阻抗法快速检测牛奶中菌落总数的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菌落总数是牛奶微生物学检测中一项重要的指标,实现其快速检测可以快速确定牛奶的品质,指导企业的质量管理人员选取合适的加工工艺参数,对保障产品的质量和安全有着积极意义。阻抗法进行微生物检测具有快速、操作简便、单次检测成本低的优点,可应用于牛奶中菌落总数的快速分析。本文主要从以下三个方面探索阻抗法在快速检测牛奶中菌落总数中的应用:1)检测过程中各阻抗参数(电导G,总阻抗Z,双电层电容值Cs,培养介质电容Cp,阻抗角θ)的变化规律及阻抗检测过程中的等效电路;2)检测温度、频率对G、Z、Cs、Cp、θ的变化率曲线的影响;3)阻抗法快速检测牛奶中菌落总数的实际应用价值。
     实验结果表明:
     1.在用阻抗法快速检测牛奶中的菌落总数过程中,G、Cs值增大,Z、Cp、θ值减小。在这个过程中,Cs对培养介质阻抗特性的改变最为敏感,其变化率幅值最大,Cp最小。双电极系统测得的总阻抗包含不随频率变化的电导、随频率呈指数变化的电导和随频率呈指数变化的阻抗虚部这三项。阻抗法检测过程中的等效电路可认为是常相位角元件CPE与电阻R的串联。Z值的计算公式:
     2.检测温度对G、Z、Cs、Cp值和阻抗检测的检出时间(DT)都有影响。G、Z、Cs、Cp值随温度的升高呈线性变化:G、Cs、Cp值线性增大,Z值则线性减小。温度过高或过低都会抑制微生物的生长繁殖,但在微生物适宜生长温度范围内,增加温度可以缩短DT值。得到,阻抗法快速检测牛奶中的菌落总数的适宜温度范围为30-40℃。
     3.检测频率对G、Z、Cs、Cp的变化率曲线影响不同,对于G、Z基本没有影响,高频对Cs、Cp有很大的影响。得到G、Z作为阻抗法检测参数,其检测频率范围为100Hz~1MHz,Cs检测频率范围为100Hz~100KHz。
     4.G、Z、Cs作为检测参数得到的检出时间DT跟菌落总数的对数值(lg CSPC)存在线性相关,可作为阻抗法的检测参数,其中以G、Z作为检测参数得到的检测结果与实际更符。
     综上所述,可以选择40℃、1KHz作为检测条件,在以G、Z、Cs作为阻抗法的检测参数快速分析牛奶的微生物品质时,其对应的检测时间DTTH分别为440min、440min、400min。
The aerobic bacterial count is an important indicator of microbiological detection of milk, and its rapid detection can instruct employed people to adopt appropriate manufacturing procedure, ensuring the quality and the safety of dairy products. There are many superiorities of impedance method, such as rapid detection, easy to operate, cost-effective of single detection. Therefore, the objective of this research was to explore the potential utilization of the impedance method in rapid detection the aerobic bacterial count of milk through the following aspects:1) the change pattern of the conductance (G), the total impedance (Z), the double-layer capacitance (Cs), the medium capacitance (Cp), and the impedance angle (θ) during the impedance detection and the equivalent circuit; 2)the influence of temperature, frequency on curves of G, Z, Cs, Cp,θchange rate;3) the practical value of the impedance method in the rapid detection the aerobic bacterial count of milk.
