图像复原算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在图像成像、复制、扫描、传输、显示等过程中,不可避免地要造成图像的降质,如图像模糊、噪声干扰等。而在许多应用领域中,又需要清晰的、高质量的图像,因此,图像复原(如去噪、去模糊等)具有重要的意义。图像复原的目的是对降质图像进行处理,使其恢复成原始图像,它是图像处理、模式识别、机器视觉的基础,因而受到广泛的研究,并在天文学、遥感成像、医疗图像等领域获得广泛的应用。
     图像复原的传统方法主要是进行图像滤波,由于图像的大部分信息存在于边缘部分,因此要求图像滤波既能去除图像的模糊和噪声,同时又能保持图像的细节。由于图像细节和噪声在频带上混叠,导致图像的平滑和边缘细节的保持成为一对矛盾,传统的滤波方法难以处理这类问题。近年来发展起来的偏微分方程图像处理技术、神经网络技术、小波分析技术以及图割技术,为解决图像复原中的这一矛盾提供了新的方法。
     本文以图像复原中的去模糊和去噪问题为主要研究内容,以全变差图像模型为主要研究对象,研究了基于神经网络的图像复原模型和复原算法;分析了小波图像去噪方法与非线性滤波去噪方法之间的关系;并采用图割技术,研究了全变差去噪模型的数值求解方法。研究工作取得了如下创新性成果:
     (1)神经网络图像复原算法研究
     ·提出了两种基于变分PDE的神经网络图像复原模型,并给出了相应的复原算法。将变分偏微分方程,以正则化项的形式引入到传统神经网络图像复原框架中,给出了基于调和方程和全变差方程的神经网络图像复原模型,提出了两种基于改进型Hopfield神经网络的图像复原算法,并分析了算法的收敛性。
     ·提出了一种基于状态连续改变的快速神经网络复原算法。深入研究了神经网络图像复原算法中的更新规则,将状态连续改变网络模型和最陡下降方法结合,给出了一种状态连续改变的快速神经网络更新规则。进而提出一种基于状态连续改变的快速神经网络复原算法,有效提高了复原算法的收敛速度和复原精度。
     ·提出了基于调和模型的快速神经网络复原算法以及并行算法。将状态连续改变的快速神经网络更新规则应用到基于调和模型的神经网络复原算法,给出了一种基于调和模型的串行快速神经网络复原算法。将状态连续改变网络模型引入到基于调和模型的神经网络复原算法中,给出了一种基于调和模型的并行神经网络复原算法。
     (2)小波图像复原算法研究
     ·分析了非线性扩散和小波收缩去噪方法之间的关系。分析了二维情况下,Haar小波收缩去噪与非线性扩散之间的关系,给出了非线性扩散滤波在二维Haar小波收缩框架下的解释。从计算角度,说明了非线性扩散方法优于Haar小波收缩去噪方法。
     ·提出了一种基于图像全变差模型的非线性扩散与二维Haar小波收缩相结合的混合图像去噪算法。该算法对图像经Haar小波分解的低频部分采用全变差扩散进行滤波处理;对高频部分采用小波收缩方法。实验结果表明,混合去噪算法保留了两种去噪方法的优点,在计算复杂度与滤波效果上具有更好的综合性能。
     (3)基于图割的图像复原算法研究
     ·提出了一种基于图割的全变差图像去噪算法。该算法将全变差去噪模型的能量函数最小化问题转化为图的最小割问题,然后采用图割技术(最大流/最小割算法)求得能量函数的全局最优解。并给出了去噪模型中,正则化参数的自适应设定方案。该算法避免了传统能量函数最小化方法中除数为零的不足,并能有效抑制以往最小化方法产生的阶梯效应,获得较优的复原效果。
     ·提出了一种基于移动空间的全变差图像去噪算法。将基于全变差去噪模型的能量函数最小化问题映射为移动空间中的最优标号问题,采用图割技术来搜索最优标号。给出了基于交换移动空间的全变差去噪模型的求解算法,并讨论了不同正则化参数下的去噪效果。该算法需要较少的额外存贮空间,能够高效逼近全变差能量函数的最小值。
The presence of image degradation, such as noise and blurring, is unavoidable. It may be introduced by the image formation process, image recording, image scanning, image transfer, image showing, etc. However, in many applications, the clear images are needed. The image restoration technique, restoring the original image from the degraded image, is coming to resolve this problem, which is the fundamental problem of image processing, pattern recognition, and computer vision. So, image restoration is widely used in astronomy, remote sensing, medical image, etc.
