采用非差模型的区域连续运行参考站网地学应用方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,以美国的GPS、俄罗斯的GLONASS、欧盟的Galileo和中国的北斗卫星导航系统BeiDou为代表的GNSS技术蓬勃发展,引发了导航定位领域的深刻变革,其应用领域日益广泛,GNSS在地学领域的应用一直以来是学者们所致力研究的重要课题。
     CORS是近年来发展起来的,集卫星导航定位、计算机网络、数字通信等高新科技多方位、深度结晶的GNSS领域的新产物,为开展GNSS地学应用研究提供了重要的基础设施。我国现已建成各类CORS系统近百个,纵览国内的CORS系统建设和应用,存在的问题比较突出,主要体现在“重建设,轻应用”,应用模式单一,没有充分发挥CORS的潜在价值。特别是省市一级的CORS系统,基本都是服务于实时差分定位,对于在地球动力学、大气科学、地震学、海洋科学等诸多地球科学领域的实质性应用尚处于起步阶段。本文旨在深入挖掘CORS的潜在应用价值,拓展其应用领域,突破CORS地学应用中的关键技术难题。
     以往的CORS地学应用研究中,大多采用相对成熟的双差定位模式。近年来,非差PPP技术的日益成熟为CORS地学应用的研究开辟了一条新途径。相比于双差定位模式,PPP保留了更多的观测值信息,具有模型简单、无需基准站、测站间不受距离限制、点位精度均匀且数据处理效率高等诸多优点,在很多领域得到了广泛的应用。本文基于非差PPP技术系统深入地研究了区域CORS在地学领域中的应用,着重开展了天顶大气可降水量的PPP反演方法及时空特征分析、PPP坐标时间序列分析及区域速度场估计和地震同震位移的单历元PPP确定方法等方面的研究,主要研究内容及取得的研究成果如下:
     (1)总结了国内外CORS系统的建设和应用现状,分析了开展CORS地学应用研究的重要性。全面综述了PPP相关关键技术的最新进展,鉴于PPP技术的显著优势,提出了基于非差PPP进行CORS地学应用研究。
     (2)深入研究了PPP定位中涉及的几个关键问题,包括函数模型、随机模型和参数估计等,分析了PPP的各项误差来源,给出误差的消除或削减策略。结合实例数据,对本文所使用的精密单点定位软件TriP的静态和动态定位精度进行了评定,得出TriP的静态和动态定位N、E、U方向的中误差分别为±0.0030m、±0.0031m、±0.0048m和±0.0104m、±0.0136m、±0.0291m,为本文后续基于该技术的地学应用研究奠定了基础。
     (3)天顶PWV的PPP反演方法及时空特征分析。研究了基于PPP技术进行天顶大气可降水量反演的基本理论和方法,在分析区域对流层加权平均温度与地面气象元素间关系的基础上,提出了区域对流层加权平均温度的多元非线性模型的建模方法,并基于此首次建立了江苏区域对流层加权平均温度模型,经验证模型精度达到±2.91K,优于Bevis经验公式在江苏地区±3.48K的精度。此外,利用JSCORS近5年的观测数据,分析了天顶PWV的时空变化特征。对PWV的年变化、季节变化、月变化、日变化特征进行了深入分析,同时对PWV与经纬度变化的关系也进行了分析,结果发现PWV的变化与纬度的变化强相关,而与经度变化关系较小。
     (4)PPP坐标时间序列分析及区域速度场估计。基于静态PPP技术解算了区域CORS的坐标时间序列,在区域空间滤波的基础上,分析了GPS基准站的周期特性和噪声特性。对坐标时间序列的频谱分析的结果表明:U方向年周期运动特征最为突出;大部分基准站点N方向具有明显的年周期项;大部分基准站点E方向具有明显的半年周期项。最大似然估计分析得到的坐标时间序列噪声特性表明:N、E方向“白噪声+闪烁噪声+随机漫步噪声”为最佳噪声模型组合;U方向“白噪声+闪烁噪声”为最佳噪声模型组合。此外计算了顾及有色噪声的区域速度场,跟双差解算结果比较后发现,二者之间的差值具有一定的系统性,但基本在3mm/yr以内,从而验证了PPP方法的正确性。
     (5)地震同震位移的单历元PPP确定方法研究。研究了基于单历元PPP的高频GPS观测数据用于同震位移确定的基本方法,主要对定位结果的滤波方法进行了深入研究。在常规恒星日滤波的基础上,提出了一种顾及分段相似性的恒星日滤波优化算法,即在构建滤波残差序列之前,首先确定用于构建滤波的坐标残差时间序列与地震当天坐标残差时间序列的相似性,根据相似性度量指标的大小确定权重后再进行滤波。通过两个模拟算例的分析表明,顾及分段相似性的优化算法大大改善了传统恒星日滤波的效果,能够克服常规滤波方法固有的缺陷,有利于实现恒星日滤波的无人工干预批处理。此外,利用提出的恒星日滤波优化算法,分析了日本Mw9.0级地震对中国东部沿海的影响,结果显示,震时我国东部沿海基准站发生了显著的水平方向和垂直方向的瞬时形变,幅度约为10cm,震后没有产生大于1cm的永久性位移,与国内外相关结果基本一致,验证了PPP技术用于同震地表形变分析的有效性。
     (6)区域CORS综合应用与增值服务初探。按照CORS系统的服务性质,将系统的服务分为基本应用服务和高级应用服务(增值服务)两种,总结研究了各项应用服务的主要内容和关键技术难点,探讨了区域CORS的综合应用,将区域CORS的应用服务领域从目前单一的实时定位服务,拓展到其它地学应用领域,对区域CORS开展增值服务应用具有重要的参考价值。
In recent years, flourishing development of GNSS including GPS, GLONASS, Galileo and China's Compass satellite navigation system promotes profound revolution in the field of navigation and positioning, leading to increasingly widespread applications, particularly in geosciences field which has always being an important issue for scholars to be committed to research.
