CdS荧光技术在食品蛋白质检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质是生命的物质基础,是构成生物体细胞组织的重要成分,是生物体发育及修补组织的原料。蛋白质在维持人体内的酸碱平衡、传递遗传信息、调节代谢、催化生物体内各种反应进行等方面都起着至关重要的作用。食品中蛋白质的分离、定性及定量分析是食品检验中最重要的工作。随着分析手段的不断进步,对食品中蛋白质含量的测定方法也正向准确和快速的方向发展。
     近年来,利用荧光试剂或有机染料与蛋白质作用,结合荧光光度法定量测定蛋白质含量的方法得到了很大的发展,此方法具有灵敏度高,线性范围宽,检出限低,操作简单、快速等特点,适用于常规分析。而新型荧光试剂量子点的出现,对该方法的研究起了很大的推动作用,量子点具有激发光谱宽且连续分布、发射光谱窄而对称、光谱可调谐、稳定性好、抗漂白能力强等优点,这些特殊的光学性质,使其在分子生物学、细胞生物学、基因组学、药物筛选、生物大分子相互作用等研究中有极大的应用前景,但是利用量子点测定食品中蛋白质含量的研究报道较少。本文以荧光光度法为检测手段,合成具有优异光学性质的荧光试剂,使其与蛋白质作用,探寻定量测定蛋白质更简单、更灵敏的方法,并用于样品检测。主要研究内容包括:
     一.综述了蛋白质测定方法,量子点合成及其在生物分子检测中的应用。
     二.建立了CdS-牛血清白蛋白(BSA)荧光光度法测定蛋白质含量的新方法:在pH为7.50的B-R缓冲溶液中,CdS与BSA作用,使CdS本身的荧光强度显著增强。该方法用于牛奶、蛋清中蛋白质含量的测定,并与双缩脲法作对照,结果满意。
     三.研究了多种表面活性剂对CdS-BSA体系荧光特性的影响:结果表明,阳离子表面活性剂如十六烷基三甲基溴化铵(CTMAB)对体系有显著的增敏作用,而阴离子表面活性剂如十二烷基硫酸钠(SDS)有猝灭作用,且有乳状沉淀产生,非离子表面活性剂如吐温-20对体系的荧光强度影响较小,在此基础上选择CTMAB与体系作用,建立了测定蛋白质含量的新方法。在pH 8.50的硼酸-硼砂缓冲溶液中,CTMAB的加入,可以使体系的荧光峰显著增强。该方法可用于肉松、豆浆中蛋白质含量的测定,与考马斯亮蓝法作对照,结果满意。
     四.前文中基于BSA能使CdS荧光强度显著增强,建立了测定蛋白质的方法。但是BSA直接与CdS作用,在使CdS荧光强度增强的同时,其荧光吸收峰发生蓝移,从而给测定结果造成一定的影响。本文经研究发现,先使8-羟基喹啉与CdS作用(pH 8.90的硼酸-硼砂缓冲溶液),CdS的荧光强度降低,且吸收峰蓝移至510nm,然后再加入BSA,体系的荧光吸收峰仍在510nm处不变,荧光强度显著增强,并且在一定浓度范围内,体系的荧光强度与BSA的浓度呈良好的线性关系,据此建立了CdS—8-羟基喹啉荧光光度法测定蛋白质的新方法。该法用于肉松、鸡精、奶粉等食品中蛋白质含量的测定,并与双缩脲法做对照,结果满意。
     五.实验以水溶法制备了具有核壳结构的CdS/ZnO微粒,研究了该微粒与牛血清白蛋白作用后体系的荧光特性,建立了CdS/ZnO荧光光度法测定蛋白质的新方法:在pH 6.10的KH2PO4-Na2HPO4缓冲溶液中,CdS/ZnO与牛血清白蛋白(BSA)反应后,荧光强度显著增强,并且荧光强度的增强与牛血清白蛋白的浓度有良好的线性关系。该法用于食品和尿液中蛋白质的测定,并与考马斯亮蓝法比较,结果满意。
     六.与课题相关的其它研究:(1)以乙酸锌为锌源,硫化钠为硫源,巯基乙酸为修饰剂水相合成了ZnS微粒。基于ZnS微粒能与结晶紫反应使结晶紫的吸光度降低,加入牛血清白蛋白反应后,体系的吸光度显著增强,据此建立了结晶紫-ZnS-BSA分光光度法测定蛋白质的新方法。该法用于肉松、酸奶等食品中蛋白质含量的测定,与考马斯亮蓝法做对照,结果满意;(2)研究了食品中糖精钠含量的一种新的测定方法,在pH 7.00的Britton-Robinson(B-R)缓冲溶液中,结晶紫与糖精钠作用可使结晶紫吸光度显著增强,据此建立了结晶紫-紫外光度法测定食品中糖精钠含量的新方法。该方法应用于食品中糖精钠含量的测定,与国标法-高效液相色谱法对照,结果满意。
Protein is the material foundation of life, it is also constitute an important part of the biological somatic tissue, and is a raw material of biological development and repair tissue. Protein plays a critical role in maintaining acid-base in human body, pass genetic information, regulating metabolism, catalytic various reaction in organisms, and etc. Its separation and the qualitative and quantitative analysis is the most important work in biochemistry and other biological disciplines, such as food inspection, clinical examination, diagnose disease, biological medicine separation,purification and quality inspection. With the progress of analysis methods unceasing, the determination method of protein content in food also procress to accurately and quickly.