     The traditional image restoration methods rest on the image filter. Since image edges contain lots of image information, and human being is sensitive to these high frequency parts, image filter technique need deblurring image and suppressing the noise, while preserving image edges. However, both image edges and the noise are high frequency part of the image. So, image smoothing is in contradiction to with preserving image edges during image restoration. The traditional filter methods can not deal with this. In recent years, some image processing techniques, such as variational PDEs (Partial Differential Equations) methods, neural network, wavelet analysis, and graph cut techique, are emerging to solve this contradiction.
     This dissertation is mainly focus on the image deblurring and de-noising problem, and total variation restoration model. In this dissertation, we research into the image restoration models and algorithms based on neural network; analyze the relationship between wavelet image de-noising method and nonlinear filter de-noising method; study the computation methods of total variation de-noising model using graph cut technique. The main original contributions of this dissertation are summarized as follows:
     (1) The study on image restoration algorithm based on neural network
     ◆Two image restoration models and algorithms based on a modified Hopfield neural network and variational PDEs are proposed. Two variational PDEs as the regualarization terms are proposed to the image restoration model based on the modified Hopfield neural network. One is based on a harmonic model and the other is based on a total variation model. The performance of these regularization terms is analyzed from the viewpoint of nonlinear diffusion. It can be shown that the two proposed restoration models have superior edge preserving performance than the traditional restoration model. Two algorithms have been proposed based on the harmonic model and the total variation model.
     ◆A fast neural network restoration algorithm based on MHNN (modified Hopfield neural network) of continuous state change is presented. This algorithm uses the MHNN based on continuous state change, and maximal energy descent in the update rule. The convergence of the algorithm is proofed. Experimental results show that the algorithm could converge to a stable point with higher speed, and give more precise restoration results.
     ◆Two improved restoration algorithms based on the harmonic model and MHNN are given. One is a fast sequential algorithm. The other is a parallel algorithm based on MHNN of continuous state change. Experiment results show that the fast algorithm can restore the degraded image while preserving the edge in a fast speed, and that the parallel algorithm based on the harmonic model is superior to the existing parallel algorithms based on Laplace operator in the performance of preserving image edges.
     (2) The study on image restoration algorithm based on wavelet analysis
     ◆Studying the relationship between nonlinear diffusion and wavelet shrinkage denoising method. We study the relations and differences between nonlinear diffusion and 2D Haar wavelet shrinkage de-noising, explain the characteristic of nonlinear diffusion in wavelet shrinkage framework, and show that nonlinear diffusion is superior to Haar wavelet shrinkage.
     ◆A hybrid de-noising algorithm, based on 2D Haar wavelet shrinkage and total variation (TV) diffusion, is proposed. The hybrid algorithm is a tradeoff between restoration quality of images and computing complexity. This algorithm applies TV diffusion to low frequency part of image decomposed by Haar wavelet, and shrinks the wavelet coefficient. Some experiment results show that this hybrid algorithm preserves the advantages of these two image de-noising methods, and has the better general performance.
     (3) The study on image restoration algorithm based on graph cut technique
     ◆A TV image de-noising algorithm based on graph cut is proposed. In this algorithm, the minimum of the total variation image de-noising energy function is transformed to a minimum cut of a certain graph. Then, some maximum flow/minimum cut algorithms could solve this problem, and get the global minimum of the TV energy function. In addition, an adaptive method of the proportion coefficient is given. Experiment results show that the algorithm proposed could avoid the staircase effect occurred in some classical total variation minimization methods, and has the better restored effect.
     ◆A TV image de-noising method based on move space is presented. In this method, the minimum problem of energy function based on TV model is mapped to a the optimal label problem in move space, which could be solved by minmum cut/maximum flow algorithm. This method avoids the computing trouble occurred in classical minimization methods. In addition, the regulative parameter can be adaptively set according to the local character of the noised image. In this way, the minimization method proposed avoids the staircase effect and over smoothing occurred in some classical total variation minimization methods. Experimental results show that the proposed algorithm is preferable to classical total variation minimization method in image denoising performance.
