快速耳蜗损伤小鼠模型的建立及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分两种小鼠耳蜗损伤方法的比较
     目的:
     比较两种小鼠耳蜗损伤方法的效果。
     方法:
     采用两种不同的方法损伤CBA/J小鼠耳蜗。第一种方案:卡那霉素700mg/kg,皮下注射,每日2次,连续14日。第二种方案:卡那霉素1000mg/kg,皮下注射,30-45min后呋塞米400mg/kg,腹腔注射。在给药前、给药结束后1天(d1)及给药结束后7天(d7)应用听性脑干反应(auditory brainstem response, ABR)评估小鼠听觉功能改变;在d7应用琥珀酸脱氢酶(succinate dehydrogenase, SDH)染色评价毛细胞(hair cells, HCs)线粒体功能损伤情况。
     结果:
     CBA/J小鼠在单独应用卡那霉素后,ABR阈值在d1明显升高,随后在d7继续升高。形态学结果显示耳蜗底回绝大部分外毛细胞(outer hair cells, OHCs) SDH活性消失,而内毛细胞(inner hair cells, IHCs) SDH活性保存完好;顶回部分OHCs SDH活性减弱,而IHCs SDH活性绝大部分保存完好。CBA/J小鼠在联合应用卡那霉素及呋塞米后,ABR阈值同样在d1明显升高,在d7继续升高,且最终阈移大于单独应用卡那霉素之阈移。形态学结果显示耳蜗底回及顶回OHCs SDH活性完全消失,而IHCsSDH活性保存完好。
     结论:
     两种方法均能造成小鼠耳蜗损伤,但联合应用卡那霉素及呋塞米较单独应用卡那霉素对耳蜗损伤程度更大,且操作更简便。
     第二部分联合应用卡那霉素和呋塞米快速诱导小鼠耳蜗损伤
     目的:
     探讨卡那霉素和呋塞米联合应用对小鼠耳蜗的毒性作用,建立一种可靠的小鼠感音神经性聋模型。
     方法:
     选用3-4周龄的CBA/J小鼠为实验对象,按1000mg/kg的剂量皮下注射卡那霉素,30-45min后按400mg/kg的剂量腹腔注射呋塞米。在注射前、注射后12小时(d0.5)、1天(d1)、2天(d2)、7天(d7)、14天(d14)、28天(d28)及112天(d112)分别应用听性脑干反应(auditory brainstem response, ABR)检测小鼠听觉功能的改变;应用异硫氰酸荧光素标记的鬼笔环肽及碘化丙锭染色、半薄切片甲苯胺蓝染色、脱氧核苷酸末端转移酶介导的dUTP缺口末端标记(terminal deoxynucleotidyl transferase dUTP nick end labeling, TUNEL)技术、扫描电镜等观察小鼠毛细胞(hair cells, HCs)和螺旋神经节细胞(spiral ganglion neurons, SGNs)死亡的模式和程度。
     结果:
     小鼠ABR阈值在d0.5开始上升,随后至d2期间继续进行性上升,继而趋于稳定在90 dB SPL左右。应用激光共聚焦显微镜在d0.5观察到耳蜗底回外毛细胞(outer hair cells, OHCs)开始出现死亡,d1时底回OHCs基本全部消失,同时顶回OHCs开始出现死亡,至d2时整个耳蜗OHCs绝大部分死亡;而内毛细胞(inner hair cells, IHCs)的损伤至d7时才开始出现,随时间推移仍有部分IHCs完好无损。TUNEL结果显示死亡的HCs均具有典型的凋亡细胞特征。扫描电镜显示卡那霉素和呋塞米联合应用后HCs首先出现纤毛消失,表皮板塌陷,随后支持细胞增生并在该处形成瘢痕。SGNs在d2保持完整,但在d7开始出现体积减小,d14天出现数量减少,至d28大部分死亡,至d112仅余少数细胞残留。
     结论:
     单剂量序贯应用卡那霉素及呋塞米能快速诱导小鼠耳蜗HCs大量死亡,并能造成SGNs延迟性死亡,适用于建立小鼠感音神经性聋模型。
     第三部分小鼠耳蜗外侧壁在感音神经性聋发生后的反应
     目的:
     探讨感音神经性聋发生后小鼠耳蜗外侧壁形态和功能的改变。
     方法:
     选用3-4周龄的CBA/J小鼠为实验对象,联合应用卡那霉素及呋塞米致聋。在给药后12小时(d0.5)、1天(d1)、2天(d2)、7天(d7)、14天(d14)、28天(d28)及112天(d112)监测耳蜗内电位(endocochlear potential, EP)的改变;应用苏木素伊红(hematoxylin and eosin, H&E)染色、扫描电镜、透射电镜、免疫化学、逆转录聚合酶链反应(reverse transcriptase polymerase chain reaction, RT-PCR)等方法检测耳蜗外侧壁形态以及四种K+转运蛋白α1,a 2Na,K-ATPase、NKCC1和KCNQ1的变化。
     结果:
     小鼠EP自d0.5开始下降,至d1进行性下降,至d2完全恢复正常并在随后长时期保持稳定。HE染色显示毛细胞损失和耳蜗外侧壁萎缩是主要病理改变。扫描电镜观察发现血管纹表面边缘细胞在给药后出现胞体肿胀,随后边缘细胞表面大部分微绒毛消失,胞体呈“石块”样改变。透射电镜结果显示血管纹厚度在致聋后进行性下降,主要为边缘细胞萎缩造成。免疫化学结果表明耳蜗外侧壁α1,a 2Na,K-ATPase和NKCC1的蛋白表达水平明显下降,而KCNQ1的蛋白表达水平无明显改变。RT-PCR结果同样提示α1,a 2Na,K-ATPase和NKCC1 mRNA的表达水平下降而KCNQ1 mRNA的表达水平未受影响。
     结论:
     萎缩后的耳蜗外侧壁在毛细胞严重缺失的情况下仍然可以保证EP的正常维持,其原因可能是a 1, a 2Na,K-ATPase和NKCC1的共同下调使K+在耳蜗外侧壁的转运在一个新的水平上达到平衡。
PART 1 Two regimes for cochlear lesions in mice
     Objective:To compare the effects of two regimes for cochlear lesions in mice.
     Methods:Experimental mice were received either 700 mg of kanamycin/kg body weight by subcutaneous injection twice daily for 14 days or a sigle subcutaneous injection of kanamycin at 1000 mg/kg body weight, followed 30-45 min later by a sigle intraperitoneal injection of furosemide at 400 mg/kg body weight. The auditory brainstem response were performed prior to the beginning of the study,1 day and 7 days after drug adminstration. Succinate dehydrogenase (SDH) activty was examined at 7 days after drug adminstration to assesse the mitochondrial energetic function in hair cells.