     Utilization of fluorescence reagent or organic dyes with protein reaction, and the determination of combined with fluorescence spectrophotometry quantitative determinate protein content has a great development. This method has many characteristics, such as high sensitivity, wide linear range, low detect limit, simple and fast operation and so on, so it applies the conventional application. But as a new fluorescent reagent emergence of quantum dots, it played an important role in promoting this method research, Quantum dots have many advantages, such as broad excitation spectra and the continuous distribution, narrow and symmetric emission spectrum, spectrum can be tuned, good stability and strong resistance to bleaching, and so on. This special optical properties have great prospects in molecular biology, cell biology, genomics, drug screening, the study of biological macromolecules interactions, but using quantum dots in determination of protein content has a few studies.
     The aim of this dissertation is to explore simpler, more sensitive determination methods of protein, through synthetic excellent optical properties of nanometer particle, with using spectrophotometry as research means, and this method had used for sample testing. The major contents are described as follows:
     1. Summary of the protein determination methods, quantum dot synthesis methods and its applications in biomolecular detection is given in this part.
     2. Established a fluorometry for the determination of protein: The interaction between CdS and Bovine Serum Albumin(BSA) in pH 7.50 Britton-Robinson buffer solution resulted in a fluorescence intensity of CdS increasement. This method has been applied for the determination of protein in milk and egg, and compared with the biuret method the results were satisfactory.
     3. Investigated variety of surfactants impact on the CdS-BSA system. The results showed that cationic surfactants such as cetyltrimethylammonium bromide (CTMAB) on the system have a significant sensitizing effect, and anionic surfactants such as sodium dodecyl sulfate (SDS) quenched, and there is milky precipitate, non-ionic surfactant such as Tween -20 effect on the fluorescence intensity of less effect. So a new method for the determination of protein was established as the reaction CTMAB with system. In pH 8.50 Boric acid-borax buffer solution, The fluorescence intensity of system increasing sensitivity after joined CTMAB into the system. The method have been used for determination of protein in food such as crushed dride pork and soybean milk. Comparing with the coomassie brilliant blue method, the results were satisfactory.
     4. A method for the determination of protein was established based on CdS fluorescence intensity significantly increased after CdS with BSA effect in above. But BSA with CdS effect directly can make CdS fluorescence intensity of enhanced. At the same time, its fluorescence absorption peaks shift to left, and the determination results had some effect. In this paper, the study found that first make 8-hydroxyquinoline and CdS effect(pH 8.90 boric acid-borax buffer solution), CdS fluorescence intensity significantly decreased, and the fluorescence absorption peaks move to 510nm, then added to BSA, the fluorescent absorption peaks of system were still in place of 510nm, fluorescence intensity increased significantly, and the fluorescence intensity of system is a good linear relationship with BSA concentration in certain concentration range. So a new method for the determination of protein was established. The method have been used for determination of protein in food such as crushed dride pork, chichen powder, Soybean milk powder, and so on. and compared with the Biuret method, the results were satisfactory.
     5. CdS nanoparticles were synthesized in aqueous solution in this experiment, and established a new method of protein determination with the CdS/ZnO fluorescence spectrophotometry. The result showed the fluorescence intensity of CdS/ZnO increased after reacted with BSA in the pH 6.10 KH2PO4-Na2HPO4 buffer solution. And the fluorescence intensity of system have good linear relationship with BSA concentration. This method have been used for determination of protein in food and urine, and compared with the coomassie briliant blue method,the results were satisfactory.