引文
[1] Gonzalez R C, Woods R E. Digital image processing, second version. 北京:电子工业出版社.2002,220-230
    [2] 日本电视学会编,郭奕康译.图像与噪声.北京:人民邮电出版社,1975,4-8
    [3] Andrews H C, Hunt B R. Digital image restoration. Englewood Cliffs: Prentice-Hall, 1977, 113-116
    [4] 邹谋炎.反卷积和信号复原.北京:国防工业出版社,2001,3-7,56-72
    [5] Tikhonov A N, Arsenin V Y. Solutions of ill-posed problems. New York: Wiley, 1977, 87-94
    [6] Mallat S著,陈刚,张亶,池哲儒译.应用数学和信号处理相遇.高校应用数学学报,1999,14(3):350-364
    [7] Caselles V, Morel J M, Sapiro G, et al. Introduction to the special issue on partial differential equations and geometry-driven diffusion in image processing and analysis. IEEE Transactions on Image Processing, 1998, 7(3): 269-273
    [8] Gabor D. Information theory in electron microscopy. Laboratory Investigation, 1965, 14:801-807
    [9] Jan A K. Partial differential equations and finite-difference methods in image processing, partⅠ: image representation. J. Optimization Theory and Applications, 1977, 23:65-91
    [10] Koenderink J J. The structure of images. Biological Cybernetics, 1984, 50:363-370
    [11] Witkin A P. Scale-space filtering, In Proceedings 8th International Joint Conference on Artificial Intelligence, 1983, 2:1019-1021
    [12] Hummel R A. Representations based on zero-crossings in scale-space. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1986, 204-209
    [13] Perona P, Malik J. Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1990, 12:629—639
    [14] Scherzer O, Weickert J. Relations between regularization and diffusion filtering. J. Math. Imaging Vision. 2000, 12(1): 43-63
    [15] Whitaker R T, Pizer S M. A multi-scale approach to non-uniform diffusion. CVIGP: Image Understanding, 1993, 57(1): 99-110
    [16] Weickert J. Multiscale texture enhancement. Computer analysis of images and patterns, Lecture Notes in Computer Science, 1995, 970:230-237
    [17] Carmona R A, Zhong S F. Adaptive smoothing respecting feature directions. IEEE Transactions on Image Processing, 1998,7(3): 353-358
    [18] Chen Y, Vemuri B, Wang L. Image denoising and segmentation via nonlinear diffusion. Computers and Mathematics with Applications, 2000, 39(5/6): 131—149
    [19] Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 1988,79(1): 12-49
    [20] Osher S, Rudin L I. Feature-oriented image enhancement using shock filters. SIAM Journal of Numerical Analysis, 1990, 27(4): 919-940
    [21] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D, 1992, 60:259-268
    [22] Chan T, Esedoglu S, Park F, et al. Recent developments in total variation image restoration. ftp://ftp.math.ucla.edu/pub/camreport/cam05-01.pdf, 2004.
    [23] Tschumperle D, Deriche R. Diffusion PDEs on vector-valued images. IEEE Signal Processing Magazine, 2002, 19(5): 16-25
    [24] 袁泽剑,郑南宁,张元林等.一种非线性扩散滤波器的设计方法及其应用.计算机学报,2002,25(10):1072-1076
    [25] Chan T F, Osher S, Shen J. The digital TV filter and nonlinear denoising. IEEE Transactions on Image Processing, 2001, 10(2): 231-241
    [26] Marquina A, Osher S. Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal. SIAM J. Sci. Comp., 2000,22:387-405
    [27] Vogel C, Oman M. Iteration methods for total variation denoising. SIAM J. Sci. Comp.,1996,17:227-238
    [28] Chan T F, Golub G. Mulet P. A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comp., 1999, 20:1964-1977
    [29] Chambolle A. An algorithm for total variation minimization and applications. J. Math. Imaging Vision, 2004, 20:89-97
    [30] Donoho D L. Denoising by soft thresholding. IEEE Transacations on Information Theory, 1995, 41(3): 613-627
    [31] Mrazek P, Weickert J, Steidl G. Correspondences between wavelet shrinkage and nonlinear diffusion. Scale Space Methods in Computer Vision: 4th International Conference, 2003, 2695:101-116
    [32] Rudin L, Osher S. Total variation based image restoration with free local constraints. Proceedings of the IEEE International Conference on Image Processing, 1994, 1:31-35
    [33] 曲天书,戴逸松,王树勋.基于SURE无偏估计的自适应小波阈值去噪.电子学报,2002,30(2):266-268.
