粉蝶盘绒茧蜂和微红盘绒茧蜂的记忆机理与种间差异
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动物学习和记忆是当前生态学和行为学研究的热点。由于近缘物种寄生蜂间学习表现和记忆特性的比较研究,能很好地阐明进化和生态学因素对学习行为和记忆的影响,以此为模型开展对学习和记忆过程的分子和细胞水平分析,已经成为了现代行为生态学研究的前沿。
     本博士论文以粉蝶盘绒茧蜂(Cotesia glomerata)和微红盘绒茧蜂(Cotesiarubecula)两个寄生蜂近缘种为材料,在分析它们取食行为差异与记忆的获得方式关系的基础上,通过设置经典的条件反射实验,使用抑制蛋白质合成的转录抑制剂放线菌酮D(actinomycin D,ACD)和翻译抑制剂茴香霉素(anisomycin,ANI)阻断长时记忆以及冷休克阻断短时记忆,结合寄生蜂不同的产卵学习方式,研究了这两种近缘种寄生蜂学习和记忆特征,取得了如下的重要研究成果:
     (1)粉蝶盘绒茧蜂和微红盘绒茧蜂长时记忆形成中的特异性
     粉蝶盘绒茧蜂一次产卵学习后,其24小时记忆保持力能被蛋白质合成的转录抑制剂放线菌酮D(ACD)完全抑制,表现出经处理的粉蝶盘绒茧蜂与未经历产卵的寄生蜂趋向旱金莲无差异,表明粉蝶绒茧蜂一次产卵经历后就形成了依赖于蛋白质合成的长时记忆。微红盘绒茧蜂一次产卵学习后,形成了对旱金莲趋向的记忆,但记忆持续时间短于粉蝶盘绒茧蜂。两种寄生蜂3次连续产卵学习的记忆与一次产卵学习记忆结果相似。同未经历产卵的寄生蜂相比,粉蝶盘绒茧蜂3次连续产卵在24小时同样产生强的记忆保持力,这种记忆保持力同样能被蛋白合成的转录抑制剂放线菌酮D强烈抑制;但微红盘绒茧蜂3次连续产卵后在24小时的记忆和未经历产卵的寄生蜂是相似的,不存在显著的差异。
     进一步研究发现,与未经历产卵的寄生蜂相比,两种寄生蜂经过3次间隔产卵学习记忆均可产生持续5天的记忆保持力,但它们之间长时记忆巩固的时间动态有差异。粉蝶盘绒茧蜂在4小时就形成了依赖于蛋白质合成的记忆,放线菌酮D明显抑制粉蝶盘绒茧蜂的4小时及以后的记忆保持力。放线菌酮D和茴香霉素对微红盘绒茧蜂24小时的记忆保持力部分抑制,在其24小时的记忆中,存在依赖于蛋白质合成和不依赖于蛋白质合成的两种方式。但在72小时,其记忆则完全依赖于蛋白质合成,表现出茴香霉素明显抑制微红盘绒茧蜂72小时的记忆保持力。因此,粉蝶盘绒茧蜂长时记忆产生早,巩固快;微红盘绒茧蜂形成长时记忆较晚,72小时后才形成。72小时后,茴香霉素处理的记忆保持力在两种寄生蜂之间没有差异。
     (2)粉蝶盘绒茧蜂和微红盘绒茧蜂的短时记忆
     粉蝶盘绒茧蜂1小时的记忆保持力受到冷休克干扰,4小时后记忆保持力部分受影响,8小时后记忆不受冷休克影响。影响长时记忆的抑制剂的抑制效果显示,对粉蝶盘绒茧蜂一次产卵后1小时的记忆的抑制作用没有影响,4小时部分受到抑制,8小时记忆显著抑制。以上结果均表明粉蝶盘绒茧蜂的麻醉敏感记忆(AnesthesiaSensitive Memory,ASM)能持续几小时,一次产卵后8小时完全形成长时记忆。而微红盘绒茧蜂ASM衰退速度比粉蝶盘绒茧蜂要快,一次产卵后20分钟处理,对冷休克干扰敏感,1小时后明显减弱。对两种寄生蜂一次产卵后间隔20分钟、1小时、2小时和3小时进行冷休克处理结果显示:随着时间间隔的延长,冷休克处理对寄生蜂记忆的干扰作用逐渐减弱。间隔20分钟内冷休克处理的效果明显,但间隔1小时后冷休克处理的效果变得不明显。
     (3)粉蝶盘绒茧蜂和微红盘绒茧蜂的记忆结构
     本研究表明,在粉蝶盘绒茧蜂中,麻醉敏感记忆ASM的衰退和长时记忆(Long-term memory,LTM的巩固阶段发生在一个相似的时间段,这表明ASM直接巩固为LTM,不需要抗麻醉记忆(Anesthesia-resistant memory,ARM)作为过渡。粉蝶盘绒茧蜂中LTM的形成阻断了ARM的形成,两者不能共存。但在微红盘绒茧蜂中,麻醉敏感记忆(ASM)的衰退比长时记忆LTM时相巩固要开始提前几个小时,它的记忆首先巩固为抗麻醉记忆阶段,随后与长时记忆(LTM)记忆共存,然后在48小时后衰退。以上结果表明,这两种寄生蜂间记忆巩固形成的ARM和长时记忆(LTM)的巩固存在明显的差异。
     (4)creb基因在粉蝶盘绒茧蜂脑部的表达
     creb基因在长时记忆形成中起重要作用。为了揭示creb基因与记忆的关系,本论文通过原位杂交,检测了creb基因在寄生蜂脑中的表达特征,发现粉蝶盘绒茧蜂记忆形成过程中,脑部蕈体的Kenyon细胞有creb基因优势表达;而且在视叶的神经节层和外髓等部位也检测到creb基因的表达。
     本博士论文通过对两种近缘种寄生蜂的学习行为的研究,发现粉蝶盘绒茧蜂和微红盘绒茧蜂记忆形成和巩固的种的特异性不同,学习方式和学习次数影响昆虫长时程记忆形成和巩固是适应于取食策略的不同的进化结果;首次表明两个近缘种间在形成LTM时,必须的学习事件中在数量和质量上存在明显的自然差异。从而阐明了进化和生态环境对昆虫学习行为和记忆的作用,揭示了LTM形成和巩固在不同近缘种之间差异产生的机制,丰富和发展了昆虫行为学的理论。
The ecology and behaviour of animal learning and memory have been studied extensively Differences in learning between closely related species create excellent opportunities for studying species-specific adaptations of learning. Parasitic wasps are good model systems for exploring learning and memory formation and their underlying mechanisms. We investigated learning and memory formation of two closely related parasitic wasp species, Cotesia. glomerata and Cotesia. rubecula, to reveal natural differences in memory acquisition. We wanted to establish the type of memory that is different between these wasp species. Using a strictly controlled classical conditioning set-up, we defined differences in specific forms of memory between the two species., by measuring the dynamics of memory formation. For this purpose, we applied (1) retrograde amnesia by cooling directly after learning to inhibit anesthesia sensitive memory (ASM) or (2) inhibition of translation or transcription with anisomycin (ANI) and actinomycin D (AcD), respectively, to block long-term memory (LTM). The two species were then tested for memory retention after different conditioning trials. Following these treatments, we studied the memory dynamics in two closely related species. The main results were as follow listed below:
     C. glomerata memory retention was completely inhibited by actinomycin D (ACD) after one conditioning trial for 24 hrs. When ACD-fed wasps were given a single conditioning trial, 24hrs memory was reduced to a level that was not different from naive ACD-fed wasps, showing that 24h memory was composed entirely of a transcription-dependent memory component. In C. rubecula a single conditioning does not induce 24 hr memory. Memory for nasturtium is formed after a single trial, but lasts only some hours. A massed learning protocol (3 subsequent oviposition experiences on nasturtium without a rest interval) yielded for both species displayed similar result for 24h memory with single trial learning. For C. glomerata, massed learning gave a strong memory compared to naive wasps and a strong reduction of this memory by ACD treatment to a level not different from naive, ACD-fed, but in C. rubecula, 24 hour memory retention was again similar to naive wasps.