     6. The other research related to the issue introduced: In this experiment, ZnS nanoparticles that have special spectral properties were prepared with zinc acetate as the zinc source, sodium sulfide as sulfur source, mercaptoacetic acid as modifier by hydrothermal synthesis method. Based on the decrease of absorbance of crystal violet after ZnS reacted with crystal violet and the absorbance of system increased significantly by adding different amounts of bovine serum albumin, a new method about determination of protein was established. The method have been used for determination of protein in crushed dride pork, yoghot, and others, and compared with the coomassie brilliant blue method, the results were satisfactory.
     Another introduced a kind of method of determination of o-Sufobenzoic Acid Imide(Na) in the food. In Britton-Robinson (B-R) buffer solution of pH 7.00, the absorption wavelength of violet markedly increased after reacting with the o-Sufobenzoic Acid Imide(Na). In view of the above, the determination of o-Sufobenzoic Acid Imide(Na) in the food by UV spectrophotometry established. It has been used to the determination of o-Sufobenzoic Acid Imide(Na) in food, comparing with Guobiao law– HPLC, the results are satisfactory.
引文
[1]大连轻工业学院,华南理工大学,郑州轻工业学院,等.食品分析[M].北京:中国轻工业出版社,2009:214-216.
    [2]刘志皋.食品营养学[M].北京:中国轻工业出版社,1991:98-144.
    [3]张爱武.食品中蛋白质测定方法的研究进展[J].农产品加工·学刊,2008,1(1):80-82.
    [4]路苹.蛋白质测定方法评价[J].北京农学院学报,2006(21):65-69.
    [5] BoyerR F. Modern Experimental Biochemistry. San Francisco, CA: Benjamin Cummings, 2000
    [6]蔡武成,袁厚积.生物物质常用化学分析法.北京:科学出版社,1982
    [7]张龙翔,张庭芳,李令媛.生化实验方法和技术.北京:高等教育出版社,1997
    [8] BradfordM. AnalB iochem, 1976,72:248
    [9] Korenaga T, Stewart K K. Seeking high-sensitivity flow injection analysis[J]. Anal. Chim. Acta, 1988, 214: 87-95.
    [10] Wei Yong-ju, Li Ke-an, Tong Sheng-yang. The interaction of bromophenol blue with proteins in acidic solution[J]. Talanta, 1996, 43(1): 1.
    [11] Jung K, Nickel E, Pergande M. Microal buminuria assay using bromophenol blue[J]. Clin Chim Acta, 1990, 187(2): 163.
    [12] Saito Y, Okazaki Y, Sano S, et al. A sensitive spectrofluorimertic method for tination of total protein in human serum by near infrared fluorescence recovery[J]. Fresenius, journal of analytical chemistry, 2000, 368(5): 511-515.
    [13] Waheed A A, Gupta P D. Estimation of submicrogram quantities of protein using the dye eosin[J]. Biochem Biophys Meth. 2000, 42(3): 125-132.
    [14] Perez-Ruiz T, Martinez-Lozano C. Determination of proteins in serum by fluorescencequenching of Rose Wengal using the stopped-flow mixing technique[J]. Analyst, 2000, 125: 507-510.
    [15] Karasm, Hillenkampf. Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons[J]. Anal.Chem, 1988, 60: 2299-2301.
    [16]龚海霞,陈荣华,郭锡熔.蛋白质组技术及其在临床医学领域的运用[J].国外医学儿科学分册,2001,28(6):287-289.
    [17]魏开华,杨松成,王红霞,等.转印到膜上的蛋白质的质谱分析[J].质谱学报,2000,20 (3,4):89-90.
    [18]司英健.蛋白质组学研究的内容、方法及意义[J].国外医学临床生物化学与检验学分册,2003;24(3):167-168.
    [19]王征,阮幼冰,官阳.肝细胞癌患者血清蛋白质组成分的双向凝胶电泳-时间质谱分析[J].中华病理学杂志,2003,32(4):333 -336.
    [20]黄珍玉,于雁灵,方彩云,等.质谱鉴定磷酸化蛋白研究进展[J].质谱学报,2003,24 (4):494-500.
    [21]邬江,朱家恺,许扬滨,等.许旺细胞源神经营养蛋白的质谱分析[J].中华显微外科杂志,2002,25(4):271-273.