    [34] Donoho D L, Johnstone I M. Minimax estimation via wavelet shrinkage. Annals of Statistics, 1998, 26(3): 879-921
    [35] Zhou Y T, Chellappa R. Image restoration using a neural network. IEEE Trans. Acoust., Speech, Signal Processing, 1988, 36(7): 1141-1151
    [36] Paik J K, Katsaggelos A K. Image restoration using a modified Hopfield network. IEEE Transactions Image Processing, 1992, 1(1): 49-63
    [37] 韩玉兵,吴乐南.基于状态连续变化的Hopfield神经网络的图像复原.信号处理,2004,20(5):431-435
    [38] Perry S W, Guan L. Weight assignment for adaptive image restoration by neural network. IEEE Trans. Neural Networks, 2000, 11(1):156-170
    [39] San Y. Hopfield neural network based algorithms for image restoration and reconstruction part I: algorithms and simulations. IEEE Trans. Signal Processing, 2000, 48(7):2119-2131
    [40] Yan L, Wang L. Image restoration using chaotic simulated annealing, in Proceedings of the International Joint Conference on Neural Networks, 2003, 4:3060-3064
    [41] Wong H, Guan L. A neural learning approach for adaptive image restoration using a fuzzy model-based network architecture. IEEE Trans. Neural Networks, 2001, 12(3):516-531
    [42] Zhang H Y, Wu Y D, Peng Q C. Image restoration using hopfield neural network based on total variational model. Proc. ISNN2005, 2005, 3497:735-740
    [43] Darbon J, Sigelle M. Exact optimization of discrete constrained total variation minimization problems. In the proceedings of the Tenth International Workshop on Combinatorial Image Analysis, 2004, 3322:548-557
    [44] Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage. Biometrika, 1994,81:425-455
    [45] Donoho D L, Johnstone I M, Kerkyacharian G, et al. Wavelet shrinkage: asymptopia?. Journal of royal statistics society series(B), 1995, 57:301-369
    [46] Krim H, Pesquet J C. On the statistics of best bases criteria. Wavelets and Statistics, Lecture Notes in Statistics, 1995, 193-207
    [47] Chambolle A, DeVore R A, Lee N, et al. Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage. IEEE Trans. Image Processing, 1998,7:319-335
    [48] Durand S, Froment J. Reconstruction of wavelet coefficients using total variation minimization. SIAM J. Sci. Comput., 2003,24:1754-1767
    [49] Chart T F, Zhou H M. Total variation improved wavelet thresholding in image compression. International Conference on Image Processing, 2000, 2:391-394
    [50] Malgouyres F. Mathematical analysis of a model which combines total variation and wavelet for image restoration. Inverse Problems, 2002,2:1-10
    [51] Steidl G, Weickert J. Relations between soft wavelet shrinkage and total variation denoising. In Pattern Recognition, Lecture Notes in Computer Science, 2002,2449:198-205
    [52] Steidl G., Weickert J, Brox T, et.al. On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs. SIAM. Numerical Analysis, 2004, 42(2):686-713
    [53] Donoho D L, Johnstone I M. Threshold selection for wavelet shrinkage of noisy data. Proceedings of the 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1994, 24-25
    [54] Eichmann G., Stojancic M. Superresolving signal and image restoration using a linear associative memory. Appl. Opt., 1987,26:1911-1918
    [55] Gray R M. Toeplitz and circulant matrices: a review. Information System Laboratory Department of Electrical Engineering Stanford University, 2001. Available at http://ee.stanford.edu/~gray/toeplitz.pdf
    [56] 陈位宫.力学变分原理.上海:同济大学出版社,1989,1-252
    [57] Tschumperle D, Deriche R. Vector-valued image regularization with PDEs: a common framework for different applications. IEEE Trans. Pattern Analysis and Machine Intelligence, 2005, 27(4): 506-517
    [58] Gokmen M, Jain A K. λτ-space representation of images and generalized edge detector. IEEE Trans. Pattern Analysis and Machine Intelligence, 1997, 19(6):545-563
    [59] Sobel I. Neighborhood coding of binary images for fast contour following and general binary array processing. Computer Graphics and Image Processing, 1978, 8(1):127-135
    [60] Katsaggelos A K, Biemond J, Schafer R W, et al. A regularized iterative image restoration algorithm. IEEE Trans. Signal Processing, 1991, 39(4): 914-929
    [61] Katsaggelos A K. Iterative image restoration algorithms. Optical Engineering, 1989, 28, (7):735-748
    [62] Galatsanos N P, Katsaggelos A K. Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation. IEEE Trans. Image Processing, 1992, 1(3):322-336
    [63] Banham M R, Katsaggelos A K. Digital Image Restoration. IEEE Signal Processing Magazine, 1997, 14(2):24-41
    [64] 王磊,戚飞虎,莫玉龙.精确复原退化图像的连续Hopfield网络研究.上海交通大学学报,1997,31(12):43-46