     Results:After 14 days of kanamycin treatment, animals developed significant threshold shifts and the threshold shifts increased further during the third week. In animals treated with kanamycin and furosemide, threshold shifts were also elevated at 1 day posttreatment and continuted to increase during the second week. The threshold shifts in the latter group were larger than those in the former group. SDH staining results showed there was a significant reduction of SDH activity in outer hair cells (OHCs) in the basal turn in the animals treated with kanamycin alone. In contrast, SDH activity was reduced in OHCs in both basal turn and apical turn in the animals treated with kanamycin and furosemide. In both cases, SDH activity showed no change in inner hair cells.
     Conclusions:Cochlear lesions can be induced by both regimes but co-administration of kanamycin and furosemide can cause a more severe damage to the cochlea and this precedure is easy to perform.
     PART 2 Rapid cochlear lesions induced by co-administration of kanamycin and furosemide in mice
     Objective:To investigate the ototoxicity of co-administration of kanamycin and furosemide in mice and present a reliable approach for induing a rapid and profound sensorineural hearing loss.
     Methods:CBA/J mice,3-4 weeks old received a sigle subcutaneous injection of kanamycin at 1000 mg/kg body weight, followed 30-45 min later by a sigle intraperitoneal injection of furosemide at 400 mg/kg body weight. The auditory brainstem response (ABR) threshold shifts, extent and defining characteristics of the cochlear lesions were assessed and verified by propidium iodide and phalloidin staining, toluidine blue staining, TUNEL, scanning electron microscopy (SEM) prior to the beginning of the study,12 hours,1,2,7,14,28 and 112 days after injections.
     Results:This drug combination resulted in an significant increased ABR threshold shifts firstly at 12h posttreatment, which increased further in the first 2 days posttreatment and then stabilized around 90 dB SPL thereafter. Histopathological examination showed an absence of outer hair cells (OHCs) at basal turn rapidly from 12 hours posttreatment. By 2 days the most commonly observed lesion was that all OHCs throughout the length of the cochlea were killed, while inner hair cells (IHCs) loss were delayed and mild. TUNEL-positive nuclei demonstrated that most hair cells died via an apoptotic pathway. In SEM abundance of damaged OHCs were detected by 1 day posttreatment, in which reticular lamina were collapsed. Then all OHCs were repalced by expansion of heads of the supporting cells. Spiral ganglion neurons also exhibited remarkable degeneration.
     Conclusion:This reliable systemic protocol eliminated hair cells extensively in vivo and is a means with which to examine different aspects of cochlear pathology in transgenic or mutant strains.
     PART 3 Morphological and functional response of cochlear lateral wall following a sensorineural hearing loss in mice
     Objective:To investigate the alteration of the endocochlear potential (EP) and experssion pattern of some key potassium transporters in the cochlear lateral wall following a long-term sensorineural hearing loss (SNHL).
     Methods:CBA/J mice were administered a single dose of kanamycin followed by furosemide. The alteration of EP, morphological change of the lateral wall, expression of the a 1 and a 2 isoforms of Na,K-ATPase, Na-K-2Cl-Cotransporter-1 (NKCC1) and potassium channel KCNQ1 were assessed.
     Results:The EP displayed a significant decline at 12 hours posttreatment followed by complete recovery by 2 days posttreatment. Then the EP maintained at near normal levels in animals deafened for periods up to 112 days. By 2 days posttreatment marginal cells were swollen and some of them were observed to be fused. By 14 days nearly all microvillis were lost and marginal cells presented a sign of stone-like change. There was also a significant and progressive decrease in stria vascularis thickness, which was predominantly due to atrophy of marginal cells. Meanwhile both protein and mRNA expression of a 1 and a 2 isoforms of Na,K-ATPase and NKCC1 in the lateral wall were dramatically reduced following a long-term deafening but KCNQ1 expression remained unchanged.
     Conclusion:The EP remained at normal levels following a long-term aminoglycoside-induced hearing loss. Simultaneously reduced NKCC1 and Na,K-ATPase expression in the cochlear lateral wall may contribute to such conservation of EP.
引文
1. Forge A, Schacht J. Aminoglycoside antibiotics. Audiol Neurootol,2000,5:3-22.
    2. Uchino S, Kellum JA, Bellomo R, et al.. Beginning and ending supportive therapy for the kidney (Best Kidney) Investigators. Acute renal failure in critically ill patients:a multinational, multicenter study. JAMA,2005,294:813-818.
    3. Mingeot-Leclercq MP, Tulkens PM. Aminoglycosides:nephrotoxicity. Antimicrob Agents Chemother,1999,43:1003-1012.
    4. Guiliano RA, Verpooten GA, Verbist L, et al., In vivo uptake kinetics of aminoglycosides in the kidney cortex of rats. J Pharmacol Exp Ther,1986, 236:470-475.
    5. Wood CA, Norton DR, Kohlhepp SJ, et al., The influence of tobramycin dosage regimens on neprotoxicity, ototoxicity, and antibacterial efficacy in a rat model of subcutaneous abcess. J Infec Dis,1988,158:13-22.
    6. Whelon A. Aminoglycoside renal cortical kinetics:a clue to mechanisms of nephrotoxicity. Prog Clin Biol Res,1979,35:33-41.
    7. Vandewalle A, N Ffarman, JP Morin, et al., Gentamicin incorporation along the nephron:autoradiographic study on isolated tubules. Kidney Int,1981,19:529-539.
    8. Fabre J, M Rudhardt, P Blanchard, et al., Persistence of sisomicin and gentamicin in renal cortex and medulla ompared with other organs and serum of rats. Kidney Int, 1976,10:444-449.
    9. Sandoval R, J Leiser, BA Molitoris. Aminoglycoside antibiotics traffic to the Golgi complex in LLC-PK1 cells. J Am Soc Nephrol,1998,9:167-174.
    10. Silverblatt F, F J, C Kuehn, Autoradiography of gentamicin uptake by the rat proximal tubule cell. Kidney Int,1979,15:335-345.
    11. Song BB, Sha SH, Schacht J. Iron chelators protect from aminoglycoside-induced cochleo-and vestibulo-toxicity. Free Radic Biol Med,1998,25:189-95.
    12. Wu WJ, Sha SH, McLaren JD, et al., Aminoglycoside ototoxicity in adult CBA, C57BL and BALB mice and the Sprague-Dawley rat. Hear Res,2001,158:165-78.
    13. Walton K, Dome JL, Renwick AG. Species-specific uncertainty factors for compounds eliminated principally by renal excretion in humans. Food Chem Toxicol,2004, 42:261-274.
    14. Yang B, Bankir L. Urea and urine concentrating ability:new in sights from studies in mice. Am J Physiol Renal Physiol,2005,288:F881-F896.
    15. Sha SH, Schacht J. Formation of reactive oxygen species following bioactivation of gentamicin. Free Radic Biol Med,1999,26:341-347.
    16. Bates DE, Beaumont SJ, Baylis BW. Ototoxicity induced by gentamicin and furosemide. Ann Pharmacother,2000,36:446-451.
    17. Versnel H, Agterberg MJ, deGroot JC, et al., Time course of cochlear electrophysiology and morphology after combined administration of kanamycin and furosemide. Hear Res,2007,231:1-12.