     The main research findings were summarized as follows:
     1. The value of G, Cs increased, the value of Z, Cp,θdecreased during impedance detection. Cs is the most sensitive to the change of the impedance characteristic of culture medium, its amplitude of the change rate was the biggest, while Cp was the smallest. The total impedance contained the conductance which didn't vary with frequency, the conductance varied with frequency, and the imaginary component of impedance varied with frequency. The equivalent circuit of the process of impedance detection could be the constant phase angle element (CPE) serried with the resistance (R), the calculation formula of Z, Z=11.423+1.3704×104×(2×π×f)-0.7767×cos((?))-j1.3704×104×(2×π×f)-0.7767×sin((?))·
     2. The temperature affected the value of G, Z, Cs, Cp and the detection time (DT) of impedance detection. There was linear relationship between impedance parameters and the temperature, the value of G, Cs, Cp increased, the value of Z decreased, while the temperature increased. The growth of microorganism would be inhibited when the temperature was too high or too low. However, when the temperature was among suitable growth range of micro-organism, the higher the temperature the shorter the DT. As a result, the suitable temperature range of rapid detection the aerobic bacterial count by the impedance was 30 to 40℃。
     3. The influence of frequency on curves of G, Z, Cs, Cpchange rate was different-the curves of G, Z change rate were almost not affected, while high frequency severely affected the Cs, Cp. Therefore, while G. Z was chose as parameter, the suitable frequency range was 100Hz-1MHz。the suitable frequency range of Cs was 100Hz-100KHz.
     4. When G, Z, Cs was chosen as the detection parameters, there was linear correlation between the value of DT and the logarithmic value of the aerobic bacterial count by the plate count method (1gCSPC). Furthermore, the result was more consistent when G or Z was chosen as detection parameter.
     In conclusion, rapid detection the aerobic bacterial count of milk could be conducted at 40℃,1 KHz. The corresponding detection time DTTH was 440min, 440min,400min, respectively, while G, Z or Cs was chosen as parameter to rapidly detect the microorganism quality of milk.
引文
1. Wawerla M., Stolle A, Schalch B, Eisgruber H. Impedance microbiology:Applications in food hygiene[J]. Journal of Food Protection,1999,62,(12):1488-1496.
    2. Varshney M, Li Y. Interdigitated array microelectrodes based impedance biosensors for detection of bacterial cells[J]. Biosensors and Bioelectronics,2009,24(10):2951-2960.
    3. Curda L, Plockova M Impedance measurement of growth of lactic acid bacteria in dairy cultures with honey addition[J]. International Dairy Journal,1995,5(7):727-733.
    4. 兰敬辉.溶液电导率测量方法的研究[D].大连理工大学,2002,5-10.
    5. Hardy D, Kraeger SJ, Dufour SW, Cady P. Rapid detection of microbial contamination in frozen vegetables by automated impedance measurements[J]. Applied and Environmental Microbiology,1977,34(1):14-17.
    6. Walker K, Ripandelli N, Flint S. Rapid enumeration of Bifidobacterium lactis in milk powders using impedance[J]. International Dairy Journal,2005,15(2):183-188.
    7. Yang L, Bashir R. Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria[J]. Biotechnology Advances,2008,26(2):135-150.
    8. Chang TC, Ding HC, Chen S. A conductance method for the identification of Escherichia coli O157:H7 using bacteriophage AR1[J]. Journal of Food Protection,2002,65(1):12-17.
    9. Ur A, Brown DFJ. Impedance monitoring of bacterial activity[J]. Journal of Medical Microbiology,1975,8(1):19-28.
    10.王洪华,王爱华.用电阻抗法进行细菌种类鉴别试验[J].中国医学生物技术应用杂志,2003,(1):66-71.
    11. Orsi C, Torriani S, Battistotti B, Vescovo M. Impedance measurements to assess microbial contamination of ready-to-use vegetables[J]. Zeitschrift fur Lebensmittel-Untersuchung und-Forschung,1997,205(3):248-250.
    12. Felice CJ, Madrid RE, Olivera JM, Rotger VI, Valentinuzzi ME. Impedance microbiology: Quantification of bacterial content in milk by means of capacitance growth curves[J]. Journal of Microbiological Methods,1999,35(1):37-42.
    13. Metcalfe AM, Marshall DL. Capacitance method to determine the microbiological quality of raw shrimp (Penaeus setiferus)[J]. Food Microbiology,2004,21(3):361-364.
