非综合征型遗传性听力损失家系致病基因定位克隆研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
致聋基因的定位与克隆一直是全球遗传学和耳鼻喉科学学者共同致力研究的焦点。从1988年,第一个非综合征型耳聋基因位点被确定,截止至2008年5月,非综合征型遗传性耳聋的研究取得了巨大的成就,共定位了144个基因座位,克隆了49个基因。从1995年,第一个非综合征型耳聋基因被克隆,到2006年,耳聋基因的定位与克隆一直保持高速增长,平均每年定位8.3个位点,克隆4个基因。在这其中也包含了中国学者大量深入、细致的工作。早在1998年,夏家辉院士就克隆了GJB3基因——DFNA2基因座位的责任基因之一。到目前,中国学者共报告了13个基因座位(13/144,占9%),其中7个与国外报道的耳聋基因座位重合,6个是新的耳聋基因座位(6/144,4.2%)。遗传性耳聋基因的定位与克隆研究前景非常可观,有近2/3的基因座还没有找到责任基因,还有更多的新的耳聋基因等待着人们去发现。然而机遇与挑战并存,从2007年开始,遗传性耳聋的研究工作遭遇瓶颈,耳聋基因定位与克隆的速度明显减缓,成功定位和克隆的耳聋基因的数量逐年减少,2007-2008两年间只发现了4个耳聋基因新座位,克隆了2个新耳聋基因。为探索打破瓶颈,推动遗传性耳聋的分子机制研究进展,本研究立足于中国耳聋人群,采用位置候选基因克隆策略,进行了非综合征型遗传性耳聋大家系的基因定位克隆和候选基因筛查研究工作,成功定位了2个耳聋家系,发现了一个新耳聋基因座位——DFNA61,并利用一种新方法为发现新的耳聋基因进行了尝试,具体内容包括如下三部分。
     第一部分DFNA61型中高频听力损失家系(0703271家系)新基因定位研究
     本研究对一个罕见的中国遗传性中高频听力损失耳聋家系(0703271家系)进行基因定位克隆研究。该家系耳聋表型表现为一种常染色体显性遗传、迟发型、渐进性的、为中频为主的听力损失。家系共有3代,21名成员,10名耳聋患者。通过全基因组基因定位扫描连锁分析,在17号染色体上D17S1852微卫星标记处取得了最大LOD值3.45,定位区段位于D17S804至D17S969之间6.74cM的区域内。在此定位区段内尚无听力损失位点的报道,因此这是一个新的基因座位,我们将其命名为DFNA61。DFNA61基因座内共有14个编码蛋白基因,本研究下一步将对其展开筛查,希望早日找到DFNA61的致病基因。
     第二部分遗传性迟发型听力损失(W727家系)致病基因的精细定位克隆研究
     几乎所有的DFNA位点都具有迟发型听力损失的表型,而且遗传性迟发型听力损失对于研究听力的“提前衰老”,进而为老年性耳聋提供研究思路意义重大,因此,本课题组一直致力于遗传性迟发型听力损失的研究。本研究对2007年初步定位在9号染色体上(LOD=2.06 D9S157)的中国迟发型听力损失(W727)家系进行了进一步的精细基因定位与克隆研究。在W727家系原有基础上新增加了15名家系成员:包括6名耳聋患者和9名听力正常者,结果在1号染色体D1S2797处,取得LOD值=3.75的结果,将W727家系定位在1号染色体的D1S255和D1S2890之间18.9cM的区域内。该位点与DFNA2有部分重合,首选该DFNA2责任基因GJB3基因作为侯选基因进行突变检测,未发现致病突变。另一个DFNA2责任基因——KCNQ4基因的筛查正在进行,如果发现致病突变,则可以确定W727家系的致病基因;如果KCNQ4不是W727家系的致病基因,则可以推测该基因座位存在一个新的耳聋基因,继续研究,力争发现一个新的耳聋基因。
     第三部分人类遗传疾病基因模块化方法预测和验证聋病相关基因
     耳聋基因的定位只是破译耳聋基因研究的第一步,在已经定位的基因座中寻找到致病目标基因是一项更为艰难的工作。人类遗传疾病基因预测的模块化方法是近些年来出现的一种建立于生物信息学基础之上、利用基因网络手段对遗传疾病致病基因进行预测的新方法。为了给遗传性耳聋的致病基因克隆提供新的思路和方法,也对这种新方法的效能进行验证,本研究对2005年已经定位在9号染色体D9S165-D9S1874之间约4.12cM的区域内的常染色体显性遗传性耳聋大家系—686家系,采用了人类遗传疾病基因预测的模块化方法中的CIPher模型和Endeavour在线工具两种方法进行了致病基因的预测。研究结果发现共有6个基因:TLN1(细胞骨架蛋白基因),STOML2(溴化丙胺太林相关蛋白基因),AQP3(水通道蛋白基因),DNAI1(动力蛋白基因),C9ORF24(假基因),CCIN(精子细胞内基本蛋白基因),GALT(1-磷酸半乳糖尿苷酸转移酶基因)入选。首先选择AQP3基因在25名家系成员(包括8名耳聋患者)中进行了筛查。在筛查,我们发现了两个多态性改变:390C>T/390C>T和394G>A/WT。其中后者可引起氨基酸改变(ASP132ASN),进而可能使蛋白的空间构象发生变化,对其功能造成一定影响。家系中发生394G>A/WT突变的4名成员可能都是患病状态,在目前可以确定的家系正常人中尚未发现这种突变。本研究探索了一种新型的研究思路来思考和发现新的耳聋致病基因,具有一定的指导意义。
The mapping and cloning of deafness genes is a hot focus that geneticists and otolaryngologists.The great progress of the research on hereditary non-syndromic deafness has been made since the first non-syndromic deafness locus was mapped in 1988.Until May 2008,144 loci are located,from which and 49 genes are cloned.The mapping and cloning on of deafness genes grew rapidly since the first gene of non-syndromic deafness was cloned in 1995.On average, 8.3 loci and 4 genes were identified every year,from 1995 to 2006.Chinese scholars achieved great success during the period.In 1999,Academician Xia Jia-hui et al from Chinese Academy of Science cloned the underling gene GJB3 for DFNA2,which was the only gene cloned by Chinese scientist.Up to now, Chinese scientist have discovered 13 loci(13/144,9%),7 of which were the same as the previous identified,and the other 6 were novel(6/144,4.2%).The future for positional cloning of deafness gene is bright.The underling genes in nearly 2/3 of the identified loci remain to be cloned,in addition to continuously identified genes/loci.However,those opportunities parallel with challises.The year of 2007 was a bottle-neck in the history of genetic studies of hearing loss.The speed for mapping and cloning of deafness genes was dramatically reduced,indicated by less successful attempts of positional cloning annually discovered.Only 4 loci and 2 genes were discovered during 2007 and 2008.In this study,we worked on the research of three non-syndromic hereditary deafness pedigrees by the strategy of positional cloning and screening the candidate genes based on the deaf people in China.We succeeded in locating 2 loci in two pedigrees and identifying a novel deafness locus named DFNA61 and attempted to predict causative genes in a deafness family mapped before.The research included three parts.