    [65] Gacsadi A, Szolgay P. A variational method for image denoising by using cellular neural networks. Analogical and Neural Computing Laboratory, Electronics Department, University of Oradea, 2006. Available at http://lab.analogic.sztaki.hu/cnna04/1018-Gacsadi-SzP.pdf
    [66] 张军英,卢志军,石林,等.基于脉冲耦合神经网络的椒盐噪声图像滤波.中国科学,E辑,信息科学,2004,34(8):882-894
    [67] Greig D, Porteous B, Seheult A. Exact maximum a posteriori estimation for binary images. J. Royal Statistical Soc., Series B, 1989, 51(2): 271-279
    [68] Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Analysis and Machine Intelligence, 2001,23(1): 1222-123
    [69] Boykov Y, Veksler O, Zabih R. Markov random fields with efficient approximations. IEEE Conf. Computer Vision and Pattern Recognition, 1998, 648-655
    [70] Ishikawa H, Geiger D. Segmentation by grouping junctions. IEEE Conf. Computer Vision and Pattern Recognition, 1998, 125-131
    [71] Boykov Y, Kolmogorov V. Computing geodesics and minimal surfaces via graph cuts, Proc. European Conf. Computer Vision, 1998, 232-248
    [72] Ishikawa H. Exact optimization for markov random fields with convex priors. IEEE Trans. Pattern Analysis and Machine Intelligence, 2003, 25(10):1333-1336
    [73] Wang J, Cohen M F. An iterative optimization approach for unified image segmentation and matting. International Conference on Computer Vision, 2005, 936-943
    [74] Kwatra V, Schodl A, Essa I, et al. Graphcut textures: image and video synthesis using graph cuts. Proceedings of ACM SIGGRAPH 2003,2003,22(3): 277-286
    [75] Li Y, Sun J, Tang C, et al. Lazy snapping. Proceedings of the 2004 SIGGRAPH Conference, 2004, 23(3): 303-308
    [76] Rother C, Kolmogorov V, Blake A. GrabCut: interactive foreground extraction using iterated graph cuts. Proceedings of the 2004 SIGGRAPH Conference, 2004,23(3): 309-314
    [77] Roy S, Cox I. A maximum-flow formulation of the n-camera stereo correspondence problem. In Proceedings of the Sixth International Conference on Computer Vision, IEEE Computer Society, 1998,492-502
    [78] Kolmogorov V, Zabih R. Multi-camera scene reconstruction via graph cuts, In European Conference on Computer Vision, 2002, 3: 82-96
    [79] Boykov Y, Jolly M P. Interactive organ segmentation using graph cuts, in Proc. Medical Image Computing and Computer-Assisted Intervention, 2000, 276-286
    [80] Boykov Y, Jolly M P. Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In IEEE International Conference in Computer Vision, 2001,1: 105-112
    [81] Kim J, Zabih R. Automatic segmentation of contrast-enhanced image sequence, the Ninth International Conference on Computer Vision, 2003, 502-509
    [82] Kim J, Fisher J, Tsai A, et al. Incorporating spatial priors into an information theoretic approach for FMRI data analysis. Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention, 2000,1935: 62-71
    [83] Dobrushin R L. The description of a random field by means of conditional probabilities and conditions of its regularity. Theory of Probability and Its Applications, 1968,13:197-224
    [84] Geman S, Geman D. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(6): 721-741
    [85] Besag J. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, Series B, 1974, 36:192-326
    [86] Rosenfeld A, Hummel R A, Zucker S W. Scene labeling by relaxation operations. IEEE Transactions on Systems, Man, and Cybernetics, 1976, 6(6): 420-433
    [87] Hummel R A, Zucker S W. On the foundations of relaxation labeling processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1983,5:267-287
    [88] Boykov Y, Kolmogorov V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision,.IEEE Transactions on PAMI, 2004, 26(9): 1124-1137
    [89] Chambolle A. Total variation minimization and a class of binary MRF models. Energy Minimization Methods in Computer Vision and Pattern Recognition: 5th International Workshop, 2005, 3757:136-152
    [90] Boykov Y, Veksler O, Zabih R Efficient restoration of multicolor image with independent nose. Computer Science Dept., Cornll University. Tech Rep: TR98-1712, 1998, Available at http://www.csd.uwo.ca/faculty/yuri/Abstracts/jrssb98-abs.html
    [91] Kclmogorov V, Zabih R. What energy functions can be minimized via graph cuts?. IEEE Trans. Partrn Analysis and Machine Intelligence, 2004, 26(2): 147-159
    [92] Veksler O. Efficient graph-based energy minimization methods in computer vision: [PhD dissertation]. New York: Cornell Univ., 1999
    [93] Darbon J, Sigelle M. A fast and exact algorithm for total variation minimization. In the Proceedings of the 2nd Iberian Conference on Pattern Recognition and Image Analysis, 2005, 3522:351-359