     A spaced learning protocol (3 oviposition experiences on nasturtium with a 10 min interval) yielded a stable memory lasting 5 days in contrast with naive wasps for both species. There was, however, a difference in the temporal dynamics of LTM. In C. glomerata, maximum inhibition of memory performance in ANI- fed and ACD-fed wasps was reached and maintained stable after 4 h a showing that consolidation of a protein synthesis-dependent memory was complete after 4h. In C. rubecula 24h memory was only partially inhibited by ACD and anisomycin (ANI). This shows that a protein synthesis-independent memory coexists with a protein synthesis-dependent memory in C. rubecula at 24 h, while memory is entirely protein synthesis dependent at 72hrs. At 72hrs, the memory retention was completely inhibited by ANI. LTM consolidation took 72h in C. rubecula.
     In C. glomerata, wasps treated by a cold shock directly after a single trial had a similar memory performance at 1 h after a single trial as naive wasps, showing that memory was completely inhibited by cold shock. 4h memory retention after cold shock was inhibited partially compared to wasps after a single trial, while after 8h the cold shock treated wasps progressively approached the memory performance of untreated wasps after a single trial. When ACD-fed or ANI-fed wasps were given 1 single conditioning trial ,1h memory retention are not affected and 4h memory retention inhibited partially while 8h memory retention was completely inhibited by inhibitor .Thus, the ASM component after a single trial learning in C. glomerata contributes 100% to the observed memory trace at 1h and progressively decays within 8 h. In C. rubecula, the decay rate occurs at a faster rate than in C. glomerata, as cold shock treated wasps had a similar memory performance 20 min. after a single trial as naive wasps, whereas after 1h memory was significantly less affected by cold shock treatment. After 4h the cold shock treated wasps had similar memory retention levels as untreated wasps after a single trial. Thus, the ASM component after single trial learning in C. rubecula is 100% at 20 min and progressively decays within 4 h. Wasps subjected to cold shock 20min, 1h, 2h or 3h after training and then 4h retention were tested in each case. 4h retention was found to be severely disrupted when cold anesthesia was delivered 20min after training, but became increasingly resistant to cold anesthesia, as such treatment was delivered 1h after training.
     In C. glomerata, the ASM component decays within a similar time window as consolidation phase of LTM, suggesting that ASM consolidates directly into LTM, without an intermediate or coexisting anesthesia-resistant memory (ARM) trace. In C. rubecula, ASM decays several hours before the start of the consolidation phase of LTM, and its memory consolidates first into an ARM trace that later on coexists with an LTM trace and then decays after 48h. A model showed the differences in ARM and LTM consolidation between the two wasp species.
     cAMP responsive element binding protein (CREB), a transcription factor plays a key role in the LTM formation. To elucidate the role of the CREB in wasp memory formation, we analyzed creb expression in wasp brain by FISH. First results show a positive signal in the kenyon cells around the mushroom bodies, suggesting that the gene is predominantly expressed in kenyon cells around the mushroom bodies, a structure that is involved in learning and memory processes. However, expression can also be found around the lamina and medulla of the optic lobes
     The species-specific difference in LTM acquisition and consolidation is adaptive given the extreme differences in the effects of learning on two parasitoid species evolved distinctly different foraging strategies. This is the first demonstration of natural differences in quantity and quality of learning events required for LTM formation between closely related species. The present studies indicate that the development of learning and memory of insects is closely associated with evolution and environment. Our results suggested that different mechanism between the closely related species underlines the formation and maintenance of LTM.
引文
1.迟国梁.信息化合物与学习行为在平腹小蜂寄主选择过程中的作用[D].华南农业大学硕士生论文,2005.
    2.畅晓燕.CREB 的转录调控机制[J].国外医学,分子生物学分册,2002,24(3):136-139.
    3.韩太真,吴馥梅.学习与记忆的神经生物学[M].北京:北京医科大学、中国协和医科大学联合出版社,1998.
    4.侯照远,严福顺.寄生蜂寄主选择行为研究进展[J].昆虫学报,1997,40(1):94-107.
    5.胡萃.微红盘绒茧蜂在我国的首次记录[J].昆虫学报,1982,24(3):343.
    6.雷宏,邱宇彤,Christensen T A,et a1.昆虫嗅觉系统的结构与功能 昆虫学研究:进展与展望,[M]2005,135-171.
    7.李保平,刘小宁.学习对广赤眼蜂寻找寄主和接受寄主行为的影响[J].昆虫天敌,2002,24(4):154-159.