     Part one:mapping of the novel locus DFNA61 for late-onset mid to high frequency autosomal dominant hereditary hearing loss
     In this study,mapping and cloning of the underlying gene for a scarce frait of hereditary deafness in a Chinese family suffering from middle and high-frequency hearing loss was performed.The phenotypic characteristics included autosomal dominant inheritance,late-onset occurence,progressivity and the hearing loss mainly in middle frequencies hearing.The family included 21 members in 3 generations,of which 10 members were deaf.We got the maximum LOD value of 3.45 on chromosome 17 with peak microsatellite marker D17S1852 by using genome-wide genesan and linkage analysis,and the linked region, defined by markers D17S804 and D17S969,was 6.74 cM long.No known hearing loss locus/gene was reported previously in this region,and thus,this locus was named as DFNA61.It contains 14 protein-coding genes,and further effort will be directed to identification of the causative genes in the locus.
     Part two:fine mapping of the linkage for hereditary late-onset hearing loss(W727 family)
     Almost all the DFNA loci have been linked to late-onset hearing loss phenotypes.Studies of hereditary late-onset hearing loss might give insights for early aging in hearing or age-related hearing loss.Consequently,our group have worked in this area for many years.In this study,we fine-mapped the locus for a Chinese late-onset hearing loss family named W727,which was previously mapped on chromosome 9(LOD=2.06,D9S157) in 2007.This family was extended by adding 15 new members including 6 deaf and 9 normal subjects.We got the maximum LOD value of 3.75 on Maker D1S2797 on chromosome 1,the interval of 18.9cM distance was defined by markers D1S255 and D1S2890.This interval overlapped with DFNA2 overlaps in part,we screened the mutations of GJB3 gene,one of responsible genes for DFNA2,but no mutation was found.In the next step,we will screen the other gene(KCNQ4).If no causative mutataion was found either,the underlying gene for this family might be novel.
     Part three:Network-based global inference and identification of human deafness genes by using modularization method
     Mapping deafness gene was just the first step in genetic research,it followed by difficult task finding the causative gene in the locus.Network-based global inference was a newly development bioinfornatics method to predict causative genes via the gene network.In order to verify the potential of this method for prioritizing the genes to be cloned,we applied this method tp predict the putative for causative gene for autonomic dominant deafness in family 686,which had been mapped on to a Chromosome 9 interval of 4.12 cM,flanked by markers D9S165 and D9S1874.Two different modular methods,CIPher model and Endeavour online tools were implemented,leading to identification of 7 genes were chosen,including TLN1,STOML,AQP3,DNAI1,C9ORF24,CCIN, and GALT.We first selected AQP3 gene to screen 25 family members including 8 deafness patients.Two polymorphisms were found:390C>T/390C>T and 394G>A/WT.The latter can change the 132nd amino acid,from Asp to Asn, possibly leading to changes both in functionalities and spatial structure of the resulted protein.Reasonably,the 4 members with this functional polymorphism night be affected,soon or later.However,none of the healthy members in this family had this mutation.This study demonstrate that in-silico bioinformatics methods might provide effective alternative or pfiofitizing the hearing loss gene to be loned.
引文
1.Kirshhofer K.;Hoover,D.M.;Kenyon,J.B.;Franz,P.;Weipoltshammer,K.;Wachtler,F.;Kimberling,W.J.:.Localisation of a gene responsible for an autosomal dominant non-syndromic sensorineural hearing loss to chromosome 15.Molecular Biology of Hearing and Deafness Bethesda,Md:? 1995,6:10.
    2.Kirshhofer K;Kenyon,J.B.;Hoover,D.M.;Franz,P.;Weipoltshammer,K.;Wachtler,F.;Kimberling,W J.:.Autosomal-dominant congenital severe sensorineural hearing loss:localisation of a disease gene to chromosome 11q by linkage analysis in an Austrian family..Second Workshop on the European Workgroup on Genetics of Hearing Impairment Milan,Italy,1996,11 10.