    [94] Wu Y D, Chen Y H, Sun S X. Relations between wavelet shrinkage and nonlinear diffusion in image denoising. Proceedings of the 6th International Progress on Wavelet Analysis and Active Media Technology, 2005, 3:1254-1260
    [95] 吴亚东,孙世新.基于二维小波收缩与非线性扩散的混合图像去噪算法.电子学报,2006,1:163-166
    [96] Catte F, Lions P L, Morel J M, et al. Image selective smoothing and edge detection by nonlinear diffusion, SIAM Journal on Numerical Analysis, 1992, 29:182-193
    [97] Aubert G, Vese L. A variational method in image recovery, SIAM Journal on Numerical Analysis, 1997,34(5):1948-1979
    [98] Nordstrom N. Biased anisotropic diffusion-a unified regularization and diffusion approach to edge detection, 1990,8(11): 318-327
    [99] Xu X, Miller E L, Chert D, et al. Adaptive two-pass rank order filter to remove impulse noise in highly corrupted images. IEEE Trans. Image Processing, 2004,13(2):238-247
    [100] Arce G R, Foster R E. Detail-preserving ranked-order based filters for image processing, IEEE Trans. Acoust., Speech, Signal Processing, 1989, 37(1): 83-98
    [101] Donoho D L. Nonlinear wavelet methods for recovery of signals, densities, and spectra from indirect and noisy data, in Proceedings of Symposia in Applied Mathematics, 1993,47:173-205
    [102] Maragos P, Schafer R. Morphological filters-Part I: Their set-theoretic analysis and relations to linear shift-invariant filters. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987,35(8):1153-1169
    [103] Maragos P, Schafer R. Morphological filters-Part Ⅱ: Their relations to median, order-statistic, and stack filters. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987,35(8): 1170-1184
    [104] Wu Y D, Zhu Q X, Sun S X, et al. Image Restoration Using Variational PDE Based Neural Network. Neurocomputing. To appear.
    [105] Wu Y D, Zhang H Y. A novel image restoration algorithm using neural network based on variational PDE model, 2006 International Conference on Communications, Circuits and Systems, 2006,1:433-436
    [106] Wu Y D, Chen Y H, Zhang H Y. An Improved Algorithm for Image Restoration Based on Modified Hopfield Neural Network. Proceedings of the Fourth International Conference on Machine Learing and Cybernetics. 2005, 8:4720-4723
    [107] 吴亚东,孙世新.基于调和模型的快速神经网络图像复原算法.计算机应用研究.已录用
    [108] Mário A T, José M N. Sequential and parallel image restoration: neural network implementations. IEEE Trans. Image Processing, 1994,3(6): 789-801
    [109] Zhang X. Thresholding neural network for adaptive noise reduction. IEEE Trans. Neural Network, 2001, 12(3): 567-584
    [110] Perry S W, Guan L. A partitioned modified Hopfield neural network algorithm for real-time image restoration. Real Time Imaging, 1996, 2:215-224
    [111] Sun Y, Li J, Yu S. Improvement on performance of modified Hopfield neural network for image restoration. IEEE Trans. Image Processing, 1995, 4(5): 688-692
    [112] Celebi M E, Guzelis C. Image restoration using cellular neural network. Electronics Letters, 1997, 33(1): 43-45
    [113] 吴亚东,孙世新,张红英等.一种基于图割的全变差图像去噪算法.电子学报.已录用
    [114] Wu Y D, Zhang H Y. Move Space Based Total Variation Image Denoising. Proceedings of the International Conference on Sensing, Computing and Automation, 2006:1039-1043
    [115] Raj A, Singh G, Zabih R. MRF's for MRI's: Bayesian reconstruction of mr images via graph cuts. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006, 1:1061-1068
    [116] Raj A, Zabih R. A graph cut algorithm for generalized image deconvolution.Tenth IEEE International Conference on Computer Vision,2005,2:1048-1054
    [117]Sumengen B, Bertelli L, Manjunath B S. Fast and Adaptive Pairwise Similarities for Graph Cuts-based Image Segmentation. Conference on Computer Vision and Pattern Recognition Workshop, 2006,179-179
    [118]Lombaert H, Sun Y, Grady L, et al. A multilevel banded graph cuts method for fast image segmentation. Tenth IEEE International Conference on Computer Vision, 2005,1:259-265
    [119]Ozkan M K, Erdem A T, Sezan M I, et al. Efficient multiframe Wiener restoration of blurred and noisy image sequences. IEEE Transactions on Image Processing, 1992,1(4): 453-476
    [120]Wu W, Kundu A. Image estimation using fast modified reduced update Kahnan filter. IEEE Transactions on Signal processing, 1992,40(4): 915-926
    [121]Citrin S, Azimi-Sadjadi MR.A full-plane block Kahnan filter for image restoration. IEEE Transactions on Image P rocessing, 1992,1 (4): 488-495
    [122] Koch S, Kaufman H, Biemond J. Restoration of spatially varying blurred images using multiple model-based extended Kalman filters. IEEE Transactions on Image Processing, 1995, 4 (4): 520-523.