     Continuously Operating Reference Stations (CORS) is a newly developed product from comprehensive and deep integration of GNSS navigation and positioning technology, computer science and digital communication. And it provides an important infrastructure to carry out GNSS application research. About one hundred CORS have been established in China, and there are some pronounced problems, mainly in lack of attention to applications. Single application mode limits the potential value of CORS. Especially, provincial CORS are based on real-time undifferenced positioning, leading to substantial applications in geodynamics, atmosphere, seismology and oceanography still in their infancy. This dissertation aims at digging out potential application value of CORS, extending its application field and breaking through key issues in geoscience applications.
     In the past, double-difference positioning approach was always used for the research of geoscience applications of CORS. In recent years, the increasing maturity of the PPP technology offers a new way for CORS geoscience-application research. Compared to the double differenced positioning approach, precise point positioning (PPP) retains more observations with a simple model, unlimited distances, without reference station, even point accuracy and high processing efficiency. As a result, it has been widely applied in many fields. Based on PPP technology, this dissertation systematically studied applications of regional CORS to geoscience field, focus on PPP inversion methodology and spatial-temporal characteristics analysis of zenith atmospheric precipitatable water, PPP coordinate time series analysis and regional velocity field estimation, PPP algorithm for co-seismic displacement from single epoch. Specific contents and main achievements of this dissertation are summarized as follows:
     1) The status of domestic and international CORS system construction and application is summarized, and the importance of geoscience application using CORS is analyzed. The latest development of PPP-related key technologies is comprehensively reviewed, and PPP-based geoscience applications using CORS in view of significant advantages of PPP are proposed.
     2) Several key problems of PPP are studied, including the function model, stochastic model and parameter estimation etc. Error sources of PPP are analyzed, and strategies of error elimination or reduction are proposed. The accuracy of the static and dynamic PPP is assessed using TriP software, and their standard deviation of static and dynamic positions are±0.0030m,±0.0031m,±0.0048m和±0.0104m,±0.0136m,±0.0291m, respectively, which lays the theoretical foundation for the following application research of the PPP-based geoscience.
     3) Zenith perceptible water vapor inversion methods, temporal and spatial variation analysis using PPP are studied. Fundamental theory and methodology of CORS in ground-based GPS atmospheric sounding are studied based on the determination of local troposphere weighted average temperature as well as the analysis of temporal and spatial variation of zenith water vapor, and a multivariate nonlinear model on the basis of regional troposphere weighted average temperature is proposed and it is first used to establish Jiangsu Province troposphere weighted average temperature model. After verification, accuracy of this model achieves±2.91K better than that of Bevis empirical model+3.48K. the applicability analysis of regional tropospheric model are emphatically studied. Besides, with the tracking data for the past five years of JSCORS, the temporal and spatial variation of zenith water vapor is analyzed. Temporal characteristics of PWV including annual, seasonal, monthly and daily variation are deeply analyzed, and relationship between PWVand longitude/latitude variation as well. The resultant PWV variation shows strong relationship to latitude variation, and weak connection to longitude variation.
     4) Coordinate time series is analyzed and regional velocity filed is determined using PPP. Based on the static PPP, time series of regional CORS are solved. After regional spatial filtering, periodic and noise characteristics of GPS base stations are analyzed. Spectrum analysis of coordinate time series indicates that periodic movement dominates in U direction, most fudicial stations show significant characteristics of annual period in N direction and semi-annual period in E direction. MLE (Maximum Likelihood Estimation) analysis suggests the best noise model for N and E components is the combination of white noise+flicker noise+random walk noise, the the best noise model for U components is combination of white noise+flicker noise. Besides, comparison of regional velocity field considering colored noise and the one from double difference method presents a systematical difference within3mm/yr, which verifies correctness of PPP.
