基于不同先验获取的PET图像优质重建新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种有效的功能医学图像成像方法,正电子发射成像(Positron Emission Tomography,PET)能够在分子水平上利用影像技术反映人体心脑代谢和功能,已经在肿瘤学,心血管疾病学和神经系统疾病学研究中,以及新医药学开发研究等邻域中显示出它卓越的性能。可是在实际中由于受到低计数率和一些物理噪声的影响,PET图像的重建问题在理论上是一个病态的问题。传统的滤波反投影(Filtered Back-Projection,FBP)重建方法虽然具有成像速度快的优点,其重建图像却含有大量噪声,图像质量较差。
     最大似然—期望最大法(Maximum-Likelihood Expectation-Maximization,ML-EM)能够针对系统模型的物理效应和探测数据和噪声的统计泊松特性建立数学模型,其重建的图像质量要优于传统的FBP方法。然而,单纯的传统ML-EM方法依然有两个缺点:1,在迭代过程中,会产生质量退化的图像而导致的棋盘效应,从而导致非收敛的迭代过程;2,收敛速度较慢,需要大量迭代次数才能重建出可以接受的图像。
     近二十年来,国际上出现了很多解决以上两个问题的方法。一方面,基于马尔可夫随机场(Markov Random Fields,MRF)的贝叶斯(Bayesian)重建方法或者最大化后验估计(Maximum A Posteriori,MAP)的方法通过引入正则化项来引进目标同位素密度数据在空间上的概率分布的先验信息,能够明显改善重建图像质量以及迭代过程的收敛性,该方法已被证明了其在理论上的正确性和实际上的有效性。另一方面,很多科学家也提出一些有效的方法和算法来解决ML-EM方法收敛速度慢的问题,1994年,H.Malcolm Houdson和Richard S.Larkin提出使用有序子集(Ordered Subsets,OS)的方法将完整探测数据sinogram分割成有序部分数据的方法来减小每次迭代的运算量,从而达到了加快收敛速度的目的;密歇根大学的J.A.Fessler小组提出了能够提高收敛速度的SAGE(Space-Alternating Generalized EM)收敛重建算法和PSCD(Paraboloidal Surrogate Coordinate Ascent)收敛重建算法;另外,Erkan (?) Mumcuoolu,David S.Lalush及Fessler也分别提出将共轭梯度法(Conjugate Gradient,CG)应用于PET重建算法中以加快收敛速度。
     对于重建速度的问题,虽然能够反映探测数据统计特性的迭代重建能够重建出较传统的FBP重建更好的图像,然而其应用一直受到重建速度慢的缺点的限制;在重建图像质量方面,作者发现,sinogram探测值中大量的噪声一直对重建有着很大的负面影响,而且此种负面影响持续贯穿于整个在迭代过程中。虽然引入了图像先验信息的Bayesian能够在很大程度上改善迭代重建,但是依赖于传统的局部邻域信息的Bayesian方法只能为重建提供有限的局部先验信息,一方面,传统的平滑二次QM(Quadratic Membrane)先验易在重建的结果图像中产生过平滑效果,另一方面,具有边缘保持作用的非二次先验则会给重建图像带来阶梯状的边缘伪影。
     本文对于PET重建算法的研究工作同样也是基于如何进一步加快重建算法的收敛速度和进一步提高重建图像的质量。作者做了以下四项PET重建算法方面的工作:
     1,提出将有序子集的思想和共轭梯度法相结合的新的快速子集共轭梯度重建算法(OSCG Ordered Subsets Conjugate Gradient)来加快PET重建的收敛速度。
     2,提出基于修改sinogram探测值的新的耦合反馈(Coupled Feedback,CF)迭代模型来降低在重建迭代中探测数据sinogram中的噪声对PET重建的负面影响。
     3,提出一种新的有效的综合了QM先验和QP(Quadratic Plate)先验的MRF二次Membrane-Plate混合先验模型,实现了在Bayesian重建中根据目标图像中各点的性质来自适应的选择QM先验和QP先验。
     4,提出一个新的且具有二次先验能量形式的MRF非局部(nonlocal)先验模型,实现了利用图像中的全局的信息来为PET重建提供更加有效的正则化作用。
     试验中将以上四种方法应用于相应的PET断层发射成像(Emission Tomography)和断层透射成像(Transmission Tomography),相关试验分析表明:本文所提出的四种基于MRF和优化理论的四种新算法均能够分别在不同程度上改善PET重建。
As an effective functional imaging method for medical images, positron emission tomography (PET) is able to represent heart and brain metabolism and functions on molecule level by imaging techniques, and has shown great performance in oncology, cardiopathy, neurology and new medicine studies. But positron emission tomography is an ill-posed inverse problem because the observed projection data are contaminated by noise due to low count rate and physical effects. Though needing less compution cost, traditional filter back projection (FBP) method often reconstruct noisy images of low quality.