    8.李侲宇,钱益平,张振平,等.cAMP 反应元件结合蛋白(CREB)在正常发育大鼠视皮层的表达研究[J].神经解剖学杂志,2004,20(3):239-244
    9.刘树生,江丽辉,李月红,等.寄生蜂成虫在寄主搜索过程中的学习行为[J].昆虫学报,2003,46(2):228-236
    10.金卓明.CREB 在拟黑多刺蚁学习记忆中的作用研究[M].陕西师范大学硕士生论文,2006
    11.王常平,游兰韶,肖芬,等.菜粉蝶盘绒茧蜂的生物学特性[J].湖南农业科学,2005,(3):51-53
    12.王建武,周强,徐涛,等.挥发性信息化合物与学习行为在平腹小蜂寄主选择过程中的作用[J].生态学报,2003,23(9):1790-1797
    13.王旭,刘力,夏守真,等 果蝇视觉学习记忆能力与脑部cAMP 水平的相关性[J].中国科学,C辑,1998,28(6):521-528
    14.温艾,刘力.果蝇学习记忆行为的分子机制[J].生物化学与生物物理进展,2002,29(5):670-673
    15.杨怀文.微红盘绒茧蜂的生物学特性观察[J].生物防治通报 1985,1(2):6-10
    16.杨广,尤民生,魏辉,等.菜蛾绒茧蜂对几种挥发性物质的定向行为[J].植物保护学报 2004,31(1):109-111
    17.余端元,王燕峰,徐长法.CREB 研究进展[J].中国生物工程杂志,2003,23(1):39-42
    18.左巍,沈政CREB—长时记忆的介导因子[J].生物化学与生物物理进展,1999,2:138-141
    19.Abel T,Martin K C,Bartsch D,et a1.Memory suppressor genes:inhibitory constraints on the storage of long-term memory[J].Science,1998,279:338-41
    20.Adams S R,Harootunian A T,Buechler YJ,et a1.Fluorescence ratio imaging of cyclic AMP in single cells[J].Nature,1991,349:694-697
    21.Allweis C.The congruity of rat and chick multiphasic memory consolidation models[M].In R.J.Andrew(Ed.),Neural and behavioural plasticity New York.Oxford University Press, 1991,pp370-393
    22.Altfelder K,Muller U. Cyclic nucleotide dependent protein kinase in the neural tissue of the honeybee,Apis mellifera[J]. Insect Biochem,1991,21(5):487-494
    23.Anton S,Homberg U. Antenal structure. In: Hansson,B.S. Insect Olfaction[M]. Berlin:Springer. 1999,97-124
    24.Bailey C H.,Bartsch D,Kandel E R. Toward a molecular definition of long-term memory storage[J]. Proc. Natl. Acad. Sci. USA. 1996,93:13445-13452
    25.Barnea G,Donnell S,Mancia F,et al. Odorant receptors on axon termini in the brain[J].Science. 2004,304:1468
    26.Bartsch D, Ghirardi M,Skehel PA,et al. Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into long-term functional and structural change[J]. Cell, 1995, 83:979-992.
    27.Bitterman M E,Menzel R,Fietz A.,et al. Classical-conditioning of proboscis extension in honeybees (Apis mellifera) [J]. Journal of Comparative Psychology,1983,97:107-119
    28.Bleeker M.A.K.,Smid H.M.,Steidle J.L.M.,et al. Differences in memory dynamics between two closely related parasitoid wasp species[J]. Anim. Behav. 2006,71:1343-1350
    29.Chittka L,Thomson J D,Waser N M. Flower constancy,insect psychology,and plant evolution[J]. Naturwissenschaften,1999,86:361-377
    30.Christensen T.A.,Waldrop B.R.,Harrow,I.D.et al. Local interneurons and information-processing in the olfactory glomeruli of the moth Manduca sexta[J]. J.Comp.Physiol.A, 1993,173:385-399
    31.Collatz J.,Muller C.,Steidle J.L.M. Protein synthesis-dependent long-term memory induced by one single associative training trial in the parasitic wasp Lariophagus distinguendus[J]. Learn. Mem. (Cold Spring Harb.) 2006,13: 263-266
    32.Crino P,Khodakhah K, Ginsberg S, et al. Presence and phosphorylation of transcription factors in developing dendrites. [J]. Proc Nat Acad Sci USA 95:2313-2318
    33.Crittenden J R.,Skoulakis E M.,Han K A,et al. Tripartite mushroom body architecture revealed by antigenic markers[J]. Learn. Mem. 1998,5:38-51
    34.Crow T,Siddiqi V,Dash PK.Long-term enhancement but not short-term in Hermissenda is dependent on mRNA synthesis[J]. Neurobiol Learn Mem,1997,68:343-350
    35.Crow T,Juan-Juan XB,Siddiqi.V. ProteinSynthesis-Dependent and mRNA Synthesis-Independent Intermediate Phase of Memory in Hermissenda[J].The American Physiological Society, 1999,495-500
    36.Davis R. Mushroombodies,Ca2+ oscillations and the memory gene amnesiac[J].Neuron,2001,30(3): 653-656
    37.DeBelle J S,Heisenberg M. Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies [J]. Science, 1994, 263:692-695
    38.DeZazzo J,Xia S,Christensen J,et al. Rescue of the mutant memory defect reveals amnesiac to encode a peptide involved in neurodevelopment[J]. J Neurosci, 1999,19:8740-8746
    39.DeZazzo J, Tully T. Dissection of memory formation: from behavioral pharmacology to molecular genetics[J]. Trends Neurosci, 1995,18:212-218
    40.Dicke M,Van Lenteren J.C,Minks A.K, et al. Semiochemicals and Pest Control, Prospects for New Applications[J]. Journal of Chemical Ecology,1990,16:3015-3212
    41.Dina B,Silvia M,Susswein A J. Multiple memory processes following training that a food is inediblein aplysia[J]. Learning&Memory, 1998,5:204-219
    42.Driessen G, Hemerik L. The time and egg budget of Leptopilina clavipes(Hartig), a larval parasitoid of Drosophila[J].Ecol. Entomol. 1992,17:17-27
    43. Drier E A,Tello M. K,Cowan N,et al. Memory enhancement and formation by atypical PKM activity in Drosophila melanogaster[J]. Nat.Neurosci. 2002,5:316-324
    44.Dubnau J,Grady L,Kitamoto T,et al. Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory[J]. Nature,2001,411(6836):476-480
    45.Dubnau J. Neurogenetic dissection of conditioned behavior: Evolution by analogy or homology? [J]. J. Neurogenet,2003,17:295-326
    46.Dubnau J,Chiang A S, Tully T. Neural substrates of memory: From synapse to system[J]. Journal of Neurobiology,2003,54:238-253
    47.Dudai Y,Jan Y N,Byers D, et al. Dunce,a mutant of Drosophila deficien in learning[J]. Proc Natl Acad Sci USA, 1976,79:5-8
    48.Dudai Y.,Buxbaum J.,Corfas G,et al. Formamidines interact withDrosophila octopamine receptors, alter the flies behavior and reduce their learningability[J]. Journal of Comparative Physiology A,1987,161:739-746