     5) Coseismic displacement determination method using single epoch PPP is investigated. In this dissertation, the basic theory of coseismic deformation monitoring based on the high frequency GPS data is researched, and especially on the filtering method for positioning results. Accounting for segments' similarity, an improved sidereal filtering method is proposed based on conventional sidereal filtering method. That is, before building filtering operator, the segments' similarity of the residual coordinates time series between earthquake occurrence and former day/following day is firstly determined, and filtering is performed based on similarity index according to the weight of each day. The simulation results show that the improved sidereal filtering can effectively improve the single epoch positioning accuracy and reliability, completely overcome the defects of traditional filtering method, and is beneficial to batch processing without manual intervention. Finally, the coseismic displacements of Mw9.0Tohoku-oki earthquake are analyzed with some GPS continuous stations located along China's east coast using epoch by epoch PPP and improved sidereal filtering technique proposed in this dissertation. The result shows an apparent displacement along horizontal and vertical directions with amplitude about10cm. However, after the earthquake, there is no obvious permanent displacements more than1cm in agreement with related results at home and abroad, which verifies effectiveness of coseismic displacement analysis using PPP.
     6) Integrated application and value-added service of regional CORS base on the research of three key fields of geoscience applications are discussed. Systematic services can be classified into two groups:basic application service and higher-level application service (value-added service) in terms of CORS service nature. Their corresponding main contents and key technology difficulties are summarized. The field of applications services are expanded from single real-time positioning to other geoscience applications, and they are of important reference value for the developments of value-added services with regional CORS.
引文
[1]Agnew, D. C.. The Time-Domain Behavior of Power-law Noises[J]. Geophys. Res. Lett.,1992,19:333-336.
    [2]Agnew, D. C., Larson, K. M.. Finding the Repeat Times of the GPS Constellation[J]. GPS Solutions,2007,11(1):71-76.
    [3]Askne, J., Nordius, H.. Estimation of tropospheric delay for microwaves from surface weather data[J].Radio Science,1987,22(3):379-386.
    [4]Axelrad, P., Larson, K. M., Jones, B.. Use of the Correct Satellite Repeat Period to Characterize and Reduce Site-Specific Multipath Errors[A]. ION GNSS 2005, Long Beach, CA,13-16 September.
    [5]Baker, H. C, Dodson, A. H., Moore, T.. The Use of Ground_based GPS for Water Vapor Estimation [A]. The 9th International Technical Meeting of the Satellite Division of the Institute of Navigation, Missouri,1996.
    [6]Bevis, M., Businger, S., Herring, T. A., et al. GPS Meteorology:Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System[J]. Journal of Geophysical Research,1992,97(D 14):15787-15801.
    [7]Beyerle, G.. Carrier phase wind-up in GPS reflectometry[J].GPS Solutions, 2009,13:191-198.
    [8]Bilich, A. L.. Improving the Precision and Accuracy of Geodetic GPS: Applications to Multipath and Seismology[D]. USA:University of Colorado,2006.
    [9]Bilich, A., Cassidy, J. F., Larson, K. M.. GPS Seismology:Application to the 2002 Mw 7.9 Denali Fault Earthquake [J]. Bulletin of the Seismological Society of America,2008,98(2):593-606.
    [10]Bisnath, S., Gao Y.. Current State of Precise Point Positioning and Future Prospects and Limitations[J]. International Association of Geodesy Symposia, 2008,133(4):615-623.
    [11]Bock, Y.. Continuous monitoring of crustal deformation[J]. GPS world,1991, 2(6):40-47.
    [12]Bock, Y.. Detection of arbitrarily large dynamic ground motions with a dense high-rate GPS network[J]. Geophysical Research Letters,2004,31(6):1-4.
    [13]Bock, Y., Crowell, B., Melgar, D.. The Use of Real-Time GPS and Accelerometer Data for Earthquake Early Detection and Rapid Response[A]. Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, UCSD,2011.
    [14]Boehm, J., Heinkelmann, R., Schuh, H.. Short Note:A Global Model of Pressure and Temperature for Geodetic Applications[J].J Geod,2007,81:679-683
    [15]Cai, C., Gao, Y.. Precise Point Positioning Using Combined GPS and GLONASS Observations[J]. Journal of Global Positioning System,2007,6(1):13-22.
    [16]Cheng, W., Hu, C., Li, Z., et al. Kinematic GPS Precise Point Positioning for Sea Level Monitoring with GPS Buoy[J]. Journal of Global Positioning Systems,2004,3(1-2):302-307
    [17]Choi, K., Bilich, A., Larson, K. M.. Modified sidereal filtering:Implications for High-rate GPS Positioning[J]. Geophysical Research Letters,2004,31(22):10-13.
    [18]Collins, P.. Isolating and Estimating Undifferenced GPS Integer Ambiguities[A]. National Technical Meeting of Navigation Institute,2008:28-30.
    [19]Collins, P., Henton, J., Mireault, et al. Precise Point Positioning for Real-Time Determination of Coseismic Crustal Motion [A]. Proceedings of the 22nd International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2009), Savannah, GA, September 2009:2479-2488.