    3.Verhoeven K.,Van Camp G,Govaerts P.J.,et al.A gene for autosomal dominant nonsyndromic hearing loss(DFNA12) maps to chromosome 11q22-24.Am J Hum Genet,1997,60:1168-1173.
    4.O'neill M.E.,Marietta J.,Nishimura D.,et al.A gene for autosomal dominant late-onset progressive non-syndromic hearing loss,DFNA10,maps to chromosome 6.Hum Mol Genet,1996,5:853-856.
    5.Brown M.R.,Tomek M.S.,Van Laer L.,et al.A novel locus for autosomal dominant nonsyndromic hearing loss,DFNA13,maps to chromosome 6p.Am J Hum Genet,1997,61:924-927.
    6.Mangino M.,Flex E.,Capon F.,et al.Mapping of a new autosomal dominant nonsyndromic hearing loss locus(DFNA30) to chromosome 15q25-26.Eur J Hum Genet,2001,9:667-671.
    7.Bonsch D.,Schmidt C.M.,Scheer P.,et al.[A new locus for an autosomal dominant,non-syndromic hearing impairment(DFNA57) located on chromosome 19p13.2 and overlapping with DFNB15].Hno,2008,56:177-182.
    8.Verhoeven K.,Van Laer L.,Kirschhofer K,et al.Mutations in the human alpha-tectorin gene cause autosomal dominant non-syndromic hearing impairment.Nat Genet,1998,19:60-62.
    9.Wayne S.,Robertson N.G.,Declau F.,et al.Mutations in the transcriptional activator EYA4 cause late-onset deafness at the DFNA10 locus.Hum Mol Genet 2001,10:195-200.
    10.Mcguirt W.T.,Prasad S.D.,Griffith A.J,et al.Mutations in COL11A2 cause non-syndromip hearing loss(DFNA13).Nat Genet,1999,23:413-419.
    11.Peters L.M.,Anderson D.W.,Griffith A.J.,et al.Mutation of a transcription factor,TFCP2L3,causes progressive autosomal dominant hearing loss,DFNA28.Hum Mol Genet,2002,11:2877-2885.
    12.Lalwani A.K.,Castelein C.M.Cracking the auditory genetic code:nonsyndromic hereditary hearing impairment.Am J Otol,1999,20:115-132.
    13.Borsani G.,Degrandi A.,Ballabio A.,et al.EYA4,a novel vertebrate gene related to Drosophila eyes absent.Hum Mol Genet,1999,8:11-23.
    14.Depreux F.F.,Darrow K.,Conner D.A.,et al.Eya4-deficient mice are a model for heritable otitis media.J Clin Invest,2008,118:651-658.
    15.Hanson I.M.,Gorman P.,Lui V.C,et al.The human alpha 2(Ⅺ) collagen gene(COL11A2) maps to the centromeric border of the major histocompatibility complex on chromosome 6.Genomics,1989,5:925-931.
    16.Hanson I.M.,Poustka A.,Trowsdale J.New genes in the class Ⅱ region of the human major histocompatibility complex.Genomics,1991,10:417-424.
    17.Vuristo M.M.,Pihlajamaa T.,Vandenberg P.,et al.The human COL11A2 gene structure indicates that the gene has not evolved with the genes for the major fibrillar collagens.J Biol Chem,1995,270:22873-22881.
    18.T.Yang R.Smith..A novel locus DFNA 26 maps to chromosome 17q25 in two unrelated families with progressive autosomal dominant hearing loss..http://geneticsfaseborg/genetics/ashg00/f1655htm,2003,
    19.Zhu M.,Yang T.,Wei S.,et al.Mutations in the gamma-actin gene(ACTG1) are associated with dominant progressive deafness(DFNA20/26).Am J Hum Genet,2003,73:1082-1091.
    20.Van Wijk E.,Krieger E.,Kemperman M.H.,et al.A mutation in the gamma actin 1(ACTG1) gene causes autosomal dominant hearing loss(DFNA20/26).J Med Genet,2003,40:879-884.
    21.Morell R.J,,Friderici K.H.,Wei S.,et al.A new locus for late-onset,progressive,hereditary hearing loss DFNA20 maps to 17q25.Genomics,2000,63:1-6.
    22.Friedman T.B.,Liang Y,Weber J.L.,et al.A gene for congenital,recessive deafness DFNB3 maps to the pericentromeric region of chromosome 17.Nat Genet,1995,9:86-91.
    23.Wang A.,Liang Y,Fridell R.A.,et al.Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3.Science,1998,280:1447-1451.
    24.Redowicz M.J.Myosins and pathology:genetics and biology.Acta Biochim Pol,2002,49:789-804.
    25.Lalwani A.K.,Goldstein J.A.,Kelley M.J.,et al.Human nonsyndromic hereditary deafness DFNA17 is due to a mutation in nonmuscle myosin MYH9.Am J Hum Genet,2000,67:1121-1128.
    26.Dose A.C,Burnside B.A class Ⅲ myosin expressed in the retina is a potential candidate for Bardet-Biedl syndrome.Genomics,2002,79:621-624.
    27.Pastural E.,Barrat F.J.,Dufourcq-Lagelouse R.,et al.Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin-Va gene.Nat Genet,1997,16:289-292.
    28.Levy G,Levi-Acobas F,Blanchard S.,et al.Myosin ⅦA gene:heterogeneity of the mutations responsible for Usher syndrome type IB.Hum Mol Genet,1997,6:111-116.
    29.Liburd N.,Ghosh M.,Riazuddin S.,et al.Novel mutations of MYO15A associated with profound deafness in consanguineous families and moderately severe hearing loss in a patient with Smith-Magenis syndrome.Hum Genet,2001,109:535-541.