    14.易敏英,李志勇.电阻抗法快速检测鲜牛奶中细菌总数[J].中国乳品工业,200l,29(3):30-31.
    15. 赖蔚苳,黄吉城,戴昌芳,朱海明,宋曼丹,严纪文.电阻抗法快速测定食品中的菌落总数的应用研究[J].中国食品卫生杂志,2001,13(4):13-15.
    16.刘玲君,朱俊平,赵小强,赵颖,张彦辉,郭峰.电导微生物技术快速测定原料乳茵落总数的研究[J].中国乳品工业,2003,31(5):45-47.
    17.王迪,陈倩.阻抗法快速测定熟肉制品中菌落总数方法的研究[J].中国卫生检验杂志,2005,15(12):1485-1486.
    18. Bullock RD, Frodsham D. Rapid impedance detection of salmonellas in confectionery using modified LICNR broth[J]. Journal of Applied Bacteriology,1989,66(5):385-391.
    19. Ramalho R, Cunha J, Teixeira P, Gibbs PA. Improved methods for the enumeration of heterotrophic bacteria in bottled mineral waters[J]. Journal of Microbiological Methods,2001, 44(2):97-103.
    20. Alexandrou 0, De Blackburn CW, Adams MR. Capacitance measurement to assess acid-induced injury to Salmonella enteritidis PT4[J]. International Journal of Food Microbiology,1995,27(1):27-36.
    21.Easter MC, Gibson DM. Rapid and automated detection of salmonella by electrical measurements[J]. Journal of Hygiene,1985,94(3):245-262.
    22.陈广全,张惠媛,饶红,袁军.电阻抗法检测食品中的沙门氏菌[J].食品科学,200l,22(9):66-70.
    23. Yang L. Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodes[J]. Talanta,2008,74(5):1621-1629.
    24. Donaghy JA, Madden RH. Impedance detection of Salmonella in processed animal protein and meat[J]. International Journal of Food Microbiology,1992,16(3):265-269.
    25. Gibson DM, Coombs P, Pimbley DW. Automated conductance method for the detection of Salmonella in food-Collaborative study [J]. Journal of Aoac International,1992, 75(2):293-302.
    26. Martins SB, Selby MJ. Evaluation of a rapid method for the quantitative estimation of coliforms in meat by impedimetric procedures[J]. Applied and Environmental Microbiology, 1980,39(3):518-524.
    27. Weihe JL, Seibt SL, Hatcher WS. Estimation of microbial-populations in frozen concentrated orange juice using automated impedance measurements[J]. Journal of Food Science,1984, 49,(1):243-245.
    28. Schaertel BJ, Tsang N, Firstenberg-Eden R.. Impedimetric detection of yeast and mold[J]. Food Microbiology,1987,4(2):155-163.
    29. Gourama H, Bullerman LB. Detection of molds in foods and feeds:Potential rapid and selective methods[J]. Journal of Food Protection,1995,58(12):1389-1394.
    30. Flint SH, Brooks JD. Rapid detection of Bacillus stearothermophilus using impedance-splitting[J]. Journal of Microbiological Methods,2001,44(3):205-208.
    31. Garcia-Aljaro C, Munoz-Berbel X, Munoz FJ. On-chip impedimetric detection of bacteriophages in dairy samples[J]. Biosensors and Bioelectronics,2009,24(6):1712-1716.
    32. Timms S, Colquhoun KO, Fricker CR. Detection of Escherichia coli in potable water using indirect impedance technology[J]. Journal of Microbiological Methods,1996, 26(1-2):125-132.
    33. Madden RH, Gilmour A. Impedance as an alternative to MPN enumeration of coliforms in pasteurized milks[J]. Letters in Applied Microbiology,1995,21(6):387-388.
    34. Spiller E, Scholl A, Alexy R, Kummerer K, Urban GA. A microsystem for growth inhibition test of Enterococcus faecalis based on impedance measuremen[J]. Sensors and Actuators, B: Chemical,2006,118(1-2):182-191.