    [22] Yoshikazu F, Lisuo M, Shoko K.Interactions of Proteins with Mo(Ⅵ)-Pyrogallol Red Complex[J]. Bunseki Kagaku, 1983, 32: 379-386.
    [23] Satoka Aogagi. Determination of human serum albumin by chemiluminescence immunoassay with luminol using a platinum-immobilized flow-cell[J]. Analytica chimica acta, 2001, 436(1): 103-108.
    [24] Doumas B T, Watson W A.Albumin Standards and the Measurement of S A with BOG[J]. Clin Chem Acta, 1971, 31: 87-89.
    [25]冯娅萍,杨丹,舒夏.化学发光免疫法与免疫层析法测定肌钙蛋白Ⅰ结果的比较[J].江西医学检验,2005,23(5):431-432.
    [26]林章碧,苏星光,张家骅,金钦汉.纳米粒子在生物分析中的应用[J].分析化学,2002,30(2):237-241.
    [27]赵晓君,金钦汉.光纤表面等离子体共振生物探针的研究[J].抚顺石油学院学报[J].1996,16(3):86-89.
    [28]李楠,徐凤波,韩鑫鑫,等.羰基铁(Ⅱ)碎片标记生物分子的初步研究[J].化学学报,2000,58(9):1136-1138.
    [29]马丹.凯氏定氮法测定食品中蛋白质含量[J].计量与测试技术,2008,35(6):57-58.
    [30]王宗乾,程龙,邱小永.凯氏定氮法测定牛奶纤维蛋白质含量[J].印染,2008,12:32-34.
    [31]周斌.凯氏定氮法测定食品中蛋白质的不确定度分析[J].科技资讯,2008,19:228.
    [32]刘箭.生物化学实验教程.北京:科学出版社[M],2004,9-13.
    [33]许家喜.蛋白质的检测方法与乳制品中蛋白含量测定[J].大学化学,2009,24(1):66-69.
    [34]李宁.几种蛋白质测定方法的比较[J].山西农业大学学报,2006,26(2):132-134.
    [35]王雅.蛋白质测定实验的研究[J].实验室研究与探索,2005,24(4):58-59.
    [36]邓小超,吕爱娜,潘永丽.食品中蛋白质测定方法的改进[J].职业与健康,2005,21(6):833.
    [37]石艳静.食品中蛋白质测定方法及样品消化过程的改进[J].职业与健康,2008,24(1):22-23.
    [38]李项华.问题奶粉罪魁祸首-三聚氰胺[J].中国计量, 2008: 42-43.
    [39]王世朋.三聚氰胺的制造、应用及其在验:TLN品中的检验分析[J].金卡工程·经济与法,2008,9:146.
    [40]乐萍,雷颉,熊建铭.蛋白质测定方法比较与研究进展[J].江西化工,2007,2:50-52.
    [41]杨睿,刘少璞.某些分子光谱分析法测定蛋白质的进展[J].分析化学评述与进展,2001,29(2):232-241.
    [42]赵英永,戴云,崔秀明,等.考马斯亮蓝G-250染色法测定草乌中可溶性蛋白质含量[J].云南民族大学学报,2006,15(3):235-237.
    [43] Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye brindinn[J]. Analytical Biochemistry, 1976, (72): 248-254.
    [44]冯昕,王吉中,尧俊英,等.考马斯亮蓝法测定乳与乳制品中蛋白质含量[J].粮食与食品工业,2010,3(17):57-59.
    [45]王孝平,邢树礼.考马斯亮蓝法测定蛋白含量的研究[J].天津化工,2009,23(3):40-41.
    [46]曹稳根,赵海泉,焦庆才.考马斯亮蓝与牛血清白蛋白相互作用机理的研究[J].激光生物学报,2008,17(1):32-37.
    [47] Sedmak J J, Grossberg S E. A rapid sensitive and versatile assay for protein using Coomassie Brilliant Blue G-250[J]. Analyt.Biochem. 2005, 79: 544-552.
    [48] Cao Wen-gen, Jiao Qina-cai, Liu Qian, et al. Study on the mechanism of color changes of Coomassie Brilliant Blue G-250[J]. Acta Chimica Sinica, 2002, 60(9): 1656-1661.
    [49] Chial H J, Thompson H B, Splittgerber A G.A spectral study of the charge forms of Coomassie Brilliant Blue G-250[J]. Acta Chimica Sinica, 2003, 209: 258-266.