     Better expressing system models of physical effects and modeling the statistical poisson character of the data, the famous maximum-likelihood expectation-maximization (ML-EM) approach outperforms the FBP method with regard to image quality. However, pure traditional ML-EM approach is still notorious for two drawbacks: 1, the reconstructed images always start deteriorating to produce "checkerboard effect" as the iteration proceeds; 2, ML-EM approach suffers slow convergence, and a large number of iterations are needed to be performed before obtaining acceptable reconstructions.
     Many methods have been proposed to overcome above two frawbacks in the past twenty years. On one hand, Bayesian methods or equivalently MAP (Maximum A Posteriori) methods, which incorporate MRF prior information of objective isotope density data into the ML-EM algorithm through regularization or prior terms, have been proved theoretically correct and practically effective compared to other methods. Compared to traditional ML-EM algorithm, Bayesian reconstruction shows a better performance in both improving convergence behavior and producing more appealing images. On the other hand, as to the drawback of slow convergence for ML-EM algorithm, some effective solutions and algorithms have also been proposed. In 1994, H. Malcolm Houdson and Richard S. Larkin proposed segementing the original whole sonogram data into several ordered data by OS (Ordered Subsets) method to lower the compution cost of each iteration step; J. A. Fessler and his group proposed fast convergent SAGE (Space-Alternating Generalized EM) algorithm and PSCD (Paraboloidal Surrogate Coordinate Ascent) algorithm for PET. And Erkan (?) Mumcuoglu, David S. Lalush and Fessler also applied CG (Conjugate Gradient) in PET reconsruction algorithm to obtain fast convergence rate.
     As to the problem of reconstruction rate, the iterative methods which incorporate the statistical characters of scaned data, although able to reconstruct better images than conventional FBP approaches, their applications are also hindered by the slow reconstruction rate. As to the problem of reconstructed image quality, it is found that the large mount of noise in the detected sonogram data always impose a negative effect upon reconstruction, and such a negative effect might run through the whole iterative process. Bayesian reconstruction can greatly improve reconstruction by incorporating image prior information. But we also find that, heavily relied on the information within a limited neighborhood, conventional Bayesian methods can only contribuite limit local prior information to reconstruction. On one hand, the smoothing QM (Quadratic Membrane) smoothing prior tends to produce an unfavorable oversmoothing effect, and on the other hand the edge-preserving nonquadratic prior might also bring staircase edge artifact to reconstruction.
     Our work on PET reconstruction algorithm is based on how to further accelerate the convergence rate of reconstruction algorithm and how to further improve the quality for reconstructions.We have done following work on PET reconstruction algorithms:
     1, proposeing a new fast OSCG (Ordered Subsets Conjugate Gradient) algorithm, which combines the idea of OS (Odered Subset) and CG method to further accelerate the rate for PET reconstruction.
     2, proposing a novel coupled feedback (CF) iterative model and the relevant reconstruction algorithm. The new methods can relieve the negative effect of the noise in detected sinogram data on PET reconstruction by an iterative sinogram-correcting method.
     3, proposing a quadratic hybrid multi-order (QHM) prior model that combine both QM prior and QP prior effectively, the QHM prior is capable of facilitating an adaptive utilization of QM prior and QP prior in PET reconstruction.
     4, proposing a novel nonlocal Markov Random Fields (MRF) prior with quadratic prior energy form, which is able to exploit global image prior information and provides more effective regularization for PET reconstruction.
     In experiments, we apply above four approaches in emission tomography and transmission tomography in PET. Relevant experimentations and analyses show that the four new algorithms, which are all based on MRF and optimation theory, are all able to improve currently PET reconstruction to different extents, respectively
引文
[1] 潘中允主编.PET诊断学[M].北京:人民卫生出版社.2005.
    [2] Phelps ME, Homan EJ and Mullani NA et al. Application of annihilation coincidence detection to transaxial reconstruction tomography [J]. J. Nuc. Med, vol. 16, no. 3, pp. 210-224, March 1975.
    [3] TerPogossian MM, Phelps ME and Homan ME et al. A positronemission transaxial tomograph for nuclear imaging [J]. Radiology, vol. 114, pp. 89-98, 1975.