    30.Gillespie P.G.,Wagner M.C,Hudspeth A.J.Identification of a 120 kd hair-bundle myosin located near stereociliary tips.Neuron,1993,11:581-594.
    31.Hasson T.,Gillespie P.G.,Garcia J.A.,et al.Unconventional myosins in inner-ear sensory epithelia.J Cell Biol,1997,137:1287-1307.
    32.Cyr J.L.,Dumont R.A.,Gillespie P G.Myosin-1c interacts with hair-cell receptors through its calmodulin-binding IQ domains.J Neurosci,2002,22:2487-2495.
    33.Donaudy R,Ferrara A.,Esposito L.,et al.Multiple mutations of MYO1A,a cochlear-expressed gene,in sensorineural hearing loss.Am J Hum Genet,2003,72:1571-1577.
    34.Hasson T.Unconventional myosins,the basis for deafness in mouse and man.Am J Hum Genet,1997,61:801-805.
    35.Belyantseva I.A.,Boger E.T.,Friedman T.B.Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle.Proc Natl Acad Sci U S A,2003,100:13958-13963.
    36.Komaba S.,Inoue A.,Maruta S.,et al.Determination of human myosin Ⅲ as a motor protein having a protein kinase activity.J Biol Chem,2003,278:21352-21360.
    37.Dose A.C,Burnside B.Cloning and chromosomal localization of a human class Ⅲ myosin.Genomics,2000,67:333-342.
    38.Donaudy F.,Shoeckx R.,Pfister M.,et al.Nonmuscle myosin heavy-chain gene MYH14 is expressed in cochlea and mutated in patients affected by autosomal dominant hearing impairment(DFNA4).Am J Hum Genet,2004,74:770-776.
    39.Melchionda S.,Ahituv N.,Bisceglia L.,et al.MYO6,the human homologue of the gene responsible for deafness in Snell's waltzer mice,is mutated in autosomal dominant nonsyndromic hearing loss.Am J Hum Genet,2001,69:635-640.
    40.Ahmed Z.M.,Morell R.J.,Riazuddin S.,et al.Mutations of MYO6 are associated with recessive deafness,DFNB37.Am J Hum Genet,2003,72: 1315-1322.
    41.Adato A.,Weil D.,Kalinski H.,et al.Mutation profile of all 49 exons of the human myosin ⅧAgene,and haplotype analysis,in Usher 1B families from diverse origins.Am J Hum Genet,1997,61:813-821.
    42.Redowicz M.J.Myosins and deafness.J Muscle Res Cell Motil,1999,20:241-248.
    43.Walsh T.,Walsh V,Vreugde S.,et al.From flies' eyes to our ears:mutations in a human class Ⅲ myosin cause progressive nonsyndromic hearing loss DFNB30.Proc Natl Acad Sci U S A,2002,99:7518-7523.
    1.李庆忠.遗传性耳聋致病基因定位克隆与缝隙连接蛋白分子流行病学研究.全国优秀博硕士论文数据库,2005年,
    2.Coucke P.,Van Camp G,Djoyodiharjo B.,et al.Linkage of autosomal dominant hearing loss to the short ann of chromosome 1 in two families.N Engl J Med,1994,331:425-431.
    3.Xia J.H.,Liu C.Y.,Tang B.S.,et al.Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment.Nat Genet,1998,20:370-373.
    4.Kubisch C.,Schroeder B.C.,Friedrich T.,et al.KCNQ4,a novel potassium channel expressed in sensory outer hair cells,is mutated in dominant deafness.Cell,1999,96:437-446.
    5.Fagerheim T.,Nilssen O.,Raeymaekers P.,et al.Identification of a new locus for autosomal dominant non-syndromic hearing impairment(DFNA7) in a large Norwegian family.Hum Mol Genet,1996,5:1187-1191.
    6.K.Kurimal Y.Szymko2,S.Rudy2,R.J.Morelll,T.B.Friedman 1,A.J.Griffithl,2.Genetic map localization of DFNA34 and DFNA36,two autosomal dominant nonsyndromic deafness loci..2000,
    7.Z.Talebizadehl J.B.Kenyon2,J.W.Askewl,S.D.Smith2.A new locus for dominant progressive hearing loss DFNA37 mapped to chromosome 1p21.2000,
    8.Masmoudi S.,Tlili A.,Majava M.,et al.Mapping of a new autosomal recessive nonsyndromic hearing loss locus(DFNB32) to chromosome 1p13.3-22.1.Eur J Hum Genet,2003,11:185-188.
    9.Naz S.,Griffith A.J.,Riazuddin S.,et al.Mutations of ESPN cause autosomal recessive deafness and vestibular dysfunction.J Med Genet,2004,41:591-595.
    10.Bhatti A.,Lee K.,Mcdonald M.L.,et al.Mapping of a new autosomal recessive non-syndromic hearing impairment locus(DFNB45) to chromosome 1q43-q44.Clin Genet,2008,73:395-398.
    11.Richard G,Smith L.E.,Bailey R.A.,et al Mutations in the human connexin gene GJB3 cause erythrokeratodermia variabilis.Nat Genet,1998,20:366-369.
    12.Wenzel K.,Manthey D.,Willecke K.,et al.Human gap junction protein connexin31:molecular cloning and expression analysis.Biochem Biophys Res Commun,1998,248:910-915.
    13.Liu X.Z.,Xia X.J.,Xu L.R.,et al.Mutations in connexin31 underlie recessive as well as dominant non-syndromic hearing loss.Hum Mol Genet,2000,9:63-67.