    [20]Dach, F., Hugentobler, U., Fridez, P., et al. Bernese GPS Software Version 5.0 [M].Astronomical Institute, University of Bern,2007.
    [21]Davis, J.L., Elgered, G., Niell, A. E., et al.. Ground-based Measurement of Gradients in the "Wet" Radio Refractivity of Air[J]. Radio Science,1993, 28(6):1003-1018.
    [22]Division, G. S.. Measuring Seismic Waves Induced by Large Earthquakes with GPS[J]. Methodology,2003,9:741-755.
    [23]Dixon, K.. StarFireTM:A Global SBAS for Sub-Decimeter Precise Point Positioning[A]. ION GNSS 2006.
    [24]Dong, D., Fang, P., Bock, Y., et al. Anatomy of apparent seasonal variations from GPS-derived site position time series[J]. Journal of Geophysical Research,2002, 107(B4):10-29.
    [25]Dong, D., Fang,P., Bock, Y., et al. Spatiotemporal Filtering Using Principal Component Analysis and Karhunen-Loeve Expansion Approaches for Regional GPS Network Analysis[J]. Journal of Geophysical Research,2006,111,B3.
    [26]Duan, J., Bevis, M., Fang, P., et al. GPS Meteorology:Direct Estimation of the Absolute Value of Precipitable Water Vapor[J].Appl. Meteor.1996,35:830-838.
    [27]Elosegui, P., Davis, J. L., Oberlander, D., et al. Accuracy of High-rate GPS for Seismology[J]. Geophysical Research Letters,2006,33(11):3-6.
    [28]Fang, P., Gendt, G., Springer, T., et al. IGS Near Real-time Products and their Applications[J]. GPS Solutions,2001,4(4):2-8.
    [29]Flores, A., Ruffini, G., Rius, A..4D tropospheric tomography using GPS slant wet delays[J]. Ann. Geophysicae,2000,18:223-234.
    [30]Gao, Y., Shen X. Improving Ambiguity Convergence in Carrier Phase-Based Precise Point Positioning, ION2001,2001
    [31]Gao, Y., Shen X.. A new method for carrier-phase-based precise point positioning[J]. Institute of Navigation,2002,49(2):109-116.
    [32]Gao, Y., Chen, K.. Performance Analysis of Precise Point Positioning Using Real-Time Orbit and Clock Products[J]. Journal of Global Positioning System, 2004,3(1-2):95-100.
    [33]Ge, M.. Integer Ambiguity Fixing for GPS Precise Point Positioning[A]. Paper Present at IUGG 2007.Perugia,Italy,2-13.July.
    [34]Ge, M., Chen, J., Gendt, G.. EPOS-RT:Software for Real-time GNSS Data Processing[A]. EGU 2009, Vienna, Austria,2009.
    [35]Ge, M., Zou, X., Dick, G., et al.. An Alternative Network RTK Approach Based on Undifferenced Observation Corrections [A]. ION GNSS 2010. Portland, Oregon.
    [36]Geng, J., Teferle, F. N., Shi,C. et al. Ambiguity resolution in precise point positioning with hourly data[J]. GPS Solution,2009,13(4):263-270.
    [37]Geng, J.. Rapid Re-convergence in Real-time Precise Point Positioning with Ambiguity Resolution[A]. ION GNSS 2009.
    [38]Geng, J., Meng, X., Ge, M., et al. Rapid Re-convergences to Ambiguity-fixed Solutions in Precise Point Positioning[J]. Journal of Geodesy, 2010,84(12):705-714.
    [39]Genrich J. F., Bock, Y.. Rapid Resolution of Crustal Motion at Short Ranges With the Global Positioning System [J]. Journal of Geophysical Research, 1992,97(B3):3261-3269.
    [40]Gu, G., Wang W.. Far-Field Ground Motion of the Wenchuan Earthquake Observed by GPS[J]. Geodesy and Geodynamics,2011,2(3):1-7.
    [41]Haase, J., Ge, M., Vedel, H.. Accuracy and Variability of GPS Tropospheric Delay Measurement of Water Vapor in the Western Mediterranean [J]. J. Appl. Meteo.,2003,42:1547-1568.
    [42]Hilla, S. A New Plotting Program for Windows-Based TEQC Users[J]. GPS Solution,2002,6(3):196-200.
    [43]Hirahara, K. T., Nakano, Y., Hoso et al. An Experiment for GPS Strain Seismometer[A]. Japanese Symposium on GPS,1994:67-75.
    [44]Iwabuchi, T., Rocken, C., Lukes, Z., et al. PPP and Network True Real-time 30 sec Estimation of ZTD in Dense and Giant Regional GPS Network and the Application of ZTD for Nowcasting of Heavy Rainfall[A]. ION GNSS 2006.
    [45]Ji, C., Slip History Of The 2003 San Simeon Earthquake Constrained by Combining 1-Hz GPS, Strong Motion, and Teleseismic Data[J]. Geophysical Research Letters,2004,31(17):2-5.