    [4] Herman G. Image Reconstruction from Projections: The Fundamentals of Computerized Tomography [M]. Academic Press, New York, 1980.
    [5] Bertero M, DeMol C and Pike ER. Linear inverse problems with discrete data-I: General formulation and singular system analysis [J]. Inverse Prob, vol. 1, no. 4, pp. 301-330, Nov. 1985.
    [6] Bertero M, Poggio T and Torre V. Ill posed problems in early vision [C]. Proc. IEEE, vol. 76, pp. 869-889, Aug. 1988.
    [7] Budinger TF, Gullberg GT and Huesman RH. Emission computed tomography [M]. Image Reconstruction from Projections: Implementation and applications, Herman GT, Ed. Berlin: Springer Verlag, 1979, ch. 5, pp. 147-246.
    [8] Shepp LA and Vardi Y. Maximum likelihood reconstruction for emission tomography [J]. IEEE Transactions on Medical Imaging, vol. 1, no. 2, pp. 113-122, October 1982.
    [9] Snyder DL and Miller MI. The use of sieves to stabilized images produced with the EM algorithm for emission tomography [J]. IEEE Trans. Nucl. Sci., vol. NS-32, pp. 3864-3872. Oct.1985.
    [10] Levitan E and Herman GT. A maximum a postefiofi probability expectation maximization algorithm for image reconstruction in emission tomography [J]. IEEE Trans. Med. Imag., vol. MI-6, pp.185-192, Sept.1987.
    [11] Green PJ. Bayesian reconstruction from emission tomography data using a modified EM algorithm [J]. IEEE Trans. Med. Imag, vol. 9, pp. 84-93, Mar. 1990.
    [12] Lange K. Convergence of EM image reconstruction algorithms with Gibbs smoothing [J]. IEEE Trans. Med. Imag, vol .9, pp. 439-446, Dec.1990.
    [13] Butler CS and Miller MI. Maximum A Postefiofi estimation for SPECT using regularization techniques on massive parallel computers [J]. IEEE Trans. Med. Imag., vol 12, no.1, pp.84-89, March 1993.
    [14] Houdson HM, and Larkin RS. Accelerated Image Reconstruction using Ordered Sunsets of Projection Data [J]. IEEE Trans. on Medical Imagin, vol. 13, no. 4, pp. 601-609, December. 1994.
    [15] Lalush DS and Tsui BMW. A fast and stable maximum a postefiofi conjugate gradient reconstruction algorithm [J]. Med. Phys., vol. 22, no. 8, pp.1273-84, Aug. 1995.
    [16] Fessler JA and Booth SD. Conjugate-gradient preconditioning methods for shift-variant PET image reconstruction [J]. IEEE Tr. Im. Proc., vol. 8, no. 5, pp. 688-99, May 1999.
    [1] Sorenson JA and Phelps ME. Physics in nuclear medicine [M]. Saunders, Philadelphia, 2 edition, 1987.
    [2] Alonso M and Finn E. Fundamental University Physics, volume Ⅲ Quantum and Statistical Physics [M]. Addison- Wesley, Reading, Massachusetts, 1983.
    [3] Dahlbom M and Homan EJ. An evaluation of a two-dimensional array detector for high resolution PET [J]. IEEE Transactions on Image Processing, vol. 7, no. 4, pp. 264-272, December 1988.
    [4] Ter-Pogossian MM, Raichle ME, and Sobel BE. Positron-emission tomography [J]. ScienticAmerican, vol. 243, pp. 171-181, October 1980.
    [5] Kak A and Slaney M. Principles of Computerized Tomographic Imaging [M]. IEEE Press, New York, 1988.
    [6] Jaszczak R and Hoffman E. Scatter and attenuation. In H. Wagner, editor, Principles of Nuclear Medicine, chapter 19, section 3 [M]. W.B. Saunders Company, Philadelphia, 2nd edition, 1995.
    [7] Bailey D. Transmission scanning in emission tomography [J]. European Journal of Nuclear Medicine, 25(7):774-787, July. 1998.
    [8] Meikle S, Dahlbom M, and Cherry S. Attenuation correction using count-limited transmission data in positron emission tomography [J]. Journal of Nuclear Medicine, vol. 34, pp. 143-150, Jan. 1993.
    [9] Chatziioannou A and Dahlbom M. Detailed investigation of transmission and emission data smoothing protocols and their effects on emission images [J]. IEEE Transactions on Nuclear Science, vol. 43, pp. 290-294, Feb. 1996.