    [50]李伟,王鑫,王刚.食品中蛋白质测定方法的比较[J].广西质量监督导报,2008,(11):73-74.
    [51] Gary L. Peterson.Review of the folin phenol quantimethod of Lowry[J]. Analitical Biochemistry, 1979, 100: 201-220.
    [52]焦利敏,廖学品,石碧.紫外分光光度法下直接测定蛋白质溶液的浓度[J].化学研究与应用,2007,19(5):562-566.
    [53]田志梅,张永顺.紫外分光光度法快速测定液体奶、奶粉中蛋白质含量[J].中国卫生检验杂志,2008,18(2):263-264.
    [54] GB/T5009.5-2003.食品中蛋白质的测定.
    [55]张莉萍,张瑞斌,沈钧,等.奶粉中蛋白质的快速测定方法[J].理化检验-化学分册,2006,42(5):380-390.
    [56]侯冬岩,回瑞华,李铁纯,等.奶粉中蛋白质含量的光谱分析[J].鞍山师范学院学报,2004,6(4):37-39.
    [57]曹红翠.紫外分光光度法测定蛋白质的含量[J].广东化工,2007,34(8):93-94.
    [58]栾吉梅,胡明进,张晓东.有机染料分光光度法测定蛋白质的研究进展[J].安徽教育学院学报,2004,22(3):60-64.
    [59] Mosbe Tal, Silberstein A, Nusser E. Why does Coomassie Brilliant Blue R interact differently with different proteins A partial answer [J]. J Biol Chem, 1985, 260: 9976.
    [60] Uki. Guidance for Selecting the Measurement Conditions in the Dye binding Method for Determining Serum Protein: Theoretical Analysis Based on the Chemical Equilibrium of Protein Error[J]. Aanalytical Sciences, 2001, 17(11): 1263-1268.
    [61]罗宗铭,崔英德,董飞燕.蛋白质与酸性染料相互作用的分光光度研究[J].光谱学与光谱分析,2001,21(2):251-225.
    [62] Catherine M. Clase Conversion between bromcresd green and bromcresol purple-measured albumin in renal disease[J]. Nephrology Dialysis Transplantation, 2001, 16(9): 1925-1929..
    [63] Alison Carfray. Album in as an outcome measure in haemodialysis in patients: the effect of variation in assay method[J]. Nephrology Dialysis Transplantation, 2000, 15(11): 1819-1822.
    [64] Silber M L, Davitt B B. Preparative Binding of Coomassie Brilliant Blue to Bovine Serum Albumineat at Alkaline pH [J]. Preparative biochemistry & biotechnology, 2000, 30(3): 209-230.
    [65] Y.T.wang, F.L.zhao, Kali. A novel protein assay with an dye using Rayleigh light scattering technique [J]. Analytical letters, 2000, 33(1): 221-235.
    [66]段建平,陈红青,庄惠生.用偶氮胂Ⅲ分光光度法测定人体液中白蛋白[J].福州大学学报,1995,27(5):84-87.
    [67]罗宗铭,张火昆,崔英德.酸性品红分光光度法测定蛋白质的研究[J].光谱实验室,1999,16(5):594-596.
    [68] Jung K, Nickel E, Pergande M. Micro-Albuminuria Assay Using Bromophenol Blue[J]. Clin Chim Acta, 1990, 187(2): 163.
    [69]韩英强,罗登柏,詹国庆.血清蛋白与4,5-二溴荧光素相互作用及其分析应用的研究[J].氨基酸和生物资源,2003,25(1):35-36.
    [70]王海人,肖忠柏,宋功武.荧光素与牛血清白蛋白作用的光谱研究与分析应用[J ].分析测试学报,2001,20(4):44-46.
    [71]颜梅,陈欣,张丽娜.Meso-四(3,5-二溴-4-羟基苯基)卟啉褪色光度法测定蛋白质的研究与应用[J].光谱学与光谱分析,2008,28(5):1149-1151.
    [72]向灿辉,李显川.靛酚蓝分光光度法对鱼肉与鱼鳞中蛋白质含量的比较测定[J].食品工程,2009,(2):51-53.
    [73]陈鸿琪,李宝惠.定量测定蛋白质的新进展—金属离子-染料结合法[J].理化检验,2000,36(2):91-93.
    [74]马卫兴,李艳辉,沙鸥.蛋白质-二溴羧基偶氮胂结合物的光度特性及其分析应用[J].分析试验室,2007,26(2):48-51.