    [46]Kouba, J., Heroux, P.. GPS Precise Point Positioning Using IGS Orbit Products[J]. GPS Solutions,2001,5(2),12-28.
    [47]Larson, K. M., Bodin, P., Gomberg, J.. Using 1-Hz GPS Data to Measure Deformations Caused by the Denali Fault Earthquake [J]. Sience.2003, 300:1421-1424.
    [48]Larson, K. M., Bilich, A., Axelrad, P.. Improving the Precision of High-rate GPS[J]. Journal of Geophysical Research,2007,112,B5.
    [49]Larson, K. M., Bodin, P.. Gomberg, J.. Using 1-Hz GPS Data to Measure Deformations Caused by The Denali Fault Earthquake [J] Journal of Geodesy, 2009,83(3-4):227-233.
    [50]Laurichesse, D., Mercier, F.. Integer Ambiguity Resolution on Undifferenced GPS Phase Measurements and its Application to PPP[A]. ION GNSS 2007, Fort Worth, Tex, US.
    [51]Le, A. Q., Tiberius, C. Single-frequency Precise Point Positioning with Optimal Filtering[J].GPS Solution,2007,11(1):61-69.
    [52]Li, X., Zhang, X.. Regional Reference Network Augmented Precise Point Positioning For Instantaneous Ambiguity Resolution. Journal of Geodesy, 2010,84(12):705-704. DOI 10.1007/s00190-010-0424-0.
    [53]MacMillan, D. S.. Atmosheric gradients from very long baseline interferometry observations, Geophys. Res. Let.,1995,22,1041-1044.
    [54]Mao, A., Harrison, C. G. A., Dixon, T. H. Noise in GPS Coordinate Time Series[J]. Journal of Geophysical Research,1999,104(B2):2797-2816.
    [55]Melgard, T., Vigen, E., Visser, H. et al. G2-The First Real-time GPS and GLONASS Precise Orbit and Clock Service[A]. Proceedings of 22nd International Technical Meeting of The Satellite Division of The Institute of Navigation,2009:1885-1891.
    [56]Mireault, Y., Tetreault, P., Lahaye, F., et al. Canadian RT/NRT Products and Services[A]. IGS Workshop 2008, Miami Beach,2008.
    [57]Miyazaki, S., Larson, K. M., Chio, K.. Modeling the Rupture Process of the 2003 September 25 Tokachi-Oki(Hokkaido) Earthquake Using 1-Hz GPS Data[J]. Geophysical Research Letters,2004:31,L21603.
    [58]Mohamed, A.. Precise Point Positioning Using Un-Differenced Code and Carrier Phase Observations[D]. The University of Calgary,2005.
    [59]Morley, T. G.. Augmentation of GPS with Pseudolites in a Marine Environment[M]. Canada:the University of CALGARY,1997.
    [60]Nikolaidis, R.. Observation of geodetic and seismic deformation with GPS[D]. USA:University of California,2002.
    [61]Penna, N. T., King, M. A., Stewart, M. P. GPS Height Time Series:Short-Period Origins of Spurious Long-Period Signals[J]. Journal of Geophysical Research, 2007,112, B02402.
    [62]Ray, J., Altamimi, Z., Collilieux,X. et al. Anomalous Harmonics in the Spectra of GPS position Estimates[J]. GPS Solution,2008,12(1):55-64.
    [63]Rocken, C., Hove, T. V., Johnson, J., et al.GPS/STORM-GPS Sensing of Atmospheric Water Vapor for Meterology[J] Journal of Atmospheric and Oceanic Technology,1995,12:468-478.
    [64]Satirapod, H., and Homniam, P.. GPS Precise Point Positioning Software for Ground Control Point Establishment in Remote Sensing Applications[J]. Journal of Surveying Engineering,2006,132(1):11-14.
    [65]Seeber, G., Menge, F., Volksen, C., et al. Precise GPS Positioning Improvements by Reducing Antenna and Site Dependent Effects. In:Brunner FK (ed) Advances in positioning and reference frames:IAG symposium,1998,118:237-244.
    [66]Shestakov, N. V., Takahashi, H., Ohzono, M., et al. Analysis of the Far-field Crustal Displacements Caused by the 2011 Great Tohoku Earthquake Inferred from Continuous GPS Observations [J]. Tectonophysics,2012,524-525:76-86.
    [67]Shi, C., Lou, Y., Zhang, H., et al. Seismic Deformation of The Mw 8.0 Wenchuan Earthquake from High-Rate GPS Observations[J]. Advances in Space Research,2010,46(2):228-235.
    [68]Shimon, W., Yehuda, B.. Southern California Permanent GPS Geodetic Array: Spatial Filtering of Daily Positions for Estimating Coseismic and Postseismic Displacements Induced by the 1992 Landers Earthquake[J]. Journal of Geophysical Research,1997,18:057-070.