    [10] Fessler JA. Hybrid Poisson/polynomial objective functions for tomographic image reconstruction from transmission scans [J]. IEEE Transactions on Image Processing, vol. 4, pp. 1439-1450, Oct 1995.
    [11] Lange K. Convergence of EM image reconstruction algorithms with Gibbs smoothness [J]. 1EEE Transactions on Medical Imaging, vol. 9, pp. 439-446, Dec.1990.
    [12] Fessler JA, Ficaro E, Clinthorne N, and K. Lange. Grouped-coordinate ascent algorithms for penalized likelihood transmission image reconstruction [J]. IEEE Transactions on Medical Imaging, vol. 16, Apr. 1997.
    [13] Lange K and Fessler JA. Globally convergent algorithms for maximum a posteriori transmission tomography [J]. IEEE Transactions on Image Processing, 4(10), pp. 1430--1438, 1995.
    [14] Jain A. Fundamentals of Digital Image Processing [M]. Prentice-Hall International, Englewood Cliffs, NJ, 1989.
    [15] Herman G. lmage Reconstruction from Projections: The Fundamentals of Computerized Tomography [M]. Academic Press, New York, 1980.
    [16] Lewitt R. Reconstruction algorithms: Transform methods [C]. Proceedings of the IEEE, 71 (3): 390-408, Mar. 1983.
    [17] Herman G. Image Reconstruction from Projections: Implementation and Applications [M]. Springer-Verlag, Berlin, 1979.
    [18] Bertero M, De Mol C, and Pike ER. Linear inverse problems with discrete data-Ⅰ: General formulation and singular system analysis [J]. lnverse Prob, vol. 1, no. 4, pp. 301-330, Nov. 1985.
    [19] Bertero M, Poggio T and Torre V. Ill posed problems in early vision [C]. Proceedings of the IEEE, vol. 76, pp. 869-889, Aug. 1988.
    [20] Yu DF and Fessler JA. Mean and variance of coincidence photon counting with deadtime [J]. Phys. Med. Biol, vol. 15, pp. 231-245, Aug. 1999.
    [21] Goitein M. Three-dimensional density reconstruction from a series of two dimensional projections [J]. Nucl. Instr. Meth, vol. 101, no. 15, pp. 509-518, June 1972.
    [22] Rockmore AJ and Macovski A. A maximum likelihood approach to emission image reconstruction from projections [J]. IEEE Tr. Nuc. Sci, vol. 23, pp.1428-1432, 1976.
    [23] Rockmore AJ and Macovski A. A maximum likelihood approach to transmission image reconstruction from projections [J]. IEEE Tr. Nuc. Sci, vol. 24, no. 3, pp. 1929-1935, June 1977.
    [24] Shepp LA and Vardi Y. Maximum likelihood reconstruction for emission tomography [J]. IEEE Transactions on Medical Imaging, vol. 1, no. 2, pp. 113-122, October 1982.
    [25] Lange K and Carson R. EM reconstruction algorithms for emission and transmission tomography [J]. J. Comp. Assisted Tomo, vol. 8, no. 2, pp. 306-316, April 1984.
    [26] Herman G and Odhner D. Performance evaluation of an iterative image reconstruction algorithm for positron emission tomography [J]. IEEE Transactions on Medical Imaging, 10(3): 336-346, Sept. 1991.
    [27] Fox PT, Mintun MA, Reiman EM, and Raichle ME. Enhanced detection of focal brain responses using intersubject averaging and change-distribution analysis of subtracted PET images [J]. Journal of Cerebral Blood Flow and Metabolism, 8(5): 642-653, 1988.
    [28] M. Dwass. Probability and Statistics [M]. W.A. Benjamin, Inc., NewYork, 1970.
    [29] Fessler JA. Aspire 3.0 user's guide: A sparse reconstruction library [R]. Communication & Signal Processing Laboratory Technical Report No. 293, Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, 1998.
    [30] Houdson HM, and Larkin RS. Accelerated Image Reconstruction using Ordered Sunsets of Projection Data [J]. IEEE Trans. on Medical Imagin., vol. 13, no. 4, pp. 601-609, December. 1994.
    [31] Byme C, Soares E, and Pan TS. Accelerating the EM algorithm using rescaled block-iterative methods [C]. Proc. 1EEE Nuc. Sci. Symp. Med. Im. Conf, volume 3, pp. 1752-6, 1996.
    [32] Matej S, Daube-Witherspoon M and Karp J. Performance of 3D RAMLA with smooth basis functions on fully 3D PET data [C]. ConfRec.lnt. Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, pp: 193-196, 2001.