    [75]王春风,牛建平,胡秋娈.蛋白质与铜(Ⅱ)-偶氮胂Ⅲ络合的作用及分析应用[J].理化检验,2007,43(5):414-415.
    [76]孙晓艳,李贤珍,李建平.二甲酚橙-KBrO3体系阻抑反应动力学光度法测定蛋白质[J].分析科学学报,2009,25(5):609-611.
    [77]马卫兴,钱保华.刚果红与蛋白质相互作用的分光光度研究及其分析应用[J].理化检验,2005,41(7):492-494.
    [78] Konez S V, Kokiabyka A B. Nank.Sssr, 1957, 116: 594.
    [79] Konez S V. Dairy Sci. Abstr, 1961, 23: 103.
    [80] Porter R M. J Dairy. Sci. 1965, 48: 49.
    [81] Uphans R A, Groasweiner L I, Katz J J. Kopple K D. Science, 1959, 129: 641.
    [82]李原芳,黄承志,胡小莉.共振光散射技术的原理及其在生化研究和分析中的应用[J].分析化学,1998,26(12):1508-1515.
    [83]黄承志,朱济兴,李克安.分析化学新进展(汪尔康主编).太原:山西科学技术出版社,1997:384-385.
    [84]赵择卿,陆大年,杨定超.光散射技术.北京:纺织工业出版社,1989:74.
    [85]陈蓁蓁,张宁,张文申.蛋白质分子荧光探针研究及其应用新进展[J].分析化学,2006,34(9):1341-1347.
    [86]唐宁莉,周炎宏.四羧基镍酞菁共振散射法测定蛋白质[J].分析测试技术与仪器,2008,14(1):10-13.
    [87]黎泓波,张晓宇,王兴明.光谱法研究钙黄绿素与鲱鱼精DNA的相互作用[J].湖南师范大学自然科学学报,2007,30(1):47-51.
    [88]赵云洁,薛赛凤,张云黔,等.对称四甲基六元瓜环与2-氨基甲基吡啶相互作用的研究[J].化学学报,2005 ,63 (10):913-918.
    [89] Purcell M, Neaultj F,Riahi T. Interaction of taxol with human serum albumin[J]. Biochem Biophys Acta, 2000, 1478(1): 61-68.
    [90]王兴明,黎泓波,刘海萍,等.甲基百里酚蓝-钐(Ⅲ)配合物与鲱鱼精DNA的相互作用[J].化学学报,2006,64 (20):2115-2119.
    [91]陈国珍,黄贤智,郑朱梓,等.荧光分析方法[M].北京:科学出版社,1990.
    [92]王守兴,王峰,黄薇.共振光散射测定蛋白质的新方法[J].分析科学学报,2007,23(4):464-466.
    [93]苏界殊,陈小明,龙云飞.维多利亚蓝B与DNA作用的共振光谱特性及分析应用[J].光谱学与光谱分析,2004,24(1):37-40.
    [94]刘晨,陈小明,向海艳.枚苯胺共振光散射法测定DNA[J].光谱学与光谱分析,2001,21(5):697-700.
    [95]吴会灵,李文友,何锡文.罗丹明6G与核酸作用的共振光散射光谱及其分析应用[J].分析科学学报,2002,18(2):94-99.
    [96]敖登高娃,刘俊轶,张晓辉.甲基蓝与血红蛋白相互作用的共振瑞利散射光谱研究及小分子的影响[J].分析试验室,2010,29(12):39-42.
    [97]胡庆红,杨阳,江波.Fe3+ -十二烷基苯磺酸钠作探针的共振瑞利散射法测定血清蛋白[J].光谱实验室,2008,25(4):722-726.
    [98] Pasternack R F, Bustamante C, Collings P J, etal. Porphrin Assemblies on DNA as Studied by a Resonace Light-Scattering Technique[J]. J A m Chem Soc, 1993, 115(13): 5393-5399.
    [99] Huang C Z. Li Y F, Huang X H et al. Interactions of Janus Green B with Double Stranded DNA and the Detection of DNA Based on the Measurement of Enhanced Resonance Light Scattering[J]. Analyst, 2000, 125(9): 1267-1272.
    [100] Liu S P, Yang R, Liu Q. Resonance Rayleigh Scattering Method for the Determination of Proteins with Orange G[J]. Analytical Science, 2001, 17(2): 243-247.
    [101] Bradford M M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding[J]. Anal. Biochem, 1976, 72: 248-254.