    [69]Suparta, W. Variability of GPS-Based Precipitable Water Vapor over Antarctica: Comparison Between Observations and Predictions[J].World Applied Sciences Journal,2011,12(9):1597-1604.
    [70]Tao, W.. Near Real-time GPS PPP-inferred Water Vapor System Development and Evaluation[D]. University of Calgary, Calgary,2008.
    [71]Teferle, F. N., Orliac, E. J., Bingley R. M.. An Assessment of Bernese GPS Software Precise Point Positioning Using IGS Final Products for Global Site Velocities[M]. Springer-Verlag 2006.
    [72]Wang. M., Gao, Y.. An Investigation on GPS Receiver Initial Phase Bias and its Determination. Proceedings of ION NTM 2007,22-24 January, San Diego, California, pp.873-880.
    [73]Wdowinski, S., Bock, Y., Zhang J., et al. Southern California Permanent GPS Geodetic Array:Spatial Filtering of Daily Positions For Estimating Coseismic and Postseismic Displacements Induced by 1992 Landers Earthquake[J]. Journal of Geophysical Research,1997,102(B8):57-70.
    [74]Williams, S. D. P.. Error Analysis of Continuous GPS Position Time Series[J]. Journal of Geophysical Research,2004,109(B03412).
    [75]Williams, S. D. P.. CATS:GPS Coordinate Time Series Analysis Software[J]. GPS Solut,2008,12:147-153.
    [76]Wu. J. T., Wu, S. C, Hajj, G. A. et al. Effect of antenna orientation on GPS carrier phase[J]. Astrodynamics,1991:1647-1660.
    [77]Zhang, J., Bock, Y., Johnson, H., et al. Southern California Permanent GPS Geodetic Array:Error Analysis of Daily Position Estimates and Site Velocities[J] Journal of Geophysical Research,1997,102(B8):35-55.
    [78]Zhang, X., Li, X., Guo, F.. Satellite Clock Estimation at 1 Hz For Real Time Kinematic PPP Applications[J]. GPS Solut.,2011,15(4):315-324.
    [79]ZHOU WANG. A Universal Image Quality Index[J]. IEEE Signal Processing Letters,2002,9(3):81-84.
    [80]Zumberge, J. F., Heflin, M.B., Jefferson, D. C., et al. Precise Point Positioning for The Efficient and Robust Analysis of GPS Data from Large Networks[J]. Journal of Geophysical Research,1997,102(B3):5005-5017.
    [81]毕研盟.应用全球定位系统(GPS)遥感大气水汽的研究[D].北京:北京大学,2006.
    [82]陈招华.区域精密对流层延迟建模[D].长沙:中南大学,2010.
    [83]丁金才.GPS气象学及其应用[M].北京:气象出版社,2009.
    [84]方加果.基于相似性分析的时间序列数据挖掘算法研究[D].浙江:浙江大学计算机学院,2011.
    [85]方荣新,施闯,辜声峰.基于PPP动态定位技术的同震地表形变分析[J].武汉大学学报.信息科学版,2009,34(11):1340-1343.
    [86]方荣新.高采样率GPS数据非差精密处理方法及其在地震学中的应用研究[D].武汉:武汉大学,2010.
    [87]葛茂荣.GPS卫星精密定轨理论及软件研究[D].湖北:武汉测绘科技大学,1995.
    [88]耿涛,赵齐乐,刘经南等.基于PANDA软件的实时精密单点定位研究[J].武汉大学学报.信息科学版,2007,32(4):312-315.
    [89]谷晓平.GPS水汽反演及降雨预报方法研究[D].北京:中国农业大学,2004.
    [90]顾国华,王武星,孟国杰,徐岳仁.GPS测得的汶川大地震前后的地壳运动[J].武汉大学学报·信息科学版,2009,34(11):1336-1339.
    [91]顾国华,王武星.GPS测得的汶川大地震同震位移[J].地震,2009,29(1):92-97.
    [92]顾国华,王武星.区域网GPS观测得到的汶川大地震前后的地壳垂直运动[J].地震2011,31(3):1-7.
    [93]郭斐.非差GPS/GLONASS组合精密单点定位研究[D].武汉:武汉大学,2009.
    [94]洪卓众.区域对流层建模在地基GPS气象学中的应用研究[D].西安:长安大学,2011.
    [95]黄立人,符养.GPS连续观测站的噪声分析[J].地震学报,2007,29(2):197-202.
    [96]黄立人,韩月萍,高艳龙等GNSS连续站坐标的高程分量时间序列在地壳垂直运动研究中应用的若干问题[J].大地测量与地球动力学,2012,32(4):10-14.
    [97]姜卫平,邹璇,唐卫明.基于CORS网络的单频GPS实时精密单点定位新方法[J].地球物理学报,2012,55(5):1549-1556.
    [98]匡翠林.利用GPS非差数据精密确定低轨卫星轨道的理论及方法研究[D].武汉:武汉大学,2008.