    [33] Lalush DS and Tsui BMW. A fast and stable maximum a posteriori conjugate gradient reconstruction algorithm [J]. Med. Phys., vol. 22, no. 8, pp.1273-84, Aug. 1995.
    [34] Fessler JA and Booth SD. Conjugate-gradient preconditioning methods for shift-variant PET image reconstruction [J]. IEEE Tr. Im. Proc., vol. 8, no. 5, pp. 688-99, May 1999.
    [35] Booth SD and Fessler JA. Combined diagonal/Fourier preconditioning methods for image reconstruction in emission tomography [C]. Proc. IEEE Intl. Conf. on Image Processing, vol. 2, pp. 441-4, 1995.
    [36] Lalush DS and Tsui BMW. The importance of preconditioners in fast Poisson based iterative reconstruction algorithms for SPECT [C]. Proc. 1EEE Nuc.Sci. Symp.Med. Im. Conf., vol. 3, pp. 1326-30, 1995.
    [37] Chan RH andNg MK. Conjugate gradient methods for Toeplitz systems [J]. SIAM Review, vol. 38, no.3, pp. 427-82, Sept. 1996.
    [38] Sauer K and Bouman C. A local update strategy for iterative reconstruction from projections [J]. IEEE Tr. Sig. Proc., vol. 41, no. 2, pp. 534-548, February 1993.
    [39] Bouman CA and Sauer K. A unified approach to statistical tomography using coordinate descent optimization [J]. IEEE Tr. Im. Proc., vol. 5, no. 3, pp. 480-92, March 1996.
    [40] Fessler JA and Hero AO. Space-alternating generalized expectation maximization algorithm [J]. IEEE Tr. Sig. Proc., vol. 42, no. 10, pp. 2664-77, October 1994.
    [41] Fessler JA and Hero AO. Penalized maximum-likelihood image reconstruction using space-alternating generalized EM algorithms [J]. IEEE Tr. Im. Proc., vol. 4, no. 10, pp. 1417-29, October 1995.
    [42] Fessler JA and Erdogan H. A paraboloidal surrogates algorithm for convergent penalized-likelihood emission reconstruction [J]. Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf, volume 2, pp. 1132-5, 1998.
    [43] Fessler JA and Erdogan H. Accelerated monotonic algorithms for transmission tomography [C]. Proc. IEEE Intl. Conf. on Image Processing, volume 2, pp. 680-4, 1998.
    [44] Fessler JA and Erdogan H. Monotonic algorithms for transmission tomography [J]. IEEE Trans. Image Processing, vol.18, no.9, pp. 801-14, September. 1999.
    [45] Geman S and Geman D. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images [J]. IEEE Trans, Pattern, Anal Machine Intell, vol. PAMI-6, pp. 721-741, Nov. 1984.
    [46] Li SZ. Markov Random Field Modeling in image Analysis [M]. Springer-Verlag, Tokyo, 2001.
    [47] Levitan E and Herman GT. A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography [J]. IEEE Trans. Image Processing, vol. MI-6, pp.185-192, Sept.1987.
    [48] Green PJ. Bayesian reconstruction from emission tomography data using a modified EM algorithm [J]. IEEE Trans. Image Processing, vol. 9, pp. 84-93, Mar. 1990.
    [49] Butler CS and Miller MI. Maximum A Posteriori estimation for SPECT using regularization techniques on massive parallel computers [J]. IEEE Trans. Med. Imag., vol 12, no.l, pp.84-89, March 1993.
    [50] Byne CL. Iterative image reconstruction algorithms based on cross-entropy minimization [J]. IEEE Trans. Imag Processing., vol .2, pp. 96-103, Jan. 1993.
    [51] Wu Z. MAP image reconstruction using wavelet decomposition [C]. Proc. 13th Conf Information Processing in Medical Imaging, 1993, pp. 354-371.
    [52] Mumcuoglu EU, leahy R, Cherry SR and Zhou Z. Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET Image [J]. IEEE Trans. Image Processing, vol.13, pp. 687-701, Dec. 1994.
    [53] De Pierro AR. A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography [J]. IEEE Trans. Image Processing, vol .14, pp. 132-137, Mar. 1995.
    [54] Bouman CA and Sauer K. A generalized Gaussian image model for edge-preserving MAP estimation [J]. IEEE Trans. Image Processing, vol. 2 pp. 296-310, July. 1993.
    [55] De Pierro AR and Yamagishi MEB. Fast EM-like methods for maximum a posteriori eatimates in emission tomography [J]. IEEE Trans. Med. Imag., vol. 20, pp. 280-288, Apr. 2001.