    49.Dukas R,Duan J J. Potential fitness consequences of associative learning in a parasitoid wasp[J]. Behav. Ecol.2000,11:536-543
    50.Dukas R.. Cognitive ecology: The evolutionary ecology of information processing and decision making [M]. The University of Chicago Press,Chicago,1998
    51.Dukas R.. Costs of memory: ideas and predictions. Journal of Theoretical Biology[J],1999,197:41-50
    52.Dukas R. Evolutionary biology of animal cognition.Annual Review of Ecology[J] Evolution,and Systematics,2004,35:347-374
    53.Dukas R. Evolutionary ecology of learning[M]. In:Cognitive ecology:The evolutionary ecology of information processing and decision making (Ed. by Dukas R.),pp. 129-174. The University ofChicago Press,Chicago, 1998b
    54.Eisenhardt D. Learning and memory formation in the honeybee (Apis mellifera) and its dependency on the cAMP-protein kinase A pathway[J]. Anim. Biol,2006, 56:259-278
    55.Eisenhardt D,Fiala A,Braun P,et al. R. Cloning of a catalytic subunit of a cAMP-dependent protein kinase from the honeybee (Apis mellifera) and its localization in the brain[J]. Insect Mol Biol,2001,10:173-181
    56.Eisenhardt D,Friedrich A,Stollhoff N,et al. The AmCREB gene is an ortholog of the mammalian CREB/CREM family of transcription factors and encodes several splice variants in the honeybee brain[J]. Insect Mol Biol, 2003,12(4):373-82
    57.Eller F J,Tumlinson J H,LewisW J. Efect of host dietan d preflight experience on the flight responses of Microplitis crocepis (Cresson) [J]. Physiol. Eraomol,1992,17:235-240
    58.Erber J. Retrograde amnesia in honeybees(Apis mellifera carnica)[J]. J Comp Physiol, 1976,90: 41-46
    59.Erber J,Masuhr T,Menzel R. Localization of short-term memory in the brain of the bee,Apis mellifera[J]. Physiol Entomol,1980,5:343-358
    60.Farooqui T,Vaessin H,Smith BH. Octopamine receptors in the honeybee (Apis mellifera) brain and their disruption by RNA-mediated interference[J]. J Insect Physiol,2004, 50(8):701-713
    61.Feany M B,Quinn W G. A neuropeptide dene defined by the Drosophila memory mutant amnesiac [J].Science,1995, 268:869-873
    62.Feinstein P,Mombaerts P. A contextual model for axonal sorting into glomeruli in the mouse olfactory system[J].Cell, 2004,117:817-831
    63.Fiala A,Muller U,Menzel R. Reversible downregulation of protein kinase A during olfactory learning using antisense technique impairs long-term memory formation in the honeybee.Apis mellifera[J]. The Journal of Neuroscience, 1999,19(22):10125-10134
    64.Fitzpatrick M. J, Ben-Shahar Y, Smidz H M,et al., Candidate genes for behavioural ecology[J]. Trends in Ecology and Evolution, 2005, 20(2):96-104
    65.Flokers E,Drain P,Quinn W G. Radish. A Drosophila mutant deficient in consolidated memory [J]. Proc Natl Acad Sci USA, 1993,90:8123-8127
    66.Friedrich A,Thomas U,Muller U. Learning at different satiation levels reveals parallel functions for the cAMP-protein kinase A cascade in formation of long-term memory[J].J Neurosci,2004,24(18): 4460-4468
    67.Fujiwara C, Takabayashi J,Yano S. Oviposition experience on a host infested plant affects flight and an tennal searching behavior of Cotesia kariyai toward the host-plant complex[J]. Era. Exp. Appl, 2000,97:251-256
    68.Fukushima J,Kainoh Y,Honda H, et al. Learning of host-infested plant volatiles in the larval parasitoid Cotesia kariyai[J]. Entomologia Experimentalis et Applicata, 2001,99:341-346
    69.Fulton D,Kemenes I,Andrew R.J, et al. A single time-window for protein synthesis-dependent long-term memory formation after one-trial appetitive conditioning[J]. Eur. J. Neurosci, 2005, 21: 1347-1358
    70.Gang L,Holger S,Ai W,et al. Distinct memory traces for two visual features in the Drosophila brain[J]. Nature, 2006,439:551-556
    71.Gao Q,Yuan B,Chess A. Covergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe[J].Nat.Neurosci,2000,3:780-785
    72.Geervliet J B F,Vet L E M, Dicke M. Volatiles from damaged plants act as major cues in long-range host-searching by the parasitoid Cotesia rubecula[J]. Entomologia Experimentalis et Applicata, 1994,73:289-297
    73.Geervliet J B F,Vet L E M, Dicke M. Innate responses of the parasitoids Cotesia glomerata and C. rubecula (Hymenoptera: Braconidae) to volatiles from different plant-herbivore complexes[J]. Journal of Insect Behavior,1996,9:525-538
    74.Geervliet J B F, Vreugdenhil A I, Dicke M, et al. Learning to discriminate between infochemicals from different plant-host complexes by the parasitoids Cotesia glomerata and Cotesia rubecula (Hymenoptera: Braconidae)[J]. Entomologia Experimentalis et Applicata, 1998, 86:241-252
    75.Geervliet J B F,Verdel M S W,Snellen H, et al. Coexistence and niche segregation by field populations of the parasitoids Cotesia glomerata and C. rubecula in the Netherlands: predicting field performance from laboratory data[J]. Oecologia,2000,124: 55-63
    76.Gerber B,Wustenberg D,Schutz A,et al. Temporal determinants of olfactory long-term retention in honeybee classical conditioning: Nonmonotonous effects of the training trial interval[J]. Neurobiology of Learning and Memory, 1998,69:71-78
    77.Gerber B,Smith B H. Visual modulation of olfactory learning in honeybees[J]. J.Exp. Biol, 1998, 201: 2213-2217
    78.Godfray H C J. Parasitoids,behavioral and evolutionary ecology[M]. PrincetonUniversity Press, Princeton, New Jersey, 1994.