    [123]Hunt B R. The application of constrained least squares estimation to image restoration by digital computer. IEEE Transactions on Computers, 1973, C-22 (9): 805-812
    [124]Erler K, Jernigan E. Adaptive image restoration using recursive image filters. IEEE Transactions on Signal P rocessing, 1994,42 (7): 1877-1881
    [125]Mallikarjuna H S, Chaparro L F. Iterative composite filtering for image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1992,14 (6): 674-678
    [126]Ku(?)dur D, Hatzinakos D. A novel blind deconvolution scheme for image restoration using recursive filtering. IEEE T ransactions on Signal Processing, 1998,46 (2): 375-390
    [127] Chow T W S, Li X D, Cho S Y. Improved blind image restoration scheme using recurrent filtering. IEE Proceedings-Vision, Image and Signal P rocessing, 2000, 147 (1): 23-28
    [128]Gokmen M, Li C. Edge detection and surface reconstruction using refined regularization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993,15 (5): 492-499
    [129]Zervakis M E, Venetsanopoulos A N. Iterative least squares estimators in nonlinear image restoration. IEEE Trans. Signal Processing, 1992,40 (4): 927-945
    [130] Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing. Second Edition. Beijing: Publishing House of Electronics Industry, 2002, 231-234
    [131] Wendt P D, Coyle E J, Gallagher N C J. Stack filters. IEEE Trans on Acoust., Speech, Signal Processing, 1986, 34(4):898-911
    [132] Serra J. Image analysis and mathematical morphology. New York: Academic Press, 1982:34-40
    [133] 蔡靖,杨晋生,丁润涛.模糊加权均值滤波器.中国图像图形学报,2000,5(A)(1):52-56
    [134] 王伟,赵春辉,孙圣和.最优全方位结构元约束二维层叠滤波器.中国图像图形学报,1999,4(A)(6):445-449
    [135] 赵春辉,王伟.全方位多结构元形态滤波器.中国图像图形学报,1997,2(7):500-503
    [136] Eng H L, Ma K K. Noise adaptive soft-switching median filter. IEEE Transaction on Image Processing, 2001, 10(2): 242-251
    [137] Gouchol P, Liu J C, Nair A S. Selective removal of impulse noise based on homogeneity level information. IEEE Transaction on image Processing, 2003, 12(1): 85-92
    [138] Guichard F, Morel J M. Partial differential equations and image iterative filtering Tech. Rep. 9535, CEREMADE, Universit'e Paris-Dauphine, France, 1995
    [139] Alvarez L, Guichard E Lions P L, et al. Axioms and fundamental equations of image processing. Archive for Rational Mechanics and Analysis, 1993, 123(3):199-257
    [140] Witkin A. Scale-space filtering. Proceedings of the International Joint Conference on Artificial Intelligence, 1983,2:1019-1021
    [141] Chathonnier P, Aubert G, Blanc-Feraud M, et al. Two deterministic half-quadratic regularization algorithms for computed imaging. Proceedings of the International Conference on Image Processing, 1994, 2:168-172
    [142] Weickert J. Theoretical foundations of anisotropic diffusion in image processing. Proceedings of the 7th TFCV on Theoretical Foundations of Computer Vision, 1996, 11:221-236
    [143] Weickert J. A review of nonlinear diffusion filtering. ScaleSpace Theory in Computer Vision, 1997, 1252:3-28
    [144] Weickert J. Coherence-Enhancing Diffusion Filtering. International Journal of Computer Vision, 1999,31(2/3): 111-127
    [145] Gilboa G, Zeevi Y Y, Sochen N A. Forward and backward diffusion processes for adaptive image enhancement and denosing. IEEE Transactions on Image Processing, 2002, 11(7): 689-703
    [146] You Y L, Kaveh M. Fourth-order Partial Differential Equations for Noise Removal. IEEE Trans. on Image processing, 2000,9(10): 1723-1730
    [147]Mallat S, Hwang W L. Singularity detection and processing with wavelets. IEEE Transactions on Information Theory, 1992,38(2): 617-643
    [148]Donoho D L, Johnstone IM. Adapting to unknown smoothness via wavelets shrinkage. Journal of the American Statistical Association, 1995,90(432): 1200-1224