    [56] Hsiao LT, Rangarajan A, and Gindi G. A new convergent MAP reconstruction algorithm for emission tomography using ordered subsets and separable surrogate [J]. Proc. IEEE Int. Symp. Biomedical Imaging, 2002, pp. 409-412.
    [57] Fessler JA. Penalized weighted least-squares image reconstruction for positron emission tomography [J]. IEEE Trans. Image Processing, vol. 13, pp. 290-300, Jun. 1994.
    [58] Johnson V, Wong WH, Hu X, and Chen CT. Image restoration using Gibbs prior: Boundary modeling, treatment of blurring, and selection ofhyperparameter [J]. IEEE Trans. Pattern Anal Machine lntell., vol. 13, pp. 413-425, May 1991.
    [59] Johnson V. A framework for incorporating structural prior information into the estimation of medical image [C]. Information processing in Medical Imaging, H .H. Barrett and A. F. Gmitro,Eds. Berlin, Germany: Springer-Verlag, 1993, pp. 307-321.
    [60] Bowsher JE, Johnson VE and Turkington TG et al. Bayesian reconstruction and use of anatomical a priori information for emission tomography," IEEE Tran. Med. Imag., vol 15, pp.673-686, Oct, 1996.
    [61] Yu DF and Fessler JA. Edge-Preserving Tomographic Reconstruction with Nonlocal Regularization [J]. IEEE Trans. on Medical Imaging, vol. 21, no. 2 pp. 159-173, Feb. 2002.
    [62] Riddel C, Benali H and Buvat I. Diffusion Regularization for Iterative Reconstruction in Emission Tomography [J]. IEEE Trans., Nuel. Sci, vol. 51, no. 3, pp. 712-718, 2004.
    [63] Jonsson E, Huang SC and Chan T. Total variation regularization in positron emission tomography [R]. Tech. Rep., CAM Report 98-48, UCLA, Math. Depart, 1998.
    [64] Alenius S, Ruotsalainen U andAstola J. Using Local Median As the Location of the Prior Distribution in Iterative Emission Tomography Image Reconstruction [J]. IEEE Trans., Nuel. Sci, vol. 45, pp. 3097-3104, 2004
    [65] Lee SJ, Rangarajan A and Gindi G. Bayesian Image Reconstruction in SPECT Using Higher Order Mechanical Models as Priors [J]. IEEE Trans. on Medical Imaging, MI-14(4), pp. 669-680, Dec. 1995.
    [66] Lee S J, Hsiao LT and Gindi G. The Thin Plate as a Prior in Bayesian SPECT Reconstruction [J]. IEEE Trans. Nuclear Science., NS-44(3), pp. 1381-1387, Jun. 1997.
    [1] Houdson HM, and Larkin RS. Accelerated Image Reconstruction using Ordered Sunsets of Projection Data [J]. IEEE Trans. on Medical Imagin, vol. 13, no. 4, pp. 601-509, December. 1994.
    [2] Matej S, Daube-Witherspoon M and Karp J. Performance of 3D RAMLA with smooth basis functions on fully 3D PET data [M]. ConfRec.Int. Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, pp. 193-196, 2001.
    [3] Lalush DS and Tsui BMW. A fast and stable maximum a posteriori conjugate gradient reconstruction algorithm [J]. Med. Phys, vol. 22, no. 8, pp. 1273-84, Aug. 1995.
    [4] Fessler JA and Booth SD. Conjugate-gradient preconditioning methods for shift-variant PET image reconstruction [J]. IEEE Tr. Im. Proc, vol. 8, no. 5, pp. 688-99, May 1999.
    [5] Booth SD and Fessler JA. Combined diagonal/Fourier preconditioning methods for image reconstruction in emission tomography [C]. Proc. IEEE Intl. Conf. on Image Processing, vol. 2, pp. 441-4, 1995.
    [6] Lalush D and Tsui BMW. The importance of preconditioners in fast Poisson based iterative reconstruction algorithms for SPECT [C]. Proc. IEEE Nuc.Sci. Symp.Med. lm. Conf, vol. 3, pp. 1326-30, 1995.
    [7] Chan RH and Ng MK. Conjugate gradient methods for Toeplitz systems [J]. SIAM Review, vol. 38, no.3, pp. 427-82, Sept. 1996.
    [8] Axelsson O. Iterative solution methods [M]. Cambridge, Cambridge, 1994.
    [9] Fessler JA and Erdogan H. A paraboloidal surrogates algorithm for convergent penalized-likelihood emission reconstruction [J]. Proc. IEEE Nuc. Sci. Symp. Med. lm. Conf, volume 2, pp. 1132-5, 1998.