    79.Grohmann L,Blenau W,Erber J,et al. Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain[J]. J Neurochem,2003, 86:725-735
    80.Grunbaum L,Muller U. Induction of a specific olfactory memory leads to a long-lasting activation of protein kinase C in the antennal lobe of the honeybee[J]. J Neurosci. 1998,18:4384-4392
    81.Guo A K, Liu L, Xia S Z, et al . Conditioned visual flight orientation in Drosophila: dependent on age, practice and diet [J]. Learning Memory, 1996,3:49-59
    
    82.Hammer M,Menzel R. Learning and memory in the honeybee. J Neurosci,1995,15:161-163
    83.Hammer M. The neural basis of associative reward learning in honeybees[J].Trends in Neuroscience,1997,20(6):245-252
    84.Hammer M,Menzel R. Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees[J]. Learn. Mem. 1998,5:146-156
    85.Hammer M. An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees[J]. Nature,1993,366:59-63
    86.Han K A,Millar N S,Grotewiel M. S, et al. DAMB,a novel dopamine receptor expressed specifically in Drosophila mushroom bodies[J].Neuron,1996,16:1127-1135
    87.Han K A,Millar N S,Davis RL. A novel octopamine receptor with preferential expression inDrosophila mushroom bodies[J]. J Neurosci,1998,18(10):3650-3658
    88.Heisenberg M. Mushroom body memoir: from maps to models[J]. Nat. Rev. Neurosci,2003,4: 266 -275
    89.Heisenberg M,Borst A,Wagner S,et al. Drosophila mushroom body mutants are deficient in olfactory learning[J]. J. Neurogenet, 1985,2:1-30
    90.Hern A,Edwards-Jones G, McKinlay R. G. A review of the pre-oviposition behaviour of the small cabbage white butterfly,Pieris rapae (Lepidoptera: Pieridae) [J].Annals of Applied Biology, 1996, 128:349-371
    91.Honda T,Kainoh Y. Age related fecundity and learning ability of the egg -larval parasitoid Ascogaster reticulatus Watanabe(Hymenoptera:Braconidae) [J]. Biol. Coatrol, 1998,13:177-181
    92.Honda T,Kainoh Y,Honda H. Enhancement of learned response to plant chemicals by the egg-larval parasitoid Ascogaster reticulatus Watanabe (Hymenoptera:Braconidae) [J]. Appl. Eat. Zool., 1998, 3:271-276
    93.Huang X P, Renwick J A A. Cross habituation to feeding deterrents and acceptance of a marginal host plant by Pieris rapae larvae[J]. Entomol .Exp. Appl., 1995,76:295-302
    94.Igaz L M., Vianna M.R.M.,Medina J H., et al. Two time periods of in parasitoid wasp[J]. Behavioural Ecology and Sociobiology, 2002,42(1):9-16
    95.Iizuka T, Takasu K. Olfactory associative learning of the pupal parasitoid Pimpla luctuosa Smith (Hymenoptera: Ichneumonidae) [J].J.InsectBehav,1998,ll:743-760.
    96.Isabel G, Pascual A, Preat T. Exclusive consolidated memory phases in Drosophila[J]. Science, 2004, 304(5673):1024-1027
    97.Ito K,Sass H,Urban J,et al. Gal4- responsive UAS-tau as a tool for studying the anatomy and development of Drosophila central nervous system[J].Cell andTissue Research,1997,290(1):1-10
    98.Ito K, Suzuki K,Estes P,et al. The organization of extrinsic neuronsand their implications in the functional roles of the mushroom bodies in Drosophila melanogaster Meigen[J]. Learn. Mem, 1998,5:52-77
    99. Jefferis G S X E,Marin E C,Watts R.J,et al. Development of neuronal connectivity in Drosophila antennal lobes and mushroom bodies[J].Current Opin.Neurobiol, 2002,12:80-86
    100.Josselyn S A. Inducible repression of CREB function disrupts amygdala-dependent memory[J]. Neurobiol. Learn. Mem,2004,82:159-163
    101.Josselyn S A,Shi C,Carlezon W A.et al. Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala[J]. J. Neurosci,2001,21:2404-2412
    102.Kaiser L,Perez-Maluf R,Sandoz J C, et al. Dynamics of odour learning in Leptopilina boulardi,a hymenopterous parasitoid[J]. Animal Behaviour,2003,66:1077-1084
    103.Kandel E R. Cellular mechanisms of learning and the biological basis of individuality. In: Principles of Neural Science[M]. Third international edn. (Ed. by Kandel E. R.,Schwartz J. H. & Jessell, T M.),1991. pp. 1009-1031. Appleton and Lange,Prentice Hall International Inc,Norwalk CT
    104.Kandel E R. The molecular biology of memory storage: A diologue between genes and synapses [J]. Science,2001,294:1030-1038
    105.Kim Y C,Lee H G,Seong C S,et al. Expression of a D1 dopamine receptor dDA1/DmDOP1 in the central nervous system of Drosophilamelanogaster[J]. Gene Exp. Patterns,2003,3:237-245
    106.Kimiko S,Akira Y,Fumimaro T. Cell cycle regulated phosphorylation of cAMP response element binding protein : Identification novel phosphorylation sites[J]. Biol J,1999,338(1):49—54
    107.Kogan J H.,Frankland P W,Blendy J A.Spaced training induces normal long-term memory in CREB mutany mice[J].Current Biology,1996,7(1):1-11
    108.Korzus E.The relation of transcription to memory formation[J].Acta Biochimica Polonica,2003,50(3): 775-782
    109.Kreissl S,Eichmuller S,Bicker G.,et al. Octopamine-like immunoreactivity in the brain and subesophageal ganglion of the honeybee[J].The Journal of Comparative Neurology, 1994,348: 583-595
    110.Kupferman I. Learning & memory[M]. In: Principles of Neural Science. Third international edn. (Ed. by Kandel,E. R.,Schwartz,J. H. & Jessell, T. M.),1991. pp.997-1008. Appleton and Lange, Prentice Hall International Inc,Norwalk CT
    111.Kaang B K,Kandel E R, Grant S G N. Activation of cAMP-responsive genes by stimuli that produce long-term facilitation in aplysia sensory neurons[J]. Neuron,1993,10:427-435
    112.Laing J E, Levin D B. A review of the biology and a bibliography of Apanteles glomeratus (L) (Hymenoptera:Braconidae) [J].Biocontrol News and Information, 1982,3:7-23
    113.Laverty T, Plowright R.C. Flower Handling by Bumblebees - a Comparison of Specialists and Generalists [J]. Anim. Behav. 1988, 36:733-740
    114.Leboulle G, Muller U. Synergistic activation of insect cAMP-dependent protein kinase A (type II) by cyclic AMP and cyclicGMP[M]. FEBS Letters,2004
    115.Lee J A,Kim H,Lee Y S,et al. Overexpression and RNA interference of Ap-cyclic AMP-response element binding protein-2,a repressor of long-term facilitation, in Aplysia kurodai sensory-to-motor synapses[J]. Neuroscience Letters,2002,337(1):9-12
    116.Lee T,Lee A, Luo L. Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast[J]. Development, 1999,126:4065-4076