    14.Lopez-Bigas N.,Olive M.,Rabionet R.,et al.Connexin 31(GJB3) is expressed in the peripheral and auditory nerves and causes neuropathy and hearing impairment.Hum Mol Genet,2001,10:947-952.
    15.Liu X.Z.,Yuan Y,Yan D.,et al.Digenic inheritance of non-syndromic deafness caused by mutations at the gap junction proteins Cx26 and Cx31.Hum Genet,2009,125:53-62.
    16.韩东一;李庆忠;王秋菊;赵立东;袁虎:李丽娜;刘穹;国人非综合征型遗传性聋患者GJB3基因突变分析.听力学及言语疾病杂志,2005年03期:
    17.Robbins J.KCNQ potassium channels:physiology,pathophysiology,and pharmacology.Pharmacol Ther,2001,90:1-19.
    18.Ramanathan K.,Michael T.H.,Jiang G.J.,et al.A molecular mechanism for electrical tuning of cochlear hair cells.Science,1999,283:215-217.
    19.Kharkovets T.,Hardelin J.P.,Safieddine S.,et al.KCNQ4,a K~+ channel mutated in a form of dominant deafness,is expressed in the inner ear and the central auditory pathway.Proc Natl Acad Sci U S A,2000,97:4333-4338.
    20.Singh N.A.,Charlier C.,Stauffer D.,et al.A novel potassium channel gene,KCNQ2,is mutated in an inherited epilepsy of newborns.Nat Genet,1998,18:25-29.
    21.Schroeder B.C.,Kubisch C.,Stein V.,et al.Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K~+ channels causes epilepsy.Nature,1998,396:687-690.
    22.Biervert C.,Schroeder B.C.,Kubisch C.,et al.A potassium channel mutation in neonatal human epilepsy.Science,1998,279:403-406.
    23.Charlier C.,Singh N.A.,Ryan S.G.,et al.A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family.Nat Genet,1998,18:53-55.
    24.Tyson J.,Tranebjaerg L.,Bellman S.,et al.IsK and KvLQT1:mutation in either of the two subunits of the slow component of the delayed rectifier potassium channel can cause Jervell and Lange-Nielsen syndrome.Hum Mol Genet,1997,6:2179-2185.
    25.Talebizadeh Z.,Kelley P.M.,Askew J.W.,et al.Novel mutation in the KCNQ4 gene in a large kindred with dominant progressive hearing loss.Hum Mutat,1999,14:493-501.
    26.Van Hauwe P.,Coucke P.J.,Ensink R.J.,et al.Mutations in the KCNQ4 K+ channel gene,responsible for autosomal dominant hearing loss,cluster in the channel pore region.Am J Med Genet,2000,93:184-187.
    27.Mencia A.,Gonzalez-Nieto D.,Modamio-Hoybjor S.,et al.A novel KCNQ4 pore-region mutation(p.G296S) causes deafness by impairing cell-surface channel expression.Hum Genet,2008,123:41-53.
    28.Akita I,Abe S.,Shinkawa H.,et al.Clinical and genetic features of nonsyndromic autosomal dominant sensorineural hearing loss:KCNQ4 is a gene responsible in Japanese.J Hum Genet,2001,46:355-361.
    29.Van Camp G.,Coucke P.J.,Akita J.,et al.A mutational hot spot in the KCNQ4 gene responsible for autosomal dominant hearing impairment.Hum Mutat,2002,20:15-19.
    30.Kamada R,Kure S.,Kudo T.,et al.A novel KCNQ4 one-base deletion in a large pedigree with hearing loss:implication for the genotype-phenotype correlation.J Hum Genet,2006,51:455-460.
    1.Peri S.,Navarro J.D.,Amanchy R.,et al.Development of human protein reference database as an initial platform for approaching systems biology in humans.Genome Res,2003,13:2363-2371.
    2.Freimer N.,Sabatti C.The human phenome project.Nat Genet,2003,34:15-21.
    3.Van Driel M.A.,Bruggeman J.,Vriend G.,et al.A text-mining analysis of the human phenome.Eur J Hum Genet,2006,14:535-542.
    4.袁虎.非综合征型遗传性听力损失家系致病基因定位克隆,2005年,全国优秀博硕士论文数据库,2006,
    5.Oti M.,Brunner H.G.The modular nature of genetic diseases.Clin Genet,2007,71:1-11.
    6.Wu X.,Jiang R.,Zhang M.Q.,et al.Network-based global inference of human disease genes.Mol Syst Biol,2008,4:189.
    7.Aerts S.,Lambrechts D.,Maity S.,et al.Gene prioritization through genomic data fusion.Nat Biotechnol,2006,24:537-544.
    8.Preston G.M.,Agre P.Isolation of-the cDNA for erythrocyte integral membrane protein of 28 kilodaltons:member of an ancient channel family. Proc Natl Acad Sci U SA,1991,88:11110-11114.
    9.Mulders S.M.,Olde Weghuis D.,Van Boxtel J.A.,et al.Localization of the human gene for aquaporin 3(AQP3) to chromosome 9,region p21-->p12,using fluorescent in situ hybridization.Cytogenet Cell Genet,1996,72:303-305.
    10.陈婷 张榕.水通道蛋白在内淋巴囊和肾脏的表达及加压素对水通道蛋白表达的影响.中华耳鼻咽喉科杂志,2004 39:
    11.Kitahara T.,Fukushima M.,Uno Y.,et al.Up-regulation of cochlear aquaporin-3 mRNA expression after intra-endolymphatic sac application of dexamethasone.Neurol Res,2003,25:865-870.