    35. Kozakova D, Holubova J, Plockova M, Chumchalova J, Curda L. Impedance measurement of growth of lactic acid bacteria in the presence of nisin and lysozyme[J]. European Food Research and Technology,2005,221(6):774-778.
    36. Johansen C, Gill T, Gram L. Antibacterial effect of protamine assayed by impedimetry[J]. Journal of Applied Bacteriology,1995,78(3):297-303.
    37. Chen HC, Chang TC. Detection of penicillin G in milk using a conductimetric method[J]. Journal of dairy science,1994,77(6):1515-1520.
    38. Myllyniemi AL, Sipila H, Nuotio L, Niemi A, Honkanen-Buzalski T. An indirect conductimetric screening method for the detection of antibiotic residues in bovine kidneys[J]. Analyst,2002,127(9):1247-1251.
    39. Koutsoumanis K, Nychas GJE. Application of a systematic experimental procedure to develop a microbial model for rapid fish shelf life predictions[J], International Journal of Food Microbiology,2000,60(2-3):171-184.
    40.李志勇,易敏英,高健婷,翁文川,徐龙岩.阻抗法快速预测盒装巴氏奶货架期[J].食品科学,200l,22(12):69-72.
    41. Nihtianov SN, Meijer GCM. Non-destructive on-line sterility testing of long-shelf-life aseptically packaged food products by impedance measurements[C].1999,243-249.
    42. White CH. Rapid methods forestimation and prediction of shelf-life of milk and dairy-products[J]. Journal of dairy science,1993,76(10):3126-3132.
    43. Kahn P, Firstenbergeden R. Prediction of shelf-life of pasteurized milk and other fluid dairy-productsin 48hours[J]. Journal of dairy science,1987,70(8):1544-1550.
    44. Li Z, Yi M, Gao J. Rapid impedance method for predicting the potential shelf life of packaged pasteurized milk[J]. Journal of Aoac International,2003,86(5):998-1002.
    45.邓鹏,程永强,薛文通.油脂氧化及其氧化稳定性测定方法[J].食品科学,2005,26(增刊):196-199.
    46.孙曙庆.油脂氧化稳定性的研究[J].食品与发酵工业,1999,25(3):20-22.
    47. Whitman TA, Forrest JC, Morgan MT, Okos MR. Electrical measurement for detecting early postmortem changes in porcine muscle[J]. Journal of Animal Science,1996,74(1):80-90.
    48. Harker FR, White A, Freeth B, Gunson FA, Triggs CM. Simultaneous instrumental measurement of firmness and juiciness of apple tissue discs[J]. Journal of Texture Studies, 2003,34(3):271-285.
    49.张军,李小昱,王为,肖武.用阻抗特性评价鲫鱼鲜度的试验研究[J].农业工程学报,2007,23(6):44-48.
    50.张军.基于复阻抗特性和电子鼻的淡水鱼新鲜度快速检测方法的研究[D].华中农业大学,2008,33-35.
    51. Damez JL, Clerjon S, Abouelkaram S, Lepetit J. Electrical impedance probing of the muscle food anisotropy for meat ageing control [J]. Food Control,2008,19(10):931-939.
    52. Marchello MJ, Slanger WD, Carlson JK. Bioelectrical impedance:Fat content of beef and pork from different size grinds[J]. Journal of Animal Science,1999,77(9):2464-2468.
    53. Masot R, Alcaniz M, Fuentes A, Campos F, Barat JM, Gil L, Labrador RH, Soto J, Martinez-Manez R. Design and implementation of a low-cost non-destructive system for measurements of water and salt levels in food products using impedance spectroscopy[C]. 2009:318-319.
    54. Zywica R, Pierzynowska-Korniak G, Wojcik J. Application of food products electrical model parameters for evaluation of apple puree dilution[J]. Journal of Food Engineering,2005, 67(4):413-418.