    117.Lei H,Christensen T A,Hildebrand J G. Local inhibition modulates odor-evoked synchronization of glomerulus-specific output neurons[J]. Nat.Neurosci,2002,5:557-565
    118.Leivn L R,Han P L,Hwang P M. The Drosophila learning and memory gene rutabbage encodes a Ca2+/calmodulin-responsive adenylyl cyclase [J]. Cell, 1996,68:479-489
    119.Lemasurier A D. Costs and Benefits of Egg Clustering in Pieris-Brassicae [J]. J. Anim. Ecol, 1994, 63:677-685
    
    120.Lewis A C. Memory constraints and flower choice in Pieris rapae [J].Science,1986,232:863-865
    121.Lewis W J,Tumlinson J H. Host detection by chemically mediated associative learning in a parasitic wasp [J].Nature,1988,331:257-259
    122.Lewis W J,Takasu K. Use of learned odours by a parasitic wasp in accordance with host and food needs [J]. Nature,1990,348:635-636
    123.Lewis W J, Tumlinson J H, Krasnof S. Chemically mediated associative learning: an important function in the foraging behavior of Microplitis croceipes(Cresson) [J]. J. Chem. Ecol., 1991, 17:1309-1325
    124.Liu S S, Jiang L H. Differential parasitism of diamondback moth larvae by the parasitoid (Cotesia platellae) on two host plant species [J]. Bull. Eat. Res, 2003,93(1):65-72
    125.Lonze B E,Ginty D D. Function and regulation of CREB family transcription factors in the nervous system[J].Neuron,2002,35(4):605-623
    126.Margulies C,Tully T, Dubnau J. Deconstructing memory in Drosophila [J]. Curr. Biol, 2005, 15: R700-R713
    127.Mattiacci L,Dicke M, Posthumus M A. Induction of parasitoid attracting synomone in Brussels sprouts plants by feeding of Pieris brassicae larvae: Role of mechanical damage and herbivore elicitor[J]. Journal of Chemical Ecology, 1994,20:2229-2247
    128.Mauelshagen J. Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain[J]. J Neurophysiol, 1993,69:609-625
    129.Mayford M.,Kandel E R.. Genetic approaches to memory storage[J]. Trends in Genetics,1999,15(11): 463-470
    130.Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB [J]. Nat. Rev. Mol. Cell Biol,2001,2:599-609
    131.McAuslane H J,Vinso n S B,Williams H J. Effect of host diet on flight behavior of the parasitoid Campoletis sonorensis(Hymenoptera: Iehneumonidae) [J]. J. Eatoaml. Sci., 1990,25:562-570
    132.McCullagh P,Nelder JA. Generalized linear models[M]. Chapman & Hall,London
    133.Menzel,R. . Memory dynamics in the honeybee. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 1999,185:323-340
    134.McGuire S E,Le P T,Davis R L. The role of Drosophila mushroom body signaling in olfactory memory[J]. Science,2001,293:1330-1333
    135.Meller V M,Davis R L. Biochemistry of insect learning: lessons from bees and flies [J] .Insect Biochemistry and Molecular Biology,1996,26(4):327-335
    136.Menzel R,Galizia G,Muller D, et al. Odor coding in projection neurons of the honeybee brain[J]. Chem.Senses,2005,30(Suppl. 1):i301-i302
    
    137.Menzel R. Associative learning in honey bees [J]. Apidologie,1993,24:157-168
    138.Menzel R, Greggers U, Hammer M Functional organization of appetitive learning and memory in a generalist pollinator, the honey bee. In: Papaj D, Lewis AC (eds) Insect learning:ecological and evolutionary perspectives. Chapman & Hall,New York, 1993, pp 79-125
    139.Menzel R. Memory. Dynamics in the honeybee [J]. Journal of Comparative Physiology A, 1999, 185:323-340
    140.Menzel R. Searching for the memory trace in a mini-brain, the honeybee[J]. Learn. Mem. (Cold Spring Harb).2001, 8:53-62
    141.Menzel R,Giurfa M. Cognitive architecture of a mini-brain: The honeybee [J] .Trends in Cognitive Sciences, 2001,5:62-71
    142.Menzel R,Manz G, Greggers U. Massed and spaced learning in honeybees: The role of CS,US,the intertrial interval,and the test interval[J]. Learning and Memory,2001,8:198-208
    143.Mery F, Kawecki T J. Experimental evolution of learning ability in fruit flies[J], Proc. Natl. Acad. Sci. U. S. A,2002, 99:14274-14279
    
    144.Mery F, Kawecki T J. A cost of long-term memory in Drosophila[J]. Science,2005, 308:1148
    145.Michel-Salzat A,Whitfield J B. Preliminary evolutionary relationships within the parasitoid wasp genus Cotesia (Hymenoptera:Braconidae:Microgastrinae): combined analysis of four genes[J]. Systematic Entomology,2004,29:371-382
    146.Montrminy M R,Sevarino K A,Wag-ner J A,et al. Identification of a cyclic-AMP responsive element within the rat somatostatin gene [J]. Proc Natl Acad Sic USA, 1986,83:6682-6686
    147.Muller U,Hildebrandt H. Nitric oxide/cGMP-mediated protein kinase A activation in the antennal lobes plays an important role in appetitive reflex habituation in the honeybee[J]. J Neurosci, 2002,22(19):8739-8747
    148.Muller U. Ca2+/calmodulin-dependent nitric oxide synthase in Apis mellifera and Drosophila melanogaster[J]. Eur J Neurosci,1994,6:1362-1370
    149.Muller U. Inhibition of nitric oxide synthase impairs a distinct form of long-term memory in the honeybee,Apis mellifera[J]. Neuron, 1996,16(3):541-549
    150.Muller,U. Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honeybees [J]. Neuron,2000,27:159-168
    151.Ng M,Roorda R D,Lima S. Q,et al. Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly [J].Neuron ,2002,36:463-474
    152.Nighorn A,Healy R, Davis R. The cyclic AMP phosphodiesterase encoded by the Drosophila dunce gene is concentrated in the mushroom body neuropile[J]. Neuron ,1991,6(3): 455-467
    153.Papaj D R ,Lewis A C , eds. Insect Learning : Ecological and Evolutionary Perspectives. New York : Chapman & Hall, 1993, pp.398
    154.Papaj D R. Snellen H,Swaans Ket al. Unrewarding experiences and their effect on foraging in parasitic wasps Leptopilina heterotoma parasitoid: genotype versus experience [J]. Evolutionary Ecology Research,1994,6:1021-1035
    155.Pascual A,Preat T. Localization of long-term memory within the Drosophila mushroom body[J]. Science,2001,294:1115-1117
    
    156.Pavlov I P. Conditioned reflexes (G. V. Anrep,Trans.). Oxford University Press,Oxford,1927
    157.Perazzona B,Isabel G, Preat T,et al. The role of cAMP response element-binding protein in Drosophila long-term memory [J]. J. Neurosci. 2004, 24:8823-8828
    158.Poolman Simons M T T,Suverkropp B P,Vet L E M, et al. Comparison of learning in related generalist and specialist eucoilid parasitoids [J]. Entomol. Exp. Appl, 1992, 64:117-124.