    [99]匡翠林,戴吾蛟.GPS监测高层建筑风致振动变形及小波应用[J].武汉大学学报·信息科学版,2010,35(9):1024-1028.
    [100]李国平,黄丁发,刘碧全等.成都地区地基GPS观测网遥感大气可降水量的初步实验[J].地球空间信息科学学报·英文版,2007,10(3):22-45.
    [101]李国平.地基GPS遥感大气可降水量及其在气象中的应用研究[D].成都:西南交通大学,2007.
    [102]李建国,毛节泰,李成才.使用全球定位系统遥感水汽分布原理和中国东部地区加权“平均温度”的回归分析[J].气象学报,1999,57(3),283-292.
    [103]李黎,匡翠林,朱建军.基于实时精密单点定位技术的暴雨短临预报[J].地球物理学报,2012,55(4):1129-1136.
    [104]李星星,张小红,李盼.固定非差整数模糊度的PPP快速精密定位定轨[J].地球物理学报,2012,55(3):833-840.
    [105]李昭.GPS坐标时间序列的非线性变化研究[D].武汉:武汉大学,2012.
    [106]李昭,姜卫平,刘鸿飞等.中国区域IGS基准站坐标时间序列噪声模型建立与分析[J].测绘学报,2012,41(4),496-503.
    [107]刘根友GAMIT/GLOBK软件使用的坐标系及其相互转换[J].测绘工程,2003,12(3):21-23.
    [108]刘经南,刘晖.连续运行卫星定位服务系统—城市空间数据的基础设施[J].武汉大学学报·信息科学版,2003,28(3):259-264.
    [109]刘经南GNSS连续运行参考站网的下一代发展方向—地基地球空间信息智能传感网络[J].武汉大学学报·信息科学版,2011,36(3):253-256.
    [110]刘焱雄,H B Iz,陈永奇.地基GPS技术遥感香港地区大气水汽含量.武汉测绘科技大学学报,1999,24(3):245-248.
    [111]刘焱雄,陈永奇,刘经南.利用地面气象观测资料确定对流层加权平均温度[J].武汉测绘科技大学学报,2000,25(5):400-404.
    [112]刘焱雄,彭琳,周兴华等[J].网解和PPP解的等价性[J].武汉大学学报·信息科学版,2005,30(8):736-738.
    [113]罗海滨,何秀凤.用GPS改正InSAR大气延迟误差的研究[J].大地测量与地球动力学,2007,27(3):35-38.
    [114]吕成亮.基于CGCS2000的CORS坐标时间序列特征分析[D].武汉:武汉大学,2012.
    [115]毛节泰.GPS的气象应用[J].气象科技,1993,4:45-49.
    [116]孟国杰,任金卫,金红林等.GPS高频数据处理方法及其在地震学中的应用研究进展[J].国际地震动态,2007,(7):26-31.
    [117]彭懋磊,刘刚,聂兆生,杜瑞,林赵斌.日本Mw9.0强震的高频GPS形变波特征初探[J].大地测量与地球动力学,2011,31(6):7-9.
    [118]曲建光.GPS遥感气象要素的理论与应用研究[D].武汉:武汉大学,2005.
    [119]阮仁桂,郝金明,刘勇.正反向Kalman滤波用于动态精密单点定位参数估计[J].武汉大学学报·信息科学版,2010,35(3):279-282.
    [120]邵志刚,武艳强,江在森,张浪平.基于GPS观测分析日本9.0级地震同震位错与近场形变特征[J].地球物理学报,2011,54(9):2243-2247.
    [121]宋淑丽.地基GPS网对水汽三维分布的监测及其在气象学中的应用[D].上海:中国科学院上海天文台,2004.
    [122]苏小宁,孟国杰,胡丛玮,伍吉仓.基于TRACK进行GPS单历元定位[J].大地测量与地球动力学,2009,29(3):101-103.
    [123]苏小宁.高频GPS单历元定位方法及其在地震学中的应用研究[D].北京:中国地震局,2011.
    [124]邰贺,张小红,张明等.GPS单频精密单点定位方法与实践[J].测绘信息与工程,2008,33(3):1-3.
    [125]田云峰.GPS位置时间序列中的中长期误差研究[D].北京:中国地震局地质研究所,2011.
    [126]王敏,张培震,沈正康,刘杰,孙汉荣,甘卫军,李鹏.全球定位系统(GPS)测定的印尼苏门达腊巨震的远场同震地表位移[J].科学通报,2006,51(3):365-368.
    [127]王敏,李强,王凡,张锐等.全球定位系统测定的2011年日本宫城MW9.0级地震远场同震位移[J].科学通报,2011,56(20):1593-1596.
    [128]王小亚.地面GPS探测大气可降水汽量的研究及其在气象上的应用[D].上海:中国科学院上海天文台,1998.
    [129]王晓英,戴仔强,曹云昌.中国地区地基GPS加权平均温度Tm统计分析[J].武汉大学学报·信息科学版,2011,36(4):412-416.