    12.Ishibashi K.,Sasaki S.,Fushimi K.,et al.Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells.Proc Nail Acad Sci U S A,1994,91:6269-6273.
    13.Ishibashi K.,Sasaki S.,Saito F.,et al.Structure and chromosomal localization of a human water channel(AQP3) gene.Genomics,1995,27:352-354.
    14.Ma T.,Song Y.,Yang B.,et al.Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels.Proc Natl Acad Sci U S A,2000,97:4386-4391.
    15.Inase N.,Fushimi K.,Ishibashi K.,et al.Isolation of human aquaporin 3 gene.J Biol Chem,1995,270:17913-17916.
    16.Roudier N.,Ripoche P.,Gane P.,et al.AQP3 deficiency in humans and the molecular basis of a novel blood group system,GIL.J Biol Chem,2002,277:45854-45859.
    17.黄德亮李琦1 林琳1 胡吟燕1.水通道蛋白-1,3在豚鼠耳蜗及内淋巴囊的表达.临床耳鼻咽喉科杂志,2005年12月,第19卷:1085-1087.
    18.Li J.,Verkman A.S.Impaired hearing in mice lacking aquaporin-4 water channels.J Biol Chem,2001,276:31233-31237.
    1.Lalwani,A.K.and C.M.Castelein,Cracking the auditory genetic code:nonsyndromic hereditary hearing impairment.Am J Otol,1999.20(1):p.115-32.
    2.Brunner,H.G.,A.van Bennekom,E.M Lambermon,et al.,The gene for X-linked progressive mixed deafness with perilymphatic gusher during stapes surgery(DFN3) is linked to PGK.Hum Genet,1988.80(4):p.337-40.
    3.Wallis,C.,R.Ballo,G.Wallis,et al.,X-linked mixed deafness with stapes fixation in a Mauritian kindred:linkage to Xq probe pDP34.Genomics,1988.3(4):p.299-301.
    4.Wang,Q.J.,C.Y.Lu,N.Li,et al.,Y-linked inheritance of non-syndromic hearing impairment in a large Chinese family.J Med Genet,2004.41(6):p.e80.
    5.Riazuddin,S.,C.M.Castelein,Z.M.Ahmed,et al.,Dominant modifier DFNM1 suppresses recessive deafness DFNB26.Nat Genet,2000.26(4):p.431-4.
    6.Bykhovskaya,Y.,X.Estivill,K.Taylor,et al.,Candidate locus for a nuclear modifier gene for maternally inherited deafness.Am J Hum Genet,2000.66(6):p.1905-10.
    7.Kim,T.B.,B.Isaacson,T.A.Sivakumaran,et al.,A gene responsible for autosomal dominant auditory neuropathy(A UNA 1) maps to 13q 14-21.J Med Genet,2004.41(11):p.872-6.
    8.Varga,R.,P.M.Kelley,B.J.Keats,et al.,Non-syndromic recessive auditory neuropathy is the result of mutations in the otoferlin(OTOF) gene.J Med Genet,2003.40(1):p.45-50.
    9.Wang,Q.J.,Q.Z.Li,S.Q.Rao,et al.,AUNX1,a novel locus responsible for X linked recessive anditory and peripheral nenropathy,maps to Xq23-27.3.J Med Genet,2006.43(7):p.e33.
    10.Botstein,D.,R.L.White,M.Skolnick,et al.,Construction of a genetic linkage map in man using restriction fragment length polymorphisms.Am J Hum Genet,1980.32(3):p.314-31.
    11.Leon,P.E.,H.Raventos,E.Lynch,et al.,The gene for an inherited form of deafness maps to chromosome 5q31.Proc Natl Acad Sci U S A,1992.89(11):p.5181-4.
    12.Chen,A.H.,L.Ni,K.Fukushima,et al.,Linkage of a gene for dominant non-syndromic deafness to chromosome 19.Hum Mol Genet,1995.4(6):p.1073-6.
    13.Donaudy,F.,R.Snoeckx,M.Pfister,et al.,Nonmuscle myosin heavy-chain gene MYH14 is expressed in cochlea and mutated in patients affected by autosomal dominant hearing impairment(DFNA4).Am J Hum Genet,2004.74(4):p.770-6.
    14.Chaib,H.,G.Lina-Granade,P.Guilford,et al.,A gene responsible for a dominant form of neurosensory non-syndromic deafness maps to the NSRD1recessive deafness gene interval.Hum Mol Genet,1994.3(12):p.2219-22.
    15.Denoyelle,F.,G.Lina-Granade,H.Plauchu,et al.,Connexin 26 gene linked to a dominant deafness.Nature,1998.393(6683):p.319-20.
    16.Coucke,P.,G.Van Camp,B.Djoyodiharjo,et al.,Linkage of autosomal dominant hearing loss to the short arm of chromosome 1 in two families.N Engl J Med,1994.331(7):p.425-31.
    17.Xia,J.H.,C.Y.Liu,B.S.Tang,et al.,Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment.Nat Genet,1998.20(4):p.370-3.
    18.Kubisch,C.,B.C.Schroeder,T.Friedrich,et al.,KCNQ4,a novelpotassium channel expressed m sensory outer hair cells,is mutated m dominant deafness.Cell,1999.96(3):p.437-46.
    19.Van Hauwe P,C.P.,Declau F,Kunst H,Ensink RJ,Manes HA,Cremers CW,Djelantik B,Smith SD,Kelley P,Van de Heyning PH,Van Camp G.,Deafness linked to DFNA2:one locus but how many genes? Nat Genet.,1998.20.(4):p.370-373.