    55. GN S. The changes produced by the growth of bacteria in the molecular concentration and electrical conductivity of culture media[J]. The Journal of Experiment Medicine,1899, (4):235-243.
    56. Richards JCS, Jason AC, Hobbs G, Gibson DM, Christie RH. Eelectronic measurement of bacterial-growth[J]. Journal of Physics E-Scientific Instruments,1978,11(6):560-568.
    57. Cady P, Dufour SW, Shaw J, Kraeger SJ. Electrical impedance measurements:Rapid method for detecting and monitoring microorganisms[J]. Journal of Clinical Microbiology,1978, 7(3):265-272.
    58. Oconnor F. An impedance method for the determination of the bacteriological quality of raw-milk[J]. Kieler Milchwirtschaftliche Forschungsberichte,1982,34(1):123-128.
    59. Firstenbergeden RTM. Impedimetric determination of total, mesophilic and psychrotrotrophic counts in raw-milk[J]. Journal of Food Science,1983,48(6):1750-1754.
    60. Moore JE, Madden RH. Impediometric detection of Campylobacter coli[J].Journal of Food Protection,2002,65, (10):1660-1662.
    61. Owens JD. Formulation of culture media for conductimetric assays:Theoretical considerations[J]. Journal of General Microbiology,1985,131(11):3055-3076.
    62. Dezenclos T, Ascon-Cabrera M, Ascon D,Lebeault JM, Pauss A. Optimisation of the indirect impedancemetry technique; a handy technique for microbial growth measurement[J]. Applied Microbiology and Biotechnology,1994,42(2-3):232-238.
    63. Ribeiro T, Romestant G, Depoortere J, Pauss A. Development, validation, and applications of a new laboratory-scale indirect impedancemeter for rapid microbial control[J]. Applied Microbiology and Biotechnology,2003,63(1):35-41.
    64. Madden RH, Espie WE, McBride J. Benefits of indirect impediometry, using Rappaport-Vassiliadis broth, for the detection of Salmonella in processed animal protein[J]. International Journal of Food Microbiology,1996,29(2-3):387-390.
    65. Hause LL, Komorowski RA, Gayon F. Electrode and electrolyte impedance in the detection of bacterial-growth and electrolyte impedance in the detection of bacterial-growth[J]. Ieee Transactions on Biomedical Engineering,1981,28(5):403-410.
    66. Felice CJ, Valentinuzzi ME, Vercellone MI, Madrid RE. Impedance bacteriometry-method and interface contributions during bacterial-growth[J]. Ieee Transactions on Biomedical Engineering,1992,39(12):1310-1313.
    67. Felice CJ, Valentinuzzi ME. Medium and interface components in impedance microbiology[J]. Ieee Transactions on Biomedical Engineering,1999,46(12):1483-1487.
    68. Grossi M, Pompei A, Lanzoni M, Lazzarini R, Matteuzzi D, Ricco B. Total bacterial count in soft-frozen dairy products by impedance biosensor system[J]. IEEE Sensors Journal,2009, 9(10):1270-1276.
    69. Grossi M, Lanzoni M, Pompei A, Lazzarini R, Matteuzzi D, Ricco B. Detection of microbial concentration in ice-cream using the impedance technique[J]. Biosensors and Bioelectronics, 2008,23(11):1616-1623.
    70. Chang XT, Yin YS, Niu GH, Liu T, Cheng S, Sun SB. The electrochemical behavior of oceanic microbiological influenced corrosion on carbon steel[J]. Acta Metallurgica Sinica (English Letters),2007,20(5):334-340.
    71. Lanzanova M, Mucchetti G, Neviani E. Analysis of conductance changes as a growth index of lactic acid bacteria in milk[J]. Journal of dairy science,1993,76(1):20-28.
    72. Garro MS, De Valdez GF, De Giori GS. Application of conductimetry for evaluation of lactic starter cultures in soymilk[J]. Journal of Food Science,2002,67(3):1175-1178.