    [130]王鑫.用Oringe剔除线性拟合中实验数据的异常值[J].山西师范大学学报.自然科学版,2003,17(1):45-49.
    [131]王勇,刘严萍,柳林涛等.区域GPS网对流层延迟直接推算可降水量研究[J].热带气象学报,2007,23(005):510-514.
    [132]王勇,杨彬云,刘严萍等.基于无线电探空的武汉大气加权平均温度模型研究[J].测绘科学,2010,35(2):112-113.
    [133]席广永.区域CORS延迟改正及精密定位研究[D].南京:河海大学,2012.
    [134]熊永良,黄丁发,丁晓利,等.虚拟参考站技术中对流层误差建模方法研究[J].测绘学报,2006,35(002):118-121.
    [135]熊永良,黄丁发,丁晓利等.基于多个GPS基准站的对流层延迟改正模型研究[J].工程勘察,2005,5:55-57.
    [136]徐莹.天津CORS参考站的位臵稳定性研究[D].武汉:武汉大学,2011.
    [137]许承权.单频GPS精密单点定位算法研究与程序实现[D].武汉:武汉大学,2008.
    [138]杨少敏,聂兆生,贾志革,彭懋磊.GPS解算的日本M w9.0级地震的远场同震地表位移[J].武汉大学学报·信息科学版,2011,36(11):1336-1339.
    [139]杨希东.实验数据异常值的剔除方法[J].唐山师专学报,1998,20(5):56-58.
    [140]叶世榕.GPS非差相位精密单点定位理论与实现[D].武汉:武汉大学,2002.
    [141]易重海.实时精密单点定位理论与应用研究[D].长沙:中南大学,2011.
    [142]殷海涛,张培震,甘卫军等.高频GPS测定的汶川Ms8.0级地震震时近场地表变形过程[J].科学通报,2010,55(26):2621-2626.
    [143]殷海涛.基于参考站网络的区域对流层4D建模理论、方法及应用研究[D].成都:西南交通大学,2006.
    [144]殷海涛,甘卫军,肖根如.恒星日滤波的修正以及对高频G PS定位的影响研究[J].武汉大学学报·信息科学版,2011,36(5):609-611.
    [145]殷海涛,甘卫军,熊永良等.PCA空间滤波在高频GPS定位中的应用研究[J].武汉大学学报·信息科学版,2011,36(7):825-829.
    [146]于兴旺,张小红,邰贺等GPS/GLONASS组合单点定位在导航中的应用[J].测绘信息与工程,2007,32(6):1-3.
    [147]张宝成,欧吉坤,袁运斌等.利用非组合精密单点定位技术确定斜向电离层总电子含量和站星差分码偏差.测绘学报,2011,40(4):447-453.
    [148]张宝成,Teunissen J G Peter, Odijk Dennis等.精密单点定位整周模糊度快速固定[J].地球物理学报,2012,55(7):2203-2211.
    [149]张化疑,刘焱雄,周兴华等.渤海区域对流层加权平均温度研究[J].测绘信息与工程,2010,35(4):1-2.
    [150]张倩,王治和,张国治.基于相关系数的正、负关联规则挖掘算法[J].陕西理工学院学报2005,21(4):35-38.
    [151]张守建.GNSS非差模式的卫星精密定轨及快速精密定位理论与方法[D].武汉:武汉大学,2009.
    [152]张双成.地基GPS遥感水汽空间分布技术及其应用的研究[D]_武汉:武汉大学,2009.
    [153]张小红.动态精度单点定位(PPP)的精度分析[J].全球定位系统,2006,31(1):7-11.
    [154]张小红,李星星,郭斐.GPS单频精密单点定位软件实现与精度分析[J].武汉大学学报·信息科学版,2008,33(8):783-787.
    [155]张小红,李星星.非差模糊度整数固定解PPP新方法及实验[J].武汉大学学报·信息科学版,2010,35(6):657-660.
    [156]张小红,郭斐,郭博峰等.利用高频GPS进行地表同震位移监测及震相识别[J].地球物理学报,2012,55(6):1912-1918.
    [157]张彦芬SXCORS坐标时间序列特征分析及应用[D].武汉:武汉大学,2011.
    [158]章红平,刘经南,朱文耀等.利用地GPS技术反演武汉地区大气可降水分[J].天文学进展,2005,23(2):169-179.
    [159]章红平.利用地基GPS数据估计大气可降水分[D].武汉:武汉大学,2003.
    [160]赵长胜,乔仰文,张贵元.空间直角坐标向高斯平面坐标转换时精度转换公式及其应用[J].阜新矿业学院学报·自然科学版,1996,15(3):299-302.
    [161]周命端,郭际明,许承权等.卫星天线相位中心偏移对GPS精密单点定位精度的影响研究[J].测绘通报,2008,(10):8-9,13.
    [162]邹璇GNSS单频接收机精密点定位统一性方法的研究[D].武汉:武汉大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700