    18. Mulherant M, Harpur ES. The effect of gentamicin and furosemide given in combination on cochlear potentials in the guinea pig. Br J Audiol,1998,32:47-56.
    19. Dalian D, Sandra LM, Jenifer MW, et al., Ethacrynic acid rapidly and selectively abolishes blood flow in vessels supplying the lateral wall of th cochlea. Hear Res,2002, 173:1-9.
    20. Taylor RR. Nevill G, Forge A. Rapid hair cell loss:a mouse model for cochlear lesions. J Assoc Res Otolaryngol,2008,9:44-64.
    21. Chen GD, McWilliams ML, Fechter LD. Succinate dehydrogenase (SDH) activity in hair cells:a correlate for permanent threshold elevations. Hear Res,2000,145:91-100.
    22. Zhai SQ, Jiang SC, Gu R, et al., Effects of impulse noise on cortical response threshold and inner ear activity of succinic dehydrogenase and acetylcholinesterase in guinea pigs. Acta Otolaryngol,1998,118:813-816.
    23. Hu bh, Donald H, Yang WP. The impact of mitochondrial energetic dysfunction on apoptosis in outer hair cells of the cochlea following exposure to intense noise. Hear Res,2008,236:11-21.
    24. Gale JE, Marcotti W, Kennedy HJ, et al., FM1-43 dye behavese as a permeant blocker of the hair-cell mechanotransducer channel. J Neurosci,2001,21:7013-7025.
    1. Forge A, Schacht J. Aminoglycoside antibiotics. Audiol Neurootol,2000,5:3-22.
    2. Schacht J, Hawkins JE. Sketches of otohistory. Part 11:Ototoxicity:drug-induced hearing loss. Audiol Neurootol,2006,11:1-6.
    3. Henry KR, Chole RA, McGinn MD, et al. Increased ototoxicity in both young and old mice. Arch Otolaryngol,1981,107:92-95.
    4. Wu WJ, Sha SH. Mclaren JD, et al. Aminoglycoside ototoxicity in adult CBA, C57BL and BALB mice and the Sprague-Dawley rat. Hear Res,2001.158:165-178.
    5. Jiang H. Sha SH, Schacht J. NF-kappaB pathway protects cochlear hair cells from aminoglycoside-induced ototoxicity. J Neurosci Res,2005.79:644-651.
    6.熊浩,褚汉启,韩芳,等.卡那霉素对三种小鼠耳毒性比较及对血管纹 Na-K-2C1联合转运子Ⅰ表达的影响.中华耳鼻咽喉头颈外科杂志.2006,41:43-47.
    7. Heydt JL. Cunningham LL, Rubel EW, et al. Round window gentamicin application:an inner ear hair cell damage protocol for the mouse. Hear Res,2004,192:65-74.
    8. Staecker H, Praetorius M, Baker K. et al. Vestibular hair cell regeneration and restoration of balance function induced by mathl gene transfer. Otol Neurotol,2007,28: 223-231.
    9. Izumikawa M, Minoda R, Kawamoto K, et al. Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med,2005. 11:271-276.
    10.张贤芬,杨仕明,胡吟燕,等.联合应用卡那霉素和速尿的豚鼠耳蜗毒性实验观察.中华耳科学杂志,2008,6:166-169.
    11. Ladrech S. Guitton M, Saido T. et al. Calpain activity in the amikacin-damaged rat cochlea. J Comp Neurol, 2004,477:149-160.
    12. Jiang H. Sha SH, Forge A. et al. Caspase-independent pathways of hair cell death induced by kanamycin in vivo. Cell Death Differ,2006,13:20-30.
    13. Nicotera TM, Hu BH, Henderson D. The caspase pathway in noise-induced apoptosis of the chinchilla cochlea. J Assoc Res Otolaryngol,2003,4:466-477.
    14. Hu BH. Henderson D. Nicotera TM. Extremely rapid induction of outer hair cell apoptosis in the chinchilla cochlea following exposure to impulse noise. Hear Res. 2006,211:16-25.
    15. Rybak LP, Talaska AE. SchachtJ. Drug-induced hearing loss. In:SchachtJ, Popper AN, Fay RR, editors. Auditory trauma, protection and repair. New York:Springer; 2008, pp. 219-259.
    16. Xing G, Chen Z, Cao X. Mitochondrial rRNA and tRNA and hearing function. Cell Res. 2007,17:227-239.
    17. Hobbie SN, Akshay A, Kalapala SK, et al.. Genetic analysis of interactions with eukaryoticr RNA identify the mitoribosome as target in aminoglycoside ototoxicity. Proc Natl Acad Sci USA.2008,105:20888-20893.
    18. Qian Y, Guan M-X. Interaction of aminoglycosides with human mitochondrial 12S rRNA carrying the deafness associated mutation. Antimicrob Agents Chemother,2009. 53:4612-4618.
    19. Neely JG, Thompson AM, Gower DJ. Detection and localization of heat shock protein 70 in the normal guinea pig cochlea. Hearing Res,1991.52:403-406.
    20. Lim HH. Jenkins OH, Meyers MW. et al., Detection of HSP72 synthesis after acoustic over stimulation in the rat cochlea. Hearing Res,1993,69:146-150.
    21. Yoshida N. Kristiansen A, Liberman MC. Heat stress and protection from permanent acoustic injury in mice. J Neurosci,1999,19:10116-10124.
    22. Cunningham LL, Brandon CS. Heat shock inhibits both aminoglycoside- and cisplatin-induced sensory hair cell death. J Assoc Res Otolaryngol,2006,7:299-307.
    23. Taleb M, Brandon CS, Lee F-S, et al., Hsp70 inhibits aminoglycoside-induced hair cell death and is necessary for the protective effects of heat shock. J Assoc Res Otolaryngol, 2008,9:277-289.
    24. Taleb M, Brandon CS, Lee F-S, et al., Hsp70 inhibits aminoglycoside-induced hearing loss and cochlear hair cell death. Cell Stress Chaperones,2009,14:427-437.
    25. Yu Y, Szczepek AJ, Haupt H, Mazurek B. Geldanamycin induces production of heat shock protein70 and partially attenuates ototoxicity caused by gentamicinin the organ of Corti explants. J biomed Sci 2009,16:79.
    26. Matsui JI, Gale JE, Warchol ME. Critical signaling events during the aminoglycoside-induced death of sensory hair cells in vitro. J Neurobiol,2004. 61:250-266.
    27. Sugahara KK. Rubel EW, Cunningham LL. JNK signaling in neomycin-induced vestibular hair cell death. Hear Res 2006,221:128-135.
    28. Lahne M, Gale JE. Damage-induced activation of ERK1/2 in cochlear supporting cells is a hair cell death-promoting signal that depends on extracellular ATP and calcium. J Neurosci,2008,28:4918-4928.
    29. Gale JE. Piassa V, Ciubotaru CD, et al., A mechanism for sensing noise damage in the inner ear. Curr Biol.2004,14:526-529.
    30. Tritsch NX, Xi E, Gale JE, et al,. The origin of spontaneous activity in the developing auditory system. Nature.2007,450:50-55.