    20.Veske,A.,R.Oehlmann,F.Younus,et al.,Autosomal recessive non-syndromic deafness locus(DFNB8) maps on chromosome 21q22 in a large consanguineous kindred from Pakistan.Hum Mol Genet,1996.5(1):p.165-8.
    21.Bonne-Tamir,B.,A.L.DeStefano,C.E.Briggs,et al.,Linkage of congenital recessive deafness(gene DFNBIO) to chromosome 21q22.3.Am J Hum Genet,1996.58(6):p.1254-9.
    22.Scott,H.S.,J.Kudoh,M.Wattenhofer,et al.,Insertion of beta-satellite repeats identifies a transmembrane protease causing both congenital and childhood onset autosomal recessive deafness.Nat Genet,2001.27(1):p.59-63.
    23.Lesperance,M.M.,J.W.Hall,3rd,F.H.Bess,et al.,A gene for autosomal dominant nonsyndromic hereditary hearing impairment maps to 4p16.3.Hum Mol Genet,1995.4(10):p.1967-72.
    24.Van Camp,G.,H.Kunst,K.Flothmann,et al.,A gene for autosomal dominant hearing impairment(DFNA14) maps to a region on chromosome 4p16.3 that does not overlap the DFNA6 locus.J Med Genet,1999.36(7):p.532-6.
    25.Brodwolf,S.,IR.Boddeker,A.Ziegler,et al.,Further evidence for linkage of low-mid frequency hearing impairment to the candidate region on chromosome 4p16.3.Clin Genet,2001.60(2):p.155-60.
    26.de Kok,Y.J.,S.M van der Maarel,M.Bitner-Glindzicz,et al.,Association between Ⅹ-linked mixed deafness and mutations in the POU domain gene POU3F4.Science,1995.267(5198):p.685-8.
    27.Durkop,H.,U.Latza,M.Hummel,et al.,Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin's disease.Cell,1992.68(3):p.421-7.
    28.Yasunaga,S.,M.Grati,M.Cohen-Salmon,et al.,A mutation in OTOF,encoding otoferlin,a FER-1-like protein,causes DFNB9,a nonsyndromic form of deafness.Nat Genet,1999.21(4):p.363-9.
    29.Verhoeven,K.,L.Van Laer,K.Kirschhofer,et al.,Mutations in the human alpha-tectorin gene cause autosomal dominant non-syndromic hearing impairment.Nat Genet,1998.19(1):p.60-2.
    1.Oti M.,Brunner H.G.The modular nature of genetic diseases.Clin Genet,2007,71:1-11.
    2.Peri S.,Navarro J.D.,Amanchy R.,et al.Development of human protein reference database as an initial platform for approaching systems biology in humans.Genome Res,2003,13:2363-2371.
    3.Freimer N.,Sabatti C.The human phenome project.Nat Genet,2003,34:15-21.
    4.Van Driel M.A.,Bruggeman J.,Vriend G.,et al.A text-mining analysis of the human phenome.Eur J Hum Genet,2006,14:535-542.
    5.Bussemaker H.J.,Li H.,Siggia E.D Regulatory element detection using correlation with expression.Nat Genet,2001,27:167-171.
    6.Lander E.S.,Linton L.M,Birren B.,et al.Initial sequencing and analysis of the human genome.Nature,2001,409:860-921.
    7.Venter J.C,Adams M.D.,Myers E.W.,et al.The sequence of the human genome.Science,2001,291:1304-1351.
    8.Finishing the euchromatic sequence of the human genome.Nature,2004,431:931-945.
    9.Mckusick V.A.Mendelian Inheritance in Man and its online version,OMIM.Am J Hum Genet,2007,80:588-604.
    10.Rual J.F.,Venkatesan K.,Hao T.,et al.Towards a proteome-scale map of the human protein-protein interaction network.Nature,2005,437:1173-1178.
    11.Stelzl U.,Worm U.,Lalowski M.,et al.A human protein-protein interactionnetwork:a resource for annotating the proteome.Cell,2005,122:957-968.
    12.Ito T.,Chiba T.,Ozawa R.,et al.A comprehensive two-hybrid analysis to explore the yeast protein interactome.Proc Natl Acad Sci U S A,2001,98: 4569-4574.
    13.Uetz P.,Giot L.,Cagney G.,et al.A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae.Nature,2000,403:623-627.
    14.Li S.,Armstrong C.M.,Bertin N.,et al.A map of the interactome network of the metazoan C.elegans.Science,2004,303:540-543.
    15.Giot L.,Bader J.S.,Brouwer C.,et al.A protein interaction map of Drosophila melanogaster.Science,2003,302:1727-1736.
    16.Ideker T.,Valencia A.Bioinformatics in the human interactome project.Bioinformatics,2006,22:2973-2974.
    17.Lowe H.J.,Barnett G.O.Understanding and using the medical subject headings(MeSH) vocabulary to perform literature searches.JAMA,1994,271:1103-1108.
    18.Bodenreider O.The Unified Medical Language System(UMLS):integrating biomedical terminology.Nucleic Acids Res,2004,32:D267-270.
    19.Lage K.,Karlberg E.O.,Storling Z.M.,et al.A human phenome-interactome network of protein complexes implicated in genetic disorders.Nat Biotechnol,2007,25:309-316.
    20.陈竺,强伯勤,方福德.基因组科学与人类疾病.北京:科学出版社,2001,166-170.
    21.Sachidanandam R.,Weissman D.,Schmidt S.C.,et al.A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms.Nature,2001,409:928-933.
    22.The International HapMap Project.Nature,2003,426:789-796.