    [10] Fessler JA and Erdogan H. Monotonic algorithms for transmission tomography [J]. IEEE Trans. Image Processing, vol.18, no.9, pp. 801-14, September. 1999.
    [1] Shepp LA and Vardi Y. Maximum likelihood reconstruction for emission tomography [J]. IEEE Transactions on Medical Imaging, vol. 1, no. 2, pp. 113-122, October 1982.
    [2] Lange K. Convergence of EM image reconstruction algorithms with Gibbs smoothing [J]. IEEE Trans. Med. Imag, vol .9, pp. 439-446, Dec. 1990.
    [3] Levitan E and Herman GT. A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography [J]. IEEE Trans. Med. Imag., vol. MI-6, pp.185-192, Sept.1987
    [4] Green PJ. Bayesian reconstruction from emission tomography data using a modified EM algorithm [J]. IEEE Trans. Med. Imag, vol. 9, pp. 84-93, Mar. 1990.
    [5] Fessler JA. Aspire 3.0 user's guide: A sparse reconstruction library [R]. Communication & Signal Processing Laboratory Technical Report No. 293, Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, 1998.
    [1] Li SZ. Markov Random Field Modeling in image Analysis [M]. Springer-Verlag, Tokyo, 2001.
    [2] Geman S and Geman D. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images [J]. IEEE Trans, Pattern, Anal. Machine Intell., vol. PAMI-6, pp. 721-741, 1984.
    [3] Black MJ, Rangarajan A. Unification of line process, outlier rejetion, and robust statistics with application in early vision [C]. Int. Journal of Computer Vision., vol.19, pp. 57-91, 1996.
    [4] Charbonnier P, Blanc-F'eraud, L and Aubert G et al. Deterministic edge preserving regularization in computer imagining [J]. IEEE Trans. Image Processing, vol. 6, pp. 298-311, 1997.
    [5] Johnson V, Wong WH, Hu X and Chen CT. Image restoration using Gibbs prior: Boundary modeling, treatment of blurring, and selection of hyperparameter [J]. IEEE Trans. Pattern AnaI Machine Intell, vol. 13, pp. 413-425, 1991.
    [6] Kubota T and Huntsberg T. Adaptive anisotropic parameter estimation in the weak membrane model [C]. Proc. Int WS in EMMCVPR'97, Lecture Notes in Computer Vision 1223, Springer Verlag, Venice Italy, pp. 179-194, 1997.
    [7] Geman S, McClure DE. Bayesian image analysis methods: An application to single photon emission tomography [C]. Proc. Statistical Computation Section, Amer. StatisticalAssoc., Washington, DC, pp. 12-18, 1985.
    [8] Lange K. Convergence of EM image reconstruction algorithms with Gibbs smoothing [J]. IEEE Trans. Med. Imag, vol .9, pp. 439-446, Dec. 1990.
    [9] Bouman CA and Sauer K. A generalized Gaussian image model for edge-preserving MAP estimation [J]. IEEE Trans. Image Processing, vol. 2 pp. 296-310, 1993.
    [10] Lee S J, Choi Y and Gindi GR. Validation of new Gibbs priors for Bayesian tomographic reconstruction using numerical studies and physically acquired data [J]. IEEE Trans Nucl Sci., vol 46, pp. 2154-2161, 1999.
    [11] Jonsson E, Huang SC and Chan T. Total variation regularization in positron emission tomography [R]. Tech. Rep., CAM Report 98-48, UCLA, Math. Depart, 1998.
    [12] Alenius S, Ruotsalainen U and Astola J. Using Local Median As the Location of the Prior Distribution in Iterative Emission Tomography Image Reconstruction [J]. IEEE Trans., Nucl. Sci, 45(12), pp. 3097-3104,2004.
    [13] Hensick PV and Chelberg DM. Automatic gradient threshold determination for edge detection [J]. IEEE Trans. Imag Processing, vol. 5, no. 5 pp. 784-787, 1996.
    
    [14] G J. McLachlan and K.E. Basford, Mixture Models, Marcel Dekker, 1987.
    [15] Fessler JA and Erdogan H. Monotonic algorithms for transmission tomography [J]. IEEE Trans. Image Processing, vol.18, no.9, pp. 801-14, September. 1999.
    [16] Fessler JA. Aspire 3.0 user's guide: A sparse reconstruction library [R]. Communication & Signal Processing Laboratory Technical Report No. 293, Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, 1998.