    [102]许春萱,沈久明,李希曦.CdTe量子点共振瑞利散射光谱法测定血红蛋白[J].信阳师范学院学报,2010,22(3):443-446.
    [103]栾吉梅,张晓东.共振瑞利散射法测定核酸的研究进展[J].光散射学报,2005,17(2):164-171.
    [104]张晓亮,陈亚东,徐伟民.双核铜(Ⅱ) -β-丙氨酸缩水杨醛席夫碱配合物与血清蛋白相互作用的共振瑞利散射光谱[J].光谱实验室,2008,25(5):939-942.
    [105]刘保生,张红医,张红蕾等.氯酚红-蛋白体系的共振光散射法定量测定蛋白质[J] .光谱学与光谱分析, 2003, 23 (2):229-231.
    [106] Lu W, Huang C Z, Li YF. A Sensitive and Selective Assay of Nucleic Acids by Measuring Enhanced Total Internal Reflected Resonance Light-Scattering Signals Deriving from the Evanescent Field at the Water/ Tetrach loromethane Interfacet[J]. Analyst, 2002, 127(10): 1392- 1396.
    [107]杨传孝,李原芳,黄承志.丽春红G用于人血清样品中总蛋白的共振光散射测定[J] .分析化学, 2003, 31( 2):148-152.
    [108] Brun M P, BischoffL, Garbay C. Angew. Chem. Int. Ed., 2004, 43(26): 3432-3436.
    [109] Yegneswaran S, Fernandez J A, Griffin J H, Dawson P E. Chem. & Biol. 2002, 9 (4): 485-494.
    [110] Grant S K, SklarJ G, CummingsR T. J. B iomol. Screen, 2002, 7(6): 531-540.
    [111]张楠,姜芝英.二氯荧光素二聚体测定蛋白质[J].中国民航大学学报,2008,26(3):62-64.
    [112] Gyo X Q, Zhang Z L, Xu J G. DNA-Dye fluorescence enhancement based on shifting the dimer-monomer equilibrium of fluorescent dye[J]. Appl Spectrosc, 1997, 51(7): 1002-1007.
    [113] Rye H S, Dabora J M, Quesada M. Fluorometri assay using dimeric dyes for double and single- stranded DNA and RNA with picogram sensitivity[J]. Anal Biochem, 1993, 208(1): 144-150.
    [114] ]陈鸿琪,夏闽.荧光染料吖啶红作测定蛋白质的生物探针[J].理化检验,2001,37(2):53-55.
    [115] Shealy D B,Upowska M, Lipowska J. Synthesis chromatographic separation and characterizati oil of ear-infrared-labeled DNA[J]. Anal Chem, 1995, 67(2): 247-252.
    [116]周享春,颜承农,王特.罗丹明B与牛血清白蛋白的相互作用研究[J].化学研究与应用,2009,21 (1):36-41.
    [117]王海人,肖忠柏,宋功武.荧光素与牛血清蛋白作用的光谱研究与分析应用[J].分析测试学报, 2001,20(4):45-46.
    [118]冯喜增,白春礼,林璋,等.吖啶橙与牛血清白蛋白的相互结合反应[J].分析化学,1998, 26(2): 154-157.
    [119] Wei Yong-ju, Li Ke-an, Tong Shen-yang. The interaction of bromohenol blue with proteins in acidic solution[J]. Talanta, 1996, 43(1): 1-10.
    [120]杨杰,张智红,骆清铭.荧光蛋白研究进展[J].生物物理学报,2010, 26 (11):1025-1035.
    [121]贾建洪,盛卫坚,高建荣.有机荧光染料的研究进展[J].化工时刊,2004,18(1):18-22.
    [122]谭艳芝.量子点的应用及研究进展[J].纳米材料与应用,2007,4(4):22-26.
    [123]刘建云,黄乾明,王显祥.量子点在生物分析及医学诊断中的研究与应用[J].化学进展, 2010,22(6):1067-1076.
    [124]陈伟,沈鹤柏,陈艳.新型荧光物质—量子点在生命科学领域的应用研究进展[J].化学通报, 2007,(6):403-408.
    [125] Larson D R, Zipfel W R, Williams R M, et al. Science, 2003, 300(5624): 1434-1436.
    [126] Murray C B, Norris D J, Bawendi M G. Synthesis and Characterization of Nearly Monodisperse CdE(E=S,Se,Te)Semiconductor Nanocrystallites[J]. J. Am. Chem.Soc. 1993, 115: 8706.