    73. Van Spreekens KJA, Stekelenburg FK. Rapid estimation of the bacteriological quality of fresh fish by impedance measurements[J]. Applied Microbiology and Biotechnology,1986, 24(1):95-96.
    74. Ruiz GA, Felice CJ, Valentinuzzi ME. Non-linear response of electrode-electrolyte interface at high current density[J]. Chaos, Solitons and Fractals,2005,25(3):649-654.
    75. Ruiz G, Felice CJ. Non-linear response of an electrode-electrolyte interface impedance with the frequency[J]. Chaos, Solitons and Fractals,2007,31(2):327-335.
    76. Treo EF, Felice CJ. Non-linear dielectric monitoring of biological suspensions[J]. Journal of Physics:Conference Series,2007,90(1).
    77. Treo EF, Felice CJ. Non-linear dielectric spectroscopy of microbiological suspensions[J]. Biomedical engineering online,2009,8,19.
    78. Treo EF, Felice CJ, Madrid RM. Non linear dielectric properties of microbiological suspensions at electrodeelectrolyte interfaces[C].2005:4588-4591.
    79.曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002,26-37.
    80.史美伦,交流阻抗谱原理及应用[M].北京:国防工业出版社,2001,21-27.
    81. Geddes LA, Dacosta CP, Wise G. Impedance of stainless-steel electrodes[J]. Medical & Biological Engineering,1971,9(5):511-&.
    82. Neaves P, Waddell MJ, Prentice GA. A medium for the detection of Lancefield Group-D cocci in skimmed milk powerd by measurement of conductivity changes[J]. Journal of Applied Bacteriology,1988,65(6):437-448.
    83. Grellier S, Robain H, Bellier G, Skhiri N. Influence of temperature on the electrical conductivity of leachate from municipal solid waste[J]. Journal of Hazardous Materials,2006, 137(1):612-617.
    84. El-Nahass MM, El-Deeb AF, Abd-EI-Salam F. Influence of temperature and frequency on the electrical conductivity and the dielectric properties of nickel phthalocyanine[J]. Organic Electronics:physics, materials, applications,2006,7(5):261-270.
    85. Noble PA, Dziuba M, Harrison DJ, Albritton WL. Factors influencing capacitance-based monitoring of microbial growth[J]. Journal of Microbiological Methods,1999,37(1):51-64.
    86. Yang L, Ruan C, Li Y. Detection of viable Salmonella typhimurium by impedance measurement of electrode capacitance and medium resistance[J]. Biosensors and Bioelectronics,2003,19(5):495-502.
    87. Alvarez E, Garcia-Rio L, Mejuto JC, Navaza JM, Pe'rez-Juste J, Rodriguez-Dafonte P. Effect of temperature on the electrical conductivity of sodium bis(2-ethylhexyl)sulfosuccinate+ 2,2,4-trimethylpentane+water microemulsions. Influence of alkylamines[J]. Journal of Chemical and Engineering Data,1999,44(6):1286-1290.
    88.胡珂文,盖铃,叶尊忠,王剑平,应义斌,李延斌.阻抗谱测量在微生物快速检测研究中的应用[J].中国食品学报,2009,9(3):162-167.
    89.胡珂文.细菌总数快速检测方法与装置研究[D].浙江大学,2008,22-49.
    90.张道德.金冠苹果果实的介电特性与无损检测技术的研究[D].四川农业大学,2007,25-26.
    91. Noble PA. Hypothetical model for monitoring microbial growth by using capacitance measurements-A minireview[J]. Journal of Microbiological Methods,1999,37(1):45-49.
    92. Fourie CJ, Van Der Westhuyzen PJ, Van Niekerk PC. An automated system for impedance measurements in milk[C].2007,1-5.
    93. Duran GM, Marshall DL. Rapid determination of sanitizer concentration using impedance-based methods[J]. Journal of Food Protection,2002,65(9):1422-1427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700