    31. Tran BH. Bernard P, Schacht J. Kinetics of gentamicin uptake and release in the rat: comparison of inner ear tissues and fluids with other organs. J clin Invest,1986. 77:1492-1500.
    32. Dulon D, Hiel H, Aurousseau C, et al., Pharmacokinetics of gentamicin in the sensory hair cells of the organ of Corti:rapid uptake and long term persistence. C R Acad ScillI, 1993,316:682-687.
    33. Richardson GP, Forge A, Kros CJ, et al., Myosin VIIA is required for aminoglycoside accumulation in cochlear hair cells. J Neurosci,1997,17:9506-9519.
    34. Hashino E, Shero M. Endocytosis of aminoglycoside antibiotics in sensory hair cells. Brain Res.1995,704:135-140.
    35. Marcotti W, van Netten SM. Kros CJ. The aminoglycoside antibiotic dihydrostreptomycin enters mouse outer hair cells through the mechano-electrical transducer channels. J Physiol.2005,567:505-521.
    36. Dai CF, Mangiardi D. Cotanche DA, et al., Uptake of fluorescent gentamicin by vertebrate sensory hair cells in vivo. Hearing Res,2006,213:64-78.
    37. Wang Q, Steyger PS. Trafficking of systemic fluorescent gentamicin into the cochlea and hair cells. J Assoc Res Otolaryngol,2009,10:205-219.
    38. Boettger T, Hubner CA, Maier H, et al. Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature,2002,416:874-878.
    39. Li S, Price SM. Cahill H, et al. Hearing loss caused by progressive degeneration of cochlear hair cells in mice deficient for the Barhll homeobox gene. Development,2002, 129:3523-3532.
    40. Taylor RR. Nevill G, Forge A. Rapid hair cell loss:a mouse model for cochlear lesions. J Assoc Res Otolaryngol,2008,9:44-64.
    41. Brown RD, McElwee TW Jr. Effects of intra-arterially and intravenously administered ethacrynic acid and furosemide on cochlear N 1 in cats. Toxicol Appl Pharmacol,1972, 22:589-594.
    42. Wangemann P. Comparison of ion transport mechanisms between vestibular dark cells and strial marginal cells. Hear Res,1995.90:149-157.
    43. Santi PA. Lakhani BN. The effect of bumetanide on the stria vascularis:a stereological analysis of cell volume density. Hear Res,1983,12:151-165.
    44. Higashiyama K. Takeuchi S. Azuma H, et al. Bumetanide-induced enlargement of the intercellular space in the stria vascularis critically depends on Na+transport. Hear Res, 2003,186:1-9.
    45. Crouch JJ, Sakaguchi N, Lytle C, et al. Immunohistochemical localization of the Na-K-Cl co-transporter(NKCC1) in the gerbil inner ear. J Histochem Cytochem,1997, 45:773-778.
    46. Mizuta K. Adachi M. Iwasa KH. Ultrastructural localization of the Na-K-Cl cotransporter in the lateral wall of the rabbit cochlear duct. Hear Res,1997,106: 154-162.
    47. Farris HE. LeBlanc CL, Goswami J, et al. Probing the pore of the auditory hair cell mechanotransducer channel in turtle. J Physiol,2004,558:769-792.
    48. Marcotti W. van Netten SM, Kros CJ. The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano-electrical transducer channels. J Physiol,2005,567:505-521.
    49. Aubert A, Bernard C, Clauser P, et al. A cellular anti-ischemic agent, trimetazidine prevents the deleterious effects of oxygen free-radicals on the internal ear. Ann Otolaryngol Chir Cervicofac,1990.107 Suppl 1:28-35.
    50. Ylikoski J. Correlation between pure tone audiogram and cochlear pathology in guinea pigs intoxicated with ototoxic antibiotics. Acta Otolaryngol Suppl 1974,32:42-57.
    51. Dodson HC. Loss and survival of spiral ganglion neurons in the guinea pig after intracochlear perfusion with aminoglycosides. J Neurocytol 1997,26:541-556.
    52. Lee JE. Nakagawa T. Kim TS, et al. A novel model for rapid induction of apoptosis in spiral ganglions of mice. Laryngoscope 2003,113:994-999.
    53. Woo YB, Lee SK, Dae YH, et al. Secondary apoptosis of spiral ganglion cells induced by aminoglycoside:Fas-Fas ligand signaling pathway. Laryngoscope 2008, 118:1659-1668.
    54. Dodson HC, Mohuiddin A. Response of spiral ganglion neurones to cochlear hair cell destruction in the guinea pig. J Neurocytol 2000,29:525-537.
    55. Cardinaal RM, De Groot JC, Huizing EH, et al. Dose-dependent effect of 8-day cisplatin administration upon the morphology of the albino guinea pig cochlea. Hear Res 2000,114:135-146.
    56. Lefebvre PP, Weber T, Rigo JM, et al. Peripheral and central target-derived trophic factors effects on auditory neurons. Hear Res,1992,58:185-192.
    1. Davis H. Biophysics and physiology of the inner ear. Physiol Rev.1957,37:1-49.
    2. Weber PC, Cunningham CD, Schulte BA. Potassium recycling pathways in the human cochlea. Laryngoscope,2001,111:1156-1165.
    3. Wangemann P. K+ cycling and the endocochlear potential. Hear Res, 2002,165:1-9.
    4. Crouch JJ, Sakaguchi N, Lytle C, et al. Immunohistochemical localization of the Na-K-Cl co-transporter (NKCC1) in the gerbil inner ear. J Histochem Cytochem, 1997.45:773-778.
    5. Schulte BA, Steel KP. Expression of alpha and beta subunit isoforms of Na,K-ATPase in the mouse inner ea r and changes with mutations at the Wv or Sid loci. Hear Res, 1994,78:65-76.
    6. Forge A, Wright A. Davies S. Analysis of structural changes in the stria vascularis following chronic gentamicin treatment. Hear Res,1987,31:253-266.
    7. Taylor RR. Nevill G, Forge A. Rapid hair cell loss:a mouse model for auditory lesions. J Assoc Res Otolaryngol.2008.9:44-64.
    8. Klis S. O'Leary S, Hamers F, et al. Reversible cisplatin ototoxicity in the albino guinea pig. Neuro Report,2000,11:623-626.
    9. Heller WP, Wagstaff SA, O'Leary SJ, et al. Functional and morphological response of the stria vascularis following asensorineural hearing loss. Hear Res, 2002.172:127-136.
    10. Konishi T, Salt A. Permeability to potassium of the endolymph-perilymph barrier and its possible relation to hair cell function. Exp Brain Res,1980,40:457-463.
    11.褚汉启,熊浩,韩芳,等.半拷贝基因NKCC1杂合小鼠与年龄相关性听力下降的关系.中华耳鼻咽喉头颈外科杂志,2006,41:537-541.
    12.褚汉启,黄孝文,熊浩,等.小鼠耳蜗侧壁α 2Na,K-ATPase在听觉及年龄相关性听力下降中的作用.听力学及言语疾病杂志,2006,14:429-432.
