球定位系统(GPS)遥感大气水汽的研究[D].北京大学,2006.
    [41]毕研盟,毛节泰,刘晓阳,符养,李成才.应用地基GPS遥感倾斜路径方 向大气水汽含量[J].地球物理学报,2006,49(2):335~342.
    [42]毕研盟,毛节泰,李成才,符养.利用GPS的倾斜路径观测暴雨过程中的水汽空间分布[J].大气科学,2006,30(6):1169~1176.
    [43]曹云昌,方宗义,夏青等.地基GPS气象站网建设指南[M].北京:气象出版社,2007.
    [44]曹云昌,方宗义,夏青.GPS遥感的大气可降水量与局地降水关系的初步分析[J].应用气象学报,2005,16(1):54~59.
    [45]李国平.地基GPS遥感大气可降水量及其在气象中的应用研究[D].四川:西南交通大学,2007.
    [46]李国平,黄丁发.GPS气象学研究及应用的进展与前景[J].气象科学,2005,25(6):651~661.
    [47]李建国,毛节泰,李成才等.使用全球定位系统遥感水汽分布原理和中国东部地区加权“平均温度”的回归分析[J].气象学报,1999,57(3):283~292.
    [48]李国翠.华北地区地基GPS遥感可降水量及天气学应用研究[D].甘肃:兰州大学,2007.
    [49]刘基余,李征航,王跃虎等.全球定位系统原理及其应用[M].北京:测绘出版社,1999.
    [50]李征航,黄劲松.GPS测量与数据处理[M].湖北武汉:武汉大学出版社,2005.
    [51]毛节泰.GPS的气象应用[J].气象科技,1993,4:45~49.
    [52]毛辉,毛节泰,毕研盟,刘晓阳,李成才.遥感GPS倾斜路径信号构筑水汽时空分布图[J].中国科学D辑地球科学,2006,36(12):1177~1186.
    [53]曲建光.GPS遥感气象要素的理论与应用研究[D].湖北:武汉大学,2005.
    [54]曲建光,刘基余.利用GPS数据推算水汽含量动态模型的研究[J].测绘通报.2004,4:5~7.
    [55]王小亚,朱文耀,严豪健等.地基GPS探测大气可降水量的初步结果[J].大气科学.1999,23(5):605~612.
    [56]王小亚,朱文耀,严豪健.地基GPS观测大气可降水汽量的方法和前景[J].天文学进展.1998,(2):135~142.
    [57]吴建军.北京上空可降水量变化特征的地基GPS观测与分析[D].江苏:南 京信息工程大学,2006.
    [58]严豪健.大气折射的研究进展[J].世界科技研究与发展,2006,28(1),48~58.
    [59]杨光林.地基GPS遥感大气水汽总量的研究[D].北京:北京大学,2002.
    [60]杨光林,毛节泰等.西藏地区GPS水汽遥感分析[J].气象科技.2002,30:266~272.
    [61]罗海滨,何秀凤.用GPS改正InSAR大气延迟误差的研究[J].大地测量与地球动力学.2007,27(3):35~38.
    [62]高雅萍,张双成.GPS气象网布设解算方案对遥感大气影响分析,工程勘察,2008,36(8):43~46.
    [63]张斌,薛根元,张双成.利用GAMIT解算浙江地基GPS大气可降水量的研究.中国气象学会2007年年会气象综合探测技术分会场论文集.2007,1069~1072.
    [64]张双成,叶世榕,刘经南,李冲.动态映射函数最新进展及其在GNSS遥感水汽中的应用研究,武大学报信息科学版,2009,34(3):280~283.
    [65]张双成,叶世榕,万蓉,陈波.基于Kalman滤波的断层扫描初步层析水汽湿折射率分布,武大学报信息科学版,2008,33(8):796~799.
    [66]张双成,刘经南,叶世榕,陈波.顾及双差残差反演GPS信号方向的斜路径水汽含量,武大学报信息科学版,2009,34(1):100~104.
    [67]叶世榕,张双成,刘经南.精密单点定位方法估计对流层延迟精度分析,武大学报信息科学版,2008,33(8):788~791.
    [68]张双成,叶世榕,刘经南,张斌.基于IGS超级跟踪站的近实时GPS气象研究及应用,测绘科学,2008,33(2):93~95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700