    [149] Jansen M, Malfait M, Bultheel A. Generalized cross validation for wavelet thresholding. Signal Processing, 1997,56(1): 33-44
    [150] Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression. IEEE Transactions on Image Processing, 2000,9(9): 1532-1546
    [151]Lopresto S. Ramchandran K, Orchard M. Image coding base on mixture modeling of wavelet coefficients and fast estimation-quantization framework. In: Proceedings of IEEE Data Compression Conference, 1997,3:221-230
    [152]Yoo Y, Ortega A, Yu B. Image subband coding using context-based classification and adaptive quantization. IEEE Transactions on Image Processing, 1999,12(8): 1702-1715
    [153] Chang S G, Yu B, Vetterli M. Spatially adaptive wavelet thresholding with contex modeling for image denoising. IEEE Transactions on Image Processing, 2000, 9(9): 1522-1531
    [154]Gunawan D. Denoising images using wavelet transform. In: Proceedings of the IEEE Pacific Conference on Communications, Computers and Signal Processing, 1999: 83-85
    [155] Shark L K, Yu C. Denoising by optimal fuzzy thresholding in wavelet domain. Electronics Letters, 2000, 36 (6): 581-582
    [156]Ching P C, So H C, Wu S Q. On wavelet denoising and its applications to time delay estimation. IEEE Transactions on Signal Processing, 1999,47 (10): 2879-2882.
    [157]Krim H, Schick I C. Minimax description length for signal denoising and optimized representation. IEEE Transactions on Information Theory, 1999,45(3): 898-908
    [158] Jansen M, Bultheel A. Multiple wavelet threshold estimation by generalized cross validation for images with correlated noise. IEEE Transactions on Image Processing, 1999,8(7): 947-953
    [159] Johnstone I M, Silverman B W. Wavelet threshold estimators for data with correlated noise. Journal of Royal Statistics Society Series (B), 1997, 59: 319-351
    [160] Malfait M, Roose D. Wavelet based image denoising using a Markov random field apriori model. IEEE Transactions on Imgae Processing, 1997, 6(4): 549-565
    [161] Pan Q, Zhang P, Dai G, et al. Two denoising methods by wavelet transform. IEEE Transactions on Signal Processing, 1999, 47(12): 3401-3406
    [162] Xu Y, Weaver J B, Healy M J, et al. Wavelet transform domain filters: A spatially selective noise filtration technique. IEEE Transactions on Image Processing, 1994, 3(6): 743-758
    [163] Hopfield J J, Tank D W. Neural computation of decisions in optimization problems. Biological Cybernetics, 1985, 52:141-152
    [164] Ronald J S, Michael A F. Regularized image reconstruction using SVD and a neural network method for matrix inversion. IEEE Transactions on signal processing, 1993, 41(10): 3074-3077
    [165] Qian W, Clarke L P. Wavelet-based neural network with fuzzy-logic adaptivity for nuclear image restoration. In: Proceedings of IEEE, 1996, 84(10): 1458-1473
    [166] Wong H S, Guan L. Adaptive regularization in image restoration using a model based neural network. Optical Engineering, 1997, 36(12): 3297-3308
    [167] 李翠华,郑南宁.构造径向基函数的一般方法及其在图像处理中的应用.数值计算与计算机应用,2000,(2):81-87
    [168] Sung H K, Choi H M. Nonlinear restoration of spatially varying blurred images using self-organising neural network. In: Proceedings of International Conference on Acoustics, Speech and Signal Processing, 1998, 2:1097-1100
    [169] Chan T F, Shen J. A good image model eases restoration. Technical Report, UCLA, 2002. Available at http://www.ima.umn.edu/preprints/feb02/1829.pdf
    [170] Candes E J, Donoho D L.Curvelets: a surprisingly effective non-adaptive representation for objects with edges. Technical report, Stanford University, 1999. Available at www-stat.stanford.edu/~donoho/Reports/1999/curveletsurprise.pdf

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700