    13.熊浩,褚汉启,黄孝文,等.卡那霉素联合呋赛米快速诱导小鼠耳蜗损伤.中华耳鼻咽喉头颈外科杂志,2010,45:222-228.
    14. Mulheran M. Harpur E. The effect of gentamicin and furosemide given in combination on cochlear potentials in the guinea pig. Br J Audiol,1998.32:47-56.
    15. Santi PA. Lakhani BN. The effect of bumetanide on the stria vascularis:a stereological analysis of cell volume density. Hear Res,1983,12:151-165.
    16. Higashiyama K, Takeuchi S. Azuma H. et al. Bumetanide-induced enlargement of the intercellular space in the stria vascularis critically depends on Na+ transport. Hear Res,2003,186:1-9.
    17. Mizuta K. Adachi M, lwasa KH. Ultrastructural localization of the Na-K-Cl cotransporter in the lateral wall of the rabbit cochlear duct. Hear Res,1997.106:154-162.
    18. Hirose K, Liberman MC. Lateral wall histopathology and endocochlear potential in the noise-damaged mouse cochlea. J Assoc Res Otolaryngol,2003.4:339-352.
    19. Spicer SS, Schulte BA. Pathologic changes of presbycusis begin in secondary processes and spread to primary processes of strial marginal cells. Hear Res,2005,205: 225-240.
    20. Komune S, Snow JB Jr. Nature of the endocochlear dc potential in kanamycin-poisoned guinea pigs. Arch Otolaryngol,1982,108:334-338.
    21. Schulte BA, Schmiedt RA. Lateral wall Na. K-ATPase and endocochlear potentials decline with age in quiet-reared gerbils. Hear Res,1992,61:35-46.
    22. Rodney CD, Ana E, Hongwei D, et al. Conservation of hearing by simultaneous mutation of Na,K-ATPase and NKCC1. J Assoc Res Otolaryngol.2007,8:442-434.
    23. Telang RS. Paramananthasivam V, Vlajkovic DJ, et al. Reduced P2x(2) receptor-mediated regulation of endocochlear potential in the ageing mouse cochlea. Purinergic Signal,2010,6:263-272.
    24. Mori Y, Watanabe M, Inui T. et al. Ca(2+) regulation of endocochlear potential in marginal cells.J Physiol Sci,2009.59:355-365.
    25. Javel E. Shepherd R. Electrical stimulation of the auditory nerve. Ⅲ Response initiation sites and temporal fine structure. Hear Res.2000,140:45-76.
    1. Hudspeth AJ (2008) Making an effort to listen:mechanical amplification in the ear. Neuron 59:530-545
    2. Cohen-Salmon M, Regnault B. Cayet N, Caille D. Demuth K, Hardelin JP, Janel N. Meda P. Petit C (2007) Connexin30 deficiency causes instrastrial fluid-blood barrier disruption within the cochlear stria vascularis. Proc Natl Acad Sci U S A 104:6229-6234
    3. Gow A, Davies C. South wood CM. Frolenkov G, Chrustowski M, Ng L. Yamauchi D, Marcus DC. Kachar B (2004) Deafness in Claudin 11-null mice reveals the critical contribution of basal cell tight junctions to stria vascularis function. J Neurosci 24:7051-7062
    4. Kitajiri S, Miyamoto T. Mineharu A. Sonoda N, Furuse K. Hata M, Sasaki H, Mori Y, Kubota T, Ito J, Furuse M. Tsukita S (2004) Compartmentalization established by claudin-11-based tight junctions in stria vascularis is required for hearing through generation of endocochlear potential. J Cell Sci 117:5087-5096
    5. Von Bekesy G (1952) DC resting potentials inside the cochlear partition. J Acoust Soc Amer 24:72-76
    6. Von Bekesy G (1952) Resting potentials inside the cochlear partition of the guinea pig. Nature 169:241-242
    7. Hudspeth AJ (1989) How the ear's works work. Nature 341:397-404
    8. Hudspeth AJ (1997) How hearing happens. Neuron 19:947-950
    9. Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci U S A 74:2407-2411
    10. Chan DK. Hudspeth AJ (2005) Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Nat Neurosci 8:149-155
    11. Beisel KW, Rocha-Sanchez SM, Morris KA, Nie L, Feng F. Kachar B, Yamoah EN, Fritzsch B (2005) Differential expression of KCNQ4 in inner hair cells and sensory neurons is the basis of progressive high-frequency hearing loss. J Neurosci 25:9285-9293
    12. Dulon D, Sugasawa M. Blanchet C, Erostegui C (1995) Direct measurements of Ca2+-activated K currents in inner hair cells of the guinea-pig cochlea using photolabile Ca2+chelators. Pflugers Arch 430:365-373
    13. Kharkovets T. Dedek K, Maier H, Schweizer M, Khimich D, Nouvian R, Vardanyan V, Leuwer R, Moser T, Jentsch TJ (2006) Mice with altered KCNQ4 K+ channels implicate sensory outer hair cells in human progressive deafness. Embo J 25:642-652
    14. Kros CJ. Ruppersberg JP, Rusch A (1998) Expression of a potassium current in inner hair cells during development of hearing in mice. Nature 394:281-284
    15. Kubisch C, Schroeder BC Friedrich T, Lutjohann B, El-Amraoui A, Marlin S, Petit C, Jentsch TJ (1999) KCNQ4. a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96:437-446
    16. Langer P. Grunder S, Rusch A (2003) Expression of Ca2+-activated BK channel mRNA and its splice variants in the rat cochlea. J Comp Neurol 455:198-209
    17. Oliver D. Klocker N, Schuck J. Baukrowitz T, Ruppersberg JP. Fakler B (2000) Gating of Ca2+-activated K+ channels controls fast inhibitory synaptic transmission at auditory outer hair cells. Neuron 26:595-601
    18. Ruttiger L, Sausbier M, Zimmermann U. Winter H, Braig C, Engel J. Knirsch M. Arntz C, Langer P, Hirt B, Muller M, Kopschall 1, Pfister M, Munkner S, Rohbock K, Pfaff I. Rusch A. Ruth P, Knipper M (2004) Deletion of the Ca2+-activated potassium (BK) α-subunit but not the BKβ1-subunit leads to progressive hearing loss. Proc Natl Acad SciUSA 101:12922-12927
    19. Skinner LJ, Enee V, Beurg M, Jung HH. Ryan AF. Hafidi A, Aran JM. Dulon D (2003) Contribution of BK Ca2+-activated K+ channels to auditory neurotransmission in the guinea pig cochlea. J Neurophysiol 90:320-332
    20. Boettger T. Hubner CA. Maier H, Rust MB, Beck FX, Jentsch TJ (2002) Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature 416:874-878
    21. Boettger T, Rust MB, Maier H, Seidenbecher T, Schweizer M, Keating DJ, Faulhaber J, Ehmke H, Pfeffer C, Scheel O. Lemcke B, Horst J, Leuwer R, Pape HC, Volkl H, Hubner CA, Jentsch TJ (2003) Loss of K-Cl co-transporter KCC3 causes deafness, neuro-degeneration and reduced seizure threshold. Embo J 22:5422-5434