    159.Potting R. P J,Otten H, Vet L E. M. Absence of learning in the stemborer parasitoid Cotesia flavipes [J]. Animal Behaviour, 1997, 53:1211-1223
    160.Quinn W,Sziber P P,Booker R. The Drosophila memory mutant amnesiac[J]. Nature, 1979,277: 212-214
    
    161.Quinn W G, Dudai Y. Memory phases in Drosophila. Nature,1976,262:576-577
    162.Quinn W G,HarrisW A,Benzer S. Conditioned behavior in Drosophila melanogaster [J]. Proc.Natl. Acad. Sci. USA, 1974,71:708-12
    
    163 .Raap A K. Advances in fluorescent in situ hybridization[J]. Mutation Research, 1998,400 :287-298.
    164.Rickard N S,Gibbs M. E,Ng K T. Inhibition of the endothelial isoform of nitric oxide synthase impairs long-term memory formation in the chick [J]. Learn.Mem, 1999,6:458-466
    165.Roitberg B D, Reid M L, Chao L. Choosing hosts and mates: The value of learning[M]. In: Insect learning: Ecological and evolutionary perspectives. (Ed. by Papaj, D.R. & Lewis, A. C.),Chapman and Hall,New York, 1993, pp. 174-194
    166.Root,R B, Kareiva P M. The Search for Resources by Cabbage Butterflies (Pieris- Rapae)-Ecological Consequences and Adaptive Significance of Markovian Movements in a Patchy Environment[J]. Ecology, 1984,65:147-165
    167.Rose S P R. Glycoproteins and memory formation[J]. Behavioural Brain Research,1995,66:73-78
    168.Sachse S, Galizia C G. The coding of odour-intensity in the honeybee antennal lobe: local computation optimizes odour representation [J].Eur. J. Neurosci, 2003,18:2119-2132
    169.Sangha S, Scheibenstock A, McComb C, et al. Intermediate and long-term memories of associative learning are differentially affected by transcription versustranslation blockers in Lymnaea [J].The Journal of Experimental Biology ,2003, 206:1605-1613
    170.Shaywitz A J,Greenberg M E. CREB: a stimulus induced transcription factor activated by a diverse array of extracellular signals[J]. Annu. Rev. Biochem,1999,68:821-861
    171.Sheahan W,Wackers F L,Lewis W J. Discrimination of previously searched,host free sites microplitis croceipes[J]. J.Insect Behav,1993,6:323-331
    172.Shettleworth S J. Varieties of Learning and Memory in Animals[J]. J. Exp. Psychol. Anim. Behav. Process,1993,19:5-14
    
    173.Skinner B F. The behavior of organisms[M]. Appleton-Century,New York. 1938
    174.Smid H M. Variation in learning of herbivory-induced plant odours by parasitic wasps: from brain to behaviour. In: Proceedings of the Frontis Workshop on Chemical Ecology: from Gene to Ecosystem (Ed. M. Dicke & Takken,W.),2006,10:89-105
    175.Smith B H. Merging mechanism and adaptation: an ethological approach to learning and generalization. Insect Learning : Ecological and Evolutionary Aspects.( eds Papaj DR , Lewis AC). Chapman & Hall, New York ,1993,pp.l26-157
    176.Steidle J L M, van Loon J J A. Dietary specialization and infochemical use in carnivorous arthropods: testing a concept[J]. Entomol. Exp. Appl. 2003,108:133-148
    177.Steinberg S,Dicke M, Vet L E M. Relative importance of infochemicals from first and second trophic level in long-range host location by the larval parasitoid Cotesia glomerata[J]. Journal of Chemical Ecology,1993,19:47-59
    178.Stephens D W. Learning and behavioural ecology[M]: Incomplete information and environmental predictability. In: Insect learning: Ecological and evolutionary perspectives. (Ed. by Papaj, D. R. & Lewis, A. C), Chapman and Hall, New York. 1993,pp 195-218
    179.Strausfeld N J,Sinakevitch I, Vilinsky I. The mushroom bodies of Drosophila melanogaster: an immunocytological and golgi study of Kenyon cell organization in the calyces and lobes[J]. Microsc. Res. Tec, 2003,62:151-169
    180.Strausfeld N J,Hansen L,Li Y,et al. Evolution,discovery and interpretations of arthropod mushroom bodies[J].Learn. Mem, 1998,5:11-37
    181.Szyszka,Ditzen M,Galkin A.et al. Sparsening and temporal sharpening of olfactory representations in the honeybee mushroom bodies[J]. J Neurophysiol, 2005,94:3303-3313
    182.Takasu K,Lewis W J. Host-and food-foraging of the parasitoid Microplitis Croceipes:learning and physiological state effects[J]. Biol. Control, 1993,3(1):70-74
    183.Takasu K,Lewis W J. Learning of host searching cues by the larval parasitoid Microplitis croceipes [J]. Entomologia Experimentalis et Applicata,2003,108:77-86
    184.Tamo C,Ricard I,Held M. A comparison of naive and conditioned responses of three generalist endoparasitoids of lepidopteran larvae to host-induced plant odours[J]. Anim. Biol. 2006,56: 205- 220
    185.Tanaka N K,Awasaki T,Shimada T, et al. Integration of chemosensory pathways in the Drosophila secondorder olfactory centers [J]. Curr Biol, 2004,14:449-457
    186.Tang Y P,Shimizu E,Dube G R.,et al. Genetic enhancement of learning and memory in mice [J]. Nature,1999, 401:63-69
    187.Tully T, Quinn W G. Classical conditioning and retention in normal and mutant Drosophila melanogaster [J]. Journal of Comparative Physiology A,1985,157:263-277
    188.Tully T,Preat T, Boynton S C, et al. Genetic dissection of consolidated memory in Drosophila [J].Cell, 1994,79:35-47
    189.Tumlinson J H,Lewis W J,Vet L E M. Parasitic wasps,chemically guided intelligent foragers[J]. Scientific American, 1993, 268:100-106