    [1] Bertero M, De MC and Pike ER. Linear inverse problems with discrete data-I: General formulation and singular system analysis [J]. Inverse Prob, vol. 1, no. 4, pp. 301-330, Nov. 1985.
    [2] Bertero M., Poggio T and Torre V. Ill posed problems in early vision [C]. Proc. IEEE, vol. 76, pp. 869-889, Aug. 1988.
    [3] Lange K. Convergence of EM image reconstruction algorithms with Gibbs smoothing [J]. IEEE Trans. Med. Imag, vol .9, pp. 439-446, Dec.1990.
    [4] Geman S and Geman D. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images [J]. IEEE Trans, Pattern, Anal Machine Intell, vol. PAMI-6, pp. 721-741, Nov. 1984.
    [5] Li SZ. Markov Random Field Modeling in image Analysis [M]. Springer- Verlag, Tokyo, 2001.
    [6] Black. MJ and Rangarajan A. Unification of line process, outlier rejection, and robust statistics with application in early vision [J]. Int. Journal of Computer Vision, vol. 19, pp.57-91. 1996.
    [7] Charbonnier P, Blanc-F'eraud L, Aubert G and Barlaud M. Deterministic edge preserving regularization in computer imaging [J]. IEEE Trans. linage Processing, vol. 6, no. 2, pp. 298-311, Feb. 1997.
    [8] Johnson V, Wong WH, Hu X, and Chen CT. Image restoration using Gibbs prior: Boundary modeling, treatment of blurring, and selection of hyperparameter [J]. IEEE Trans. Pattern Anal Machine Intell, vol. 13, pp. 413-425, 1991.
    [9] Bouman CA and Sauer K. A generalized Gaussian image model for edge-preserving MAP estimation [J]. IEEE Trans. Image Processing, vol. 2 pp. 296-310, 1993.
    [10] Gindi G, Rangarajan A, Lee M, Hong PJ, and Zubal G. Bayesian Reconstruction for Emission Tomography via Deterministic Annealing [C]. In H. Barrett and A. Gmitro, editors, Information Processing in Medical Imaging, pp. 322-338, Springer-Verlag, 1993.
    [11] Lee S J, Rangarajan A and Gindi G. Bayesian Image Reconstruction in SPECT Using Higher Order Mechanical Models as Priors [J]. IEEE Trans. on Medical Imaging, MI-14(4), pp. 669-680, Dec. 1995.
    [12] Yu DF and Fessler JA. Edge-Preserving Tomographic Reconstruction with Nonlocal Regularization [J]. IEEE Trans. on Medical Imaging, vol. 21, no. 2 pp. 159-173, Feb. 2002.
    [13] Johnson-VE. A model for segmentation and analysis of noisy images [J]. J. Am. Stat. Ass, vol. 89, no. 425, pp. 230-41, Mar. 1994.
    [14] Bowsher J E, Johnson VE and Turkington T.G et al. "Bayesian reconstruction and use of anatomical a priori information for emission tomography," IEEE Tr. Med. Im, vol. 15, no. 5, pp. 673-86, Oct. 1996.
    [15] Buades A, Coll B and Morel JM. A nonlocal algorithm for image denoising [C]. Proc. IEEE Int. Conf Computer Vision Pattern Recognition, vol. 2, pp. 60-65, 2005.
    [16] Fessler JA and Erdogan H. A paraboloidal surrogates algorithm for convergent penalized-likelihood emission reconstruction [C]. Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf volume 2, pp. 1132-5, 1998.
    [17] Fessler JA and Erdogan H. Monotonic algorithms for transmission tomography [J]. IEEE Trans. Image Processing, vol.18, no.9, pp. 801-14, September. 1999.
    [18] Chen WF, Chen M and Zhou J. Adaptively regularized constrained total least-squares Image Restoration [J]. IEEE Trans. Image Processing, vol. 9, no. 4, pp. 588-596, Apr. 2000.
    [19] Fessler JA. Aspire 3.0 user's guide: A sparse reconstruction library [R]. Communication & Signal Processing Laboratory Technical Report No. 293, Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, 1998.
    [20] Houdson HM, and Larkin RS. Accelerated Image Reconstruction using Ordered Sunsets of Projection Data [J]. IEEE Trans. on Medical Imaging, vol. 13, no. 4, pp. 601-609, December. 1994.
    [21] Fessler JA and Hero AO. Penalized maximum-likelihood image reconstruction using space-alternating generalized EM algorithms [J]. IEEE Trans. Image Processing, vol .4, pp.1417-1429, Oct.1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700