    22. Hama K, Saito K (1977) Gap junctions between the supporting cells in some acoustico-vestibular receptors. J Neurocytol 6:1-12
    23. Kikuchi T. Adams JC, Miyabe Y. So E, Kobayashi T (2000) Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in hereditary nonsyndromic deafness. Med Electron Microsc 33:51-56
    24. Mammano F, Bortolozzi M, Ortolano S. Anselmi F (2007) Ca2+ signaling in the inner ear. Physiology (Bethesda) 22:131-144
    25. Hibino H, Kurachi Y (2006) Molecular and physiological bases of the K circulation in the mammalian inner ear. Physiology (Bethesda) 21:336-345
    26. Kikuchi T, Kimura RS, Paul DL, Adams JC (1995) Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol (Berl) 191:101-118
    27. Wangemann P (2002) K cycling and the endocochlear potential. Hear Res 165:1-9
    28. Wangemann P (2006) Supporting sensory transduction:cochlear fluid homeostasis and the endocochlear potential. J Physiol 576:11-21
    29. Konishi T. Hamrick PE. Walsh PJ (1978) Ion transport in guinea pig cochlea. I. Potassium and sodium transport. Acta Otolaryngol 86:22-34
    30. Sterkers O, Saumon G, Tran Ba Huy P, Amiel C (1982) K, Cl, and H2O entry in endolymph, perilymph, and cerebrospinal fluid of the rat. Am J Physiol 243:F173-F180
    31. Marcus DC, Marcus NY, Thalmann R (1981) Changes in cation contents of stria vascularis with ouabain and potassium-free perfusion. Hear Res 4:149-160
    32. Wada J, Kambayashi J. Marcus DC. Thalmann R (1979) Vascular perfusion of the cochlea:effect of potassium-free and rubidium-substituted media. Arch Otorhinolaryngol 225:79-81
    33. Zidanic M. Brownell WE (1990) Fine structure of the intracochlear potential field. I. The silent current. Biophys J 57:1253-1268
    34. Spicer SS. Schulte BA (1996) The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear Res 100:80-100
    35. Takeuchi S, Ando M (1998) Dye-coupling of melanocytes with endothelial cells and pericytes in the cochlea of gerbils. Cell Tissue Res 293:271-275
    36. Hinojosa R, Rodriguez-Echandia EL (1966) The fine structure of the stria vascularis of the cat inner ear. Am J Anat 118:631-663
    37. Spicer SS, Schulte BA (2005) Novel structures in marginal and intermediate cells presumably relate to functions of apical versus basal strial strata. Hear Res 200:87-101
    38. Jahnke K (1975) The fine structure of freeze-fractured intercellular junctions in the guinea pig inner ear. Acta Otolaryngol Suppl 336:1-40
    39. Schulte BA, Adams JC (1989) Distribution of immunoreactive Na+,K+-ATPase in gerbil cochlea. J Histochem Cytochem 37:127-134
    40. Schulte BA, Steel KP (1994) Expression of alpha and beta subunit isoforms of Na. K-ATPase in the mouse inner ear and changes with mutations at the Wv or Sld loci. Hear Res 78:65-76
    41. Crouch JJ. Sakaguchi N, Lytle C, Schulte BA (1997) lmmunohistochemical localization of the Na-K-Cl co-transporter (NKCC1) in the gerbil inner ear. J Histochem Cytochem 45:773-778
    42. Sakaguchi N, Crouch JJ. Lytle C, Schulte BA (1998) Na-K-Cl cotransporter expression in the developing and senescent gerbil cochlea. Hear Res 118:114-122
    43. Konishi T, Mendelsohn M (1970) Effect of ouabain on cochlear potentials and endolymph composition in guinea pigs. Acta Otolaryngol 69:192-199
    44. Kuijpers W, Bonting SL (1970) The cochlear potentials. I. The effect of ouabain on the cochlear potentials of the guinea pig. Pflugers Arch 320:348-358
    45. Kuijpers W. Bonting SL (1970) The cochlear potentials. II. The nature of the cochlear endolymphatic resting potential. Pflugers Arch 320:359-372
    46. Kusakari J. Ise I, Comegys TH, Thalmann I, Thalmann R (1978) Effect of ethacrynic acid, furosemide. and ouabain upon the endolymphatic potential and upon high energy phosphates of the stria vascularis. Laryngoscope 88:12-37
    47. Tasaki I. Spyropoulos CS (1959) Stria vascularis as source of endocochlear potential. J Neurophysiol 22:149-155
    48. Konishi T, Butler RA. Fernandez C (1961) Effect of anoxia on cochlear potentials. J Acoust Soc Amer 33:349-390
    49. Wada J, Paloheimo S, Thalmann I, Bohne BA. Thalmann R (1979) Maintenance of cochlear function with artificial oxygen carriers. Laryngoscope 89:1457-1473
    50. lwano T, Yamamoto A. Omori K. Akayama M. Kumazawa T, Tashiro Y (1989) Quantitative immunocytochemical localization of Na+. K+-ATPase alpha-subunit in the lateral wall of rat cochlear duct. J Histochem Cytochem 37:353-363
    51. Kerr TP, Ross MD. Ernst SA (1982) Cellular localization of Na+,K+-ATPase in the mammalian cochlear duct:significance for cochlear fluid balance. Am J Otolaryngol 3:332-338
    52. Wangemann P, Liu J, Marcus DC (1995) Ion transport mechanisms responsible for K secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro. Hear Res 84:19-29
    53. Hibino H, Horio Y, Inanobe A, Doi K, Ito M, Yamada M, Gotow T, Uchiyama Y, Kawamura M, Kubo T, Kurachi Y (1997) An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4.1), in cochlear stria vascularis of inner ear:its specific subcellular localization and correlation with the formation of endocochlear potential. J Neurosci 17:4711-4721
    54. Marcus DC (1984) Characterization of potassium permeability of cochlear duct by perilymphatic perfusion of barium. Am J Physiol 247:C240-C246
    55. Marcus DC, Rokugo M, Thalmann R (1985) Effects of barium and ion substitutions in artificial blood on endocochlear potential. Hear Res 17:79-86
    56. Takeuchi S, Ando M, Kakigi A (2000) Mechanism generating endocochlear potential: role played by intermediate cells in stria vascularis. Biophys J 79:2572-2582
    57. Hibino H, Higashi-Shingai K, Fujita A, Iwai K. Ishii M, Kurachi Y (2004) Expression of an inwardly rectifying K+channel, Kir5.1, in specific types of fibrocytes in the cochlear lateral wall suggests its functional importance in the establishment of endocochlear potential. Eur J Neurosci 19:76-84