    190.Turlings T C J,Wackers F L,Vet L E M,et al. Learning of host-finding cues by hymenopterous parasitoids[M]. In: Insect learning: Ecological and evolutionary perspectives. (Ed. by Papaj,D.R. & Lewis,A. C.),Chapman and Hall,New York University Press,Princeton, New Jersey, 1993, pp51-78
    191.Vallejo M,Gosse M E,Bechman W,et al. Impaired cyclic AMP dependent phosphorylation renders CREB a repressor of C/PEBP induced transcription of the somatostatin gene in an insulinoma cell live [J].Mol Cell Biol.,1995,15(1):415-424
    192.Van B J,Boivin G. Learning affects host discrimination behavior in parasitoid wasp [J]. Behavioural Ecology and Sociobiology,1998,42(1):9-16
    193.van Gijlswijk R P M, Zijlmans R ,Wiegant H ,et al. Fluorochrome-labled tyramides :use in immunocytochemistry and fluorescence in situ hybridization[J].J Histochem Cytochem, 1997,45: 375-382
    194.Vet L E M,LewisW J,Papaj D R,et al. A variable-response model for parasitoid foraging be havior [J]. J. Insect Behav, 1990,3:471-490
    195.Vet L E M, Dicke M. Ecology of infochemical use by natural enemies in a tritrophic context [J]. Annual Review of Entomology, 1992,37:141-172
    196.Vet L E M,Lewis W J, Carde R T. Parasitoid foraging and learning[M]. In: Chemical Ecology of Insects. 2nd edn. (Ed. by Carde,R T. & Bell,W. J.),Chapman & Hall,London. 1995, pp65-101
    197.Vinson S B. The general host selection behavior of parasitoid Hymenoptera and a comparison of initial strategies utilized by larvaphagou and phagous species [J]. Biol. Control, 1998,11:79-96
    198.Vo M,Vet L E M. Geographic variation in host acceptance by an insect parasitoid: genotype versus experience[J]. Evolutionary Ecology Research, 2004,6:1021-1035
    199.Wachers F L,Lewis W J. Olfactory and visual learning and their combined influence on host site location by the parasitoid Microplitis croceipes(Cressono) [J]. Biol.Control. 1994,4:105-112
    200.Waddell S,Armstrong J D,Kitamoto T,et al. The amnesiac gene product is expressed in two neurons in the Drosophila brain that are critical fo rmemory [J]. Cell,2000,103(5):805-813
    201.Waddell S,Quinn W G Flies,genes,and learning[J]. Annu Rev Neurosci. 2001,24:1283-1309
    202.Waddell S, Quinn W G. What can we teach Drosophila? What can they teach us? [J].Trends in Genetics,2001,17:719-726
    203.Wang N J,Wright H,Guo Z,et al. Genetic manipulation of the odor-evoked distributed neural activity in the Drosophila mushroom body[J]. Neuron,2001,29: 267-276
    204.Wardle A R,Borden J H. Age-dependent associative learning by Exeristes roborator (F.) (Hymenoptera: Ichneumonidae) [J].Can.Ent, 1985,117: 605-616
    205.Wardle A R,Borden J H. Effect of prior experience on the response of Exeristes roborator (Hymenoptera:Ichneumonidae) to a natural host and microhabitat in a seminatural environment[J]. Environ. Emomol., 1991,20(3):889-898
    206.Watanabe H,Takaya T,Shimoi T, et al. Influence of mRNA and protein synthesis inhibitors on the long-term memory acquisition of classically conditioned earthworms [J]. Neurobiol Learn. Mem. 2005, 83:151-157
    207.Wiskerke J S C,Vet L E M. Foraging for solitary and gregariously feeding caterpillars: A comparison of two related parasitoid species (Hymenoptera: Braconidae) [J]. Journal of Insect Behavior, 1994, 7:585-603
    208.William A,Carlezon J, Ronald S D, et al. The many faces of CREB [J]. Trends in Neurosciences 2005,28.(8) 436-445
    209.Wu G Y,Deisseroth K,Tsien R W. Activity-dependent CREB phosphorylation: Convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen activated[J]. Proc Natl Acad Sci USA,2001,98(5):2808-2813
    210.Wustenberg D,Gerber B,Menzel R. Short communication: long- but not medium-term retention of olfactory memories in honeybees is impaired by actinomycin D and anisomycin [J].Eur J Neurosci,1998,10:2742-2745
    211.Xia S, Feng C,Guo A. Multiple-phase model of memory consolidation confirmed by behavioral and pharmacological analyses of operant conditioning in Drosophila[J] .Pharmacology Biochemistry and Behavior,1998,60(4):809-816
    212.Xia S,Lui L,Feng C,Guo A. Drug disruption of short-term memory in Drosophila melanogaste[J]. Pharmacology Biochemistry and Behavior, 1997,58(3): 727-735
    213.Xia S Z,Feng C H,Guo A K. Temporary amnesia induced by cold anesthesia and hypoxia in Drosophila [J]. Physiology and Behavior, 1999,65:617-623
    214.Yamada A,Sekiguchi T,et al. Behavioral analysis of internal memory states using cooling- induced retrograde amnesia in Limax flavus [J]. The Journal of Neuroscience,1992,12(3): 729- 735
    215.Yin J C P,Wallach J S,Wilder E L,et al. A Drosophila CREB/CREM homolog encodes multiple isoforms,including a cyclic AMP-dependent protein kinase-responsive transcriptional activator and antagonist[J]. Molecular and Cellular Biology,1995,15(9):5123-5130
    216.Yin J C P,Tully T. CREB and the formation of long term memory[J]. Current Opinion in Neurobiology, 1996,6(2):264-268
    217.Yin J C P,Wallach J S,Del Vecchio M,et al. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila[J]. Cell,1994,79:49-58
    218.Zhong Y, Wu C F. Altered synaptic plasticity in drosophila memory mutants with a defective cyclic AMP cascade [J]. Science, 1991,251:198-201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700