    23.Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.Nature,2007,447:661-678.
    24.Brunner H.G.,Van Driel M.A.From syndrome families to functional genomics.Nat Rev Genet,2004,5:545-551.
    25.Oti M.,Snel B.,Huynen M.A.,et al.Predicting disease genes using protein-protein interactions.J Med Genet,2006,43:691-698.
    26.Freudenberg J.,Propping P.A similarity-based method for genome-wide prediction of disease-relevant human genes.Bioinformatics,2002,18 Suppl 2:S110-115.
    27.Lopez-Bigas N.,Ouzounis C.A.Genome-wide identification of genes likely to be involved in human genetic disease.Nucleic Acids Res,2004,32:3108-3114.
    28.Adie E.A.,Adams R.R.,Evans K.L.,et al.Speeding disease gene discovery by sequence based candidate prioritization.BMC Bioinformatics,2005,6:55.
    29.Kondrashov F.A.,Ogurtsov A.Y.,Kondrashov A.S.Bioinformatical assay of human gene morbidity.Nucleic Acids Res,2004,32:1731-1737.
    30.Smith N.G.,Eyre-Walker A.Human disease genes:patterns and predictions.Gene,2003,318:169-175.
    31.Huang H.,Winter E.E.,Wang H.,et al.Evolutionary conservation and selection of human disease gene orthologs in the rat and mouse genomes.Genome Biol,2004,5:R47.
    32.Tu Z.,Wang L.,Xu M.,et al.Further understanding human disease genes by comparing with housekeeping genes and other genes.BMC Genomics,2006,7:31.
    33.Jimenez-Sanchez G.,Childs B.,Valle D.Human disease genes.Nature,2001,409:853-855.
    34.Chen J.L.,Liu Y.,Sam L.T.,et al.Evaluation of high-throughput functional categorization of human disease genes.BMC Bioinformatics,2007,8 Suppl 3:S7.
    35.Lopez-Bigas N.,Blencowe B.J.,Ouzounis C.A.Highly consistent patterns for inherited human diseases at the molecular level.Bioinformatics,2006,22:269-277.
    36.Gandhi T.K.,Zhong J.,Mathivanan S.,et al.Analysis of the human protein interactome and comparison with yeast,worm and fly interaction datasets.Nat Genet,2006,38:285-293.
    37.Xu J.,Li Y.Discovering disease-genes by topological features in human protein-protein interaction network.Bioinformatics,2006,22:2800-2805.
    38.Goh K.I.,Cusick M.E.,Valle D.,et al.The human disease network.Proc Natl Acad Sci U S A,2007,104:8685-8690.
    39.Jonsson P.F.,Bates P.A.Global topological features of cancer proteins in the human interactome.Bioinformatics,2006,22:2291-2297.
    40.Ashburner M,Ball C.A.,Blake J.A.,et al.Gene ontology:tool for the unification of biology.The Gene Ontology Consortium.Nat Genet,2000,25:25-29.
    41.Perez-Iratxeta C,Bork P.,Andrade M.A.Association of genes to genetically inherited diseases using data mining.Nat Genet,2002,31:316-319.
    42.Perez-Iratxeta C,Wjst M,Bork P.,et al.G2D:a tool for mining genes associated with disease.BMC Genet,2005,6:45.
    43.Hristovski D.,Peterlin B.,Mitchell J.A.,et al.Using literature-based discovery to identify disease candidate genes.Int J Med Inform,2005,74:289-298.
    44.Tiffin N.,Kelso J.F.,Powell A.R.,et al.Integration of text-and data-mining using ontologies successfully selects disease gene candidates.Nucleic Acids Res,2005,33:1544-1552.
    45.Van Driel M.A.,Cuelenaere K.,Kemmeren P.P.,et al.A new web-based data mining tool for the identification of candidate genes for human genetic disorders.Eur J Hum Genet,2003,11:57-63.
    46.Van Driel M.A.,Cuelenaere K.,Kemmeren P.P.,et al.GeneSeeker:extraction and integration of human disease-related information from web-based genetic databases.Nucleic Acids Res,2005,33:W758-761.
    47.Masseroli M.,Galati 0,Pinciroli F.GFINDer:genetic disease and phenotype location statistical analysis and mining of dynamically annotated gene lists.Nucleic Acids Res,2005,33:W717-723.
    48.Masseroli M.,Martucci D.,Pinciroli F.GFINDer:Genome Function INtegrated Discoverer through dynamic annotation,statistical analysis,and mining.Nucleic Acids Res,2004,32:W293-300.
    49.Rossi S.,Masotti D.,Nardini C.,et al.TOM:a web-based integrated approach for identification of candidate disease genes.Nucleic Acids Res,2006,34:W285-292.
    50.Turner F.S.,Clutterbuck D.R.,Semple C.A.POCUS:mining genomic sequence annotation to predict disease genes.Genome Biol,2003,4:R75.
    51.Adie E.A.,Adams R.R.,Evans K.L.,et al.SUSPECTS:enabling fast and effective prioritization of positional candidates.Bioinformatics,2006,22:773-774.
    52.Franke L.,Van Bakel H.,Fokkens L.,et al.Reconstruction of a functional human gene network,with an application for prioritizing positional candidate genes.Am J Hum Genet,2006,78:1011-1025.
    53.Aerts S.,Lambrechts D.,Maity S.,et al.Gene prioritization through genomic data fusion.Nat Biotechnol,2006,24:537-544.
    54.Wu X.,Jiang R.,Zhang M.Q.,et al.Network-based global inference of human disease genes.Mol Syst Biol,2008,4:189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700