    58. Takeuchi S. Ando M (1998) Inwardly rectifying K currents in intermediate cells in the cochlea of gerbils:a possible contribution to the endocochlear potential. Neurosci Lett 247:175-178
    59. Marcus DC, Wu T, Wangemann P. Kofuji P (2002) KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. Am J Physiol Cell Physiol 282:C403-C407
    60. Wangemann P. Itza EM, Albrecht B, Wu T. Jabba SV, Maganti RJ, Lee JH, Everett LA. Wall SM, Royaux IE, Green ED. Marcus DC (2004) Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model. BMC Med 2:30
    61. Bockenhauer D, Feather S, Stanescu HC, Bandulik S, Zdebik AA. Reichold M, Tobin J, Lieberer E, Sterner C, Landoure G, Arora R. Sirimanna T, Thompson D, Cross JH, van't Hoff W, Al Masri O, Tullus K, Yeung S. Anikster Y, Klootwijk E, Hubank M, Dillon MJ, Heitzmann D, Arcos-Burgos M, Knepper MA, Dobbie A. Gahl WA, Warth R, Sheridan E, Kleta R (2009) Epilepsy, ataxia, sensorineural deafness, tubulopathy. and KCNJ10 mutations. N Engl J Med 360:1960-1970
    62. Scholl UI, Choi M. Liu T, Ramaekers VT. Hausler MG, Grimmer J, Tobe SW, Farhi A, Nelson-Williams C, Lifton RP (2009) Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci U S A 106:5842-5847
    63. Wangemann P (1995) Comparison of ion transport mechanisms between vestibular dark cells and strial marginal cells. Hear Res 90:149-157
    64. Salt AN. Melichar I. Thalmann R (1987) Mechanisms of endocochlear potential generation by stria vascularis. Laryngoscope 97:984-991
    65. Ikeda K, Morizono T (1989) Electrochemical profiles for monovalent ions in the stria vascularis:cellular model of ion transport mechanisms. Hear Res 39:279-286
    66. Melichar I, Syka J (1987) Electrophysiological measurements of the stria vascularis potentials in vivo. Hear Res 25:35-43
    67. Nin F, Hibino H, Doi K. Suzuki T, Hisa Y, Kurachi Y (2008) The endocochlear potential depends on two K+ diffusion potentials and an electrical barrier in the stria vascularis of the inner ear. Proc Natl Acad Sci U S A 105:1751-1756
    68. Offner FF. Dallos P, Cheatham MA (1987) Positive endocochlear potential:mechanism of production by marginal cells of stria vascularis. Hear Res 29:117-124
    69. Kitajiri SI, Furuse M, Morita K. Saishin-Kiuchi Y, Kido H. Ito J. Tsukita S (2004) Expression patterns of claudins, tight junction adhesion molecules, in the inner ear. Hear Res 187:25-34
    70. Teubner B, Michel V, Pesch J. Lautermann J, Cohen-Salmon M, Sohl G,Jahnke K, Winterhager E, Herberhold C, Hardelin JP, Petit C, Willecke K (2003) Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Hum Mol Genet 12:13-21
    71. Lautermann J, Frank HG. Jahnke K, Traub O, Winterhager E (1999) Developmental expression patterns of connexin26 and 30 in the rat cochlea. Dev Genet 25:306-311
    72. Lautermann J, ten Cate WJ. Altenhoff P. Grummer R, Traub O, Frank H. Jahnke K, Winterhager E (1998) Expression of the gap-junction connexins 26 and 30 in the rat cochlea. Cell Tissue Res 294:415-420
    73. Ando M. Takeuchi S (1999) Immunological identificati on of an inward rectifier Kchannel (Kir4.1) in the intermediate cell (melanocyte) of the cochlear stria vascularis of gerbils and rats. Cell Tissue Res 298:179-183
    74. Melichar I. Syka J (1977) Time course of anoxia-induced K concentration changes in the cochlea measured with K+ specific microelectrodes. Pflugers Arch 372:207-213
    75. Shen Z, Marcus DC (1998) Divalent cations inhibit IsK/KvLQT1 channels in excised membrane patches of strial marginal cells. Hear Res 123:157-167
    76. Takeuchi S, Marcus DC. Wangemann P (1992) Ca2+-activated nonselective cation, maxi K+ and Cl- channels in apical membrane of marginal cells of stria vascularis. Hear Res 61:86-96
    77. Casimiro MC. Knollmann BC, Ebert SN. Vary JC Jr, Greene AE, Franz MR, Grinberg A. Huang SP, Pfeifer K (2001) Targeted disruption of the Kcnql gene produces a mouse model of Jervell and Lange-Nielsen Syndrome. Proc Natl Acad Sci U S A 98:2526-2531
    78. Nicolas M, Dememes D, Martin A, Kupershmidt S, Barhanin J (2001) KCNQ1/KCNE1 potassium channels in mammalian vestibular dark cells. Hear Res 153:132-145
    79. Sakagami M, Fukazawa K, Matsunaga T, Fujita H, Mori N. Takumi T, Ohkubo H. Nakanishi S (1991) Cellular localization of rat Isk protein in the stria vascularis by immunohistochemical observation. Hear Res 56:168-172
    80. Vetter DE, Mann JR. Wangemann P. Liu J, McLaughlin KJ, Lesage F, Marcus DC Lazdunski M, Heinemann SF, Barhanin J (1996) Inner ear defects induced by null mutation of the isk gene. Neuron 17:1251-1264
    81. Takeuchi S. Ando M (1999) Voltage-dependent outward K+ current in intermediate cell of stria vascularis of gerbil cochlea. Am J Physiol 277:C91-C99
    82. Minowa O, Ikeda K, Sugitani Y, Oshima T, Nakai S, Katori Y. Suzuki M, Furukawa M, Kawase T, Zheng Y. Ogura M. Asada Y. Watanabe K. Yamanaka H, Gotoh S, Nishi-Takeshima M Sugimoto T. Kikuchi T, Takasaka T. Noda T (1999) Altered cochlear fibrocytes in a mouse model of DFN3 nonsyndromic deafness. Science 285:1408-1411
    83. Phippard D, Lu L, Lee D, Saunders JC, Crenshaw EB 3rd (1999) Targeted mutagenesis of the POU-domain gene Brn4/Pou3f4 causes developmental defects in the inner ear.J Neurosci 19:5980-5989
    84. Sunose H, Ikeda K, Suzuki M, Takasaka T (1994) Voltage-activated K channel in luminal membrane of marginal cells of stria vascularis dissected from guinea pig. Hear Res 80:86-92
    85. Rivas A. Francis HW (2005) Inner ear abnormalities in a Kcnql (Kvlqtl) knockout mouse:a model of Jervell and Lange-Nielsen syndrome. Otol Neurotol 26:415-424
    86. Keating MT. Sanguinetti MC (2001) Molecular and cellular mechanisms of cardiac arrhythmias. Cell 104:569-580
    87. Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C, Barhanin J, Faure S, Gary F, Coumel P. Petit C. Schwartz K, Guicheney P (1997) A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardio-auditory syndrome, Nat Genet 15:186-189
    88. Schulze-Bahr E, Wang Q, Wedekind H, Haverkamp W. Chen Q, Sun Y. Rubie C, Hordt M. Towbin JA. Borggrefe M. Assmann G. Qu X, Somberg JC. Breithardt G, Oberti C, Funke H (1997) KCNE1 mutations cause Jervell and Lange-Nielsen syndrome. Nat Genet 17:267-268
    89. Tranebjaerg L, Bathen J, Tyson J, Bitner-Glindzicz M (1999) Jervell and Lange-Nielsen syndrome:a Norwegian perspective. Am J Med Genet 89:137-146
    90. Wang Q. Bowles NE, Towbin JA (1998) The molecular basis of long QT syndrome and prospects for therapy. Mol Med Today 4:382-388
    91. Birkenhager R, Otto E. Schurmann MJ, Vollmer M, Ruf EM. Maier-Lutz I, Beekmann F, Fekete A, Omran H, Feldmann D, Milford DV. Jeck N, Konrad M, Landau D, Knoers NV, Antignac C, Sudbrak R, Kispert A, Hildebrandt F (2001) Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 29:310-314
    92. Schlingmann KP, Konrad M, Jeck N. Waldegger P, Reinalter SC, Holder M, Seyberth HW, Waldegger S (2004) Salt wasting and deafness resulting from mutations in two chloride channels. N Engl J Med 350:1314-1319
    93. Rickheit G, Maier H, Strenzke N, Andreescu CE, De Zeeuw CI, Muenscher A, Zdebik AA. Jentsch TJ (2008) Endocochlear potential depends on Cl- channels:mechanism underlying deafness in Bartter syndrome IV. EMBO J 27:2907-2917
    94. Ando M. Takeuchi S (2000) mRNA encoding'ClC-Kl, a kidney Cl- channel'is expressed in marginal cells of the stria vascularis of rat cochlea:its possible contribution to Cl- currents. Neurosci Lett 284:171-174
    95. Estevez R. Boettger T. Stein V, Birkenhager R. Otto E, Hildebrandt F, Jentsch TJ (2001) Barttin is a Cl- channel beta-subunit crucial for renal Cl- reabsoiption and inner ear K secretion. Nature 414:558-561
    96. Sage CL, Marcus DC (2001) Immunolocalization of ClC-K chloride channel in strial marginal cells and vestibular dark cells. Hear Res 160:1-9
    97. Takeuchi S, Ando M, Kozakura K, Saito H. Irimajiri A (1995) Ion channels in basolateral membrane of marginal cells dissociated from gerbil stria vascularis. Hear Res 83:89-100
    98. Sunose H, Ikeda K, Saito Y, Nishiyama A, Takasaka T (1993) Nonselective cation and Cl channels in luminal membrane of the marginal cell. Am J Physiol 265:C72-C78
    99. Nagata K, Zheng L, Madathany T, Castiglioni AJ, Bartles JR. Garcia-Anoveros J (2008) The varitint-waddler (Va) deafness mutation in TRPML3 generates constitutive, inward rectifying currents and causes cell degeneration. Proc Natl Acad Sci U S A 105:353-358
    100. Cuajungco MP, Grimm C. Heller S (2007) TRP channels as candidates for hearing and balance abnormalities in vertebrates. Biochim Biophys Acta 1772:1022-1027
    101. Xu H, Delling M, Li L, Dong X, Clapham DE (2007) Activating mutation in a mucolipin transient receptor potential channel leads to melanocyte loss in varitint-waddler mice. Proc Natl Acad Sci U S A 104:18321-18326
    102. Cable J. Steel KP (1998) Combined cochleo-saccular and neuroepithelial abnormalities in the Varitint-waddler-J (VaJ) mouse. Hear Res 123:125-136
    103. Di Palma F, Belyantseva IA, Kim HJ. Vogt TF, Kachar B, Noben-Trauth K (2002) Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc Natl Acad Sci U S A 99:14994-14999
    104. Grimm C, Cuajungco MP, van Aken AF, Schnee M, Jors S, Kros CJ. Ricci AJ, Heller S (2007) A helix-breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitint-waddler mouse. Proc Natl Acad Sci U S A 104:19583-19588
    105.Liedtke W. Choe Y. Marti-Renom MA. Bell AM, Denis CS. Sali A. Hudspeth AJ, Friedman JM. Heller S (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC). a candidate vertebrate osmoreceptor. Cell 103:525-535
    106. Takumida M, Kubo N, Ohtani M, Suzuka Y, Anniko M (2005) Transient receptor potential channels in the inner ear:presence of transient receptor potential channel subfamily 1 and 4 in the guinea pig inner ear. Acta Otolaryngol 125:929-934
    107. Mori Y, Watanabe M, Inui T. Nimura Y. Araki M. Miyamoto M, Takenaka H, Kubota T (2009) Ca2+ regulation of endocochlear potential in marginal cells. J Physiol Sci 59:355-365
    108. Marcus DC, Liu J, Wangemann P (1994) Transepithelial voltage and resistance of vestibular dark cell epithelium from the gerbil ampulla. Hear Res 73:101-108
    109. Geleoc GS, Lennan GW, Richardson GP, Kros CJ (1997) A quantitative comparison of mechanoelectrical transduction in vestibular and auditory hair cells of neonatal mice. Proc Biol Sci 264:611-621
    110 Delpire E, Lu J, England R, Dull C, Thorne T (1999) Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter. Nat Genet 22:192-195
    111. Flagella M, Clarke LL, Miller ML, Erway LC, Giannella RA, Andringa A, Gawenis LR, Kramer J, Duffy JJ, Doetschman T, Lorenz JN, Yamoah EN, Cardell EL, Shull GE (1999) Mice lacking the basolateral Na-K-2Cl cotransporter have impaired epithelial chloride secretion and are profoundly deaf. J Biol Chem 274:26946-26955
    112. ten Cate WJ, Curtis LM, Rarey KE (1994) Na, K-ATPase α and β subunit isoform distribution in the rat cochlear and vestibular tissues. Hear Res 75:151-160
    113.Dixon MJ, Gazzard J, Chaudhry SS, Sampson N, Schulte BA, Steel KP (1999) Mutation of the Na-K-Cl co-transporter gene Slc12a2 results in deafness in mice. Hum Mol Genet 8:1579-1584
    114. Sellick PM, Johnstone BM (1972) The electrophysiology of the saccule. Pflugers Arch 336:28-34
    115. Dallos P, Fakler B (2002) Prestin, a new type of motor protein. Nat Rev Mol Cell Biol 3:104-111
    116. Kennedy HJ, Evans MG, Crawford AC, Fettiplace R (2003) Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells. Nat Neurosci 6:832-836
    117. Vollrath MA, Kwan KY, Corey DP (2007) The micromachinery of mechanotransduction in hair cells. Annu Rev Neurosci 30:339-365
    118. Vilstrup G (1955) The vitreous body and the endolymph as two related gelatinous substances; comparison of the two substances with reference to their hyaluronic acid and protein contents; preliminary report. Acta Ophthalmol (Copenh) 33:13-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700