    [127] Warren C W Chan, Shu Ming Nie. Luminescent Quantum Dots for Multiplexed Biological Dectiong and Imaging[J]. Current Opinion in Biotechnology, 2002, 13: 40-46.
    [128] Micic OI, Cheong H M, Fu H. Size-Dependent Spectroscopyof InP Quantum Dots [J]. Phys Chem B, 1997, 101: 4904-4912.
    [129] Tanke H J, Dirks R M, Raap T. Opin.Biotechnol, 2005, 16: 49-54.
    [130] Leatherdale C A, Woo W K, Mikulec F V, et al. Phys.Chem.B, 2002, 106: 7619-7622.
    [131] Alivisatos A P. Semi-conductor clusters nanocrystal and quantum dots[J]. Science, 1996, 2 (71):933.
    [132] Chen H M. The study of colloida quantum dots quantum dot quantumwell sand self-assemblyⅡ-Ⅵsemiconductors [M]. Beijing: National Library of China, 1994.
    [133]李丹,严拯宇.量子点的制备及其在生物分析中的应用[J].药物生物技术,2007,14(5):368-371.
    [134]王世敏,许祖勋,傅晶.纳米材料制备技术[M] .北京:化学工业出版社, 2002.
    [135]唐一科,许静,韦立凡.纳米材料制备方法的研究现状与发展趋势[J].重庆大学学报, 2005,28(1):5.
    [136]刘静波,王智民,郑春萍,等.镧掺杂钛酸钡纳米晶陶瓷元件的湿敏特性[J].功能材料与器件学报,2000,(2):106.
    [137] Dabbousi B O, Rodiguez-Viefo. (CdSe) ZnS Core Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystals[J]. Phys Chem. B, 1997, 101: 9463-9475.
    [138] Peng Z A, Peng X G, Formation of High-quality CdTe CdSe and CdS Nanocrystals as Precursor[J]. Am Chem. Soc, 2001, 123: 183-184.
    [139]张道礼,张建兵,吴启明,等.InP胶体量子点的合成及光谱性质[J].半导体学报,2006,27(7):1213.
    [140] Bai Y J, Liu Z G, Xu X G, et al. Preparation of InN Nano-crystals by Solvo-thermal Method[J]. Journal of Crystal Growth, 2002, 241: 189.
    [141] Chen H M, Huang X F. Self-assembly and photoluminescence of CdS mercapto acetic clusters with internal structures[J]. Superlattices and Microstructures, 2000, 27(1): 1.
    [142]孙剑洁,杨娟,许世超.CdTe量子点的水相制备[J].化工时刊,2009,23(4):11-13.
    [143]王琰侯,延冰,唐爱伟,等.水相中CdTe纳米晶的制备及其光学性质[J],物理化学学报, 2008,24(2),296-300.
    [144] Guo Wen-zhuo, Peng Xiao-gang, Luminenescent CdSe/CdS Core/Shell nanocrystals in dendronboxes:superior chemical photochemical and thermal Stability, Am. Chem. Soc, 2003, 125(13), 3901.
    [145]宋冰,程柯,武超.CdS量子点的制备和光学性质[J].材料研究学报,2009,23(1):89-92.
    [146]汪乐余,赵长庆,朱昌青,等.功能性ZnS纳米荧光探针的合成及其光谱性质研究[J].光谱学与光谱分析,2004,24(1):98-101.
    [147]高银浩,滕枫,唐爱伟.水相中CdSe与核/壳CdSe/CdS量子点的制备与发光特性研究[J].无机材料学报,2006,21(3):322-328.
    [148]蔡晓军,于郭,崔文国.核壳结构CdS/ZnS荧光量子点的制备与荧光性能研究[J].功能材料, 2009,10(40):1643-1646.
    [149]李江苏,常树全,康斌.核壳结构半导体纳米晶体CdS/ ZnS的制备及其光学性质[J].化工学报, 2009,60(2):519-523.
    [150]邱婷,彭洪亮,何治柯.水溶性量子点CdSe/ZnS与蛋白质非特异性相互作用研究[J].化学传感器,2007,27(2):26-30.
    [151]庄红,张梅,孔祥贵.CdTe量子点标记铁蛋白的光谱研究[J].食品科学,2007,28(11):37-39.
    [152]陈丽霞,张建成,宋振伟,等.CdTe量子点荧光量子产率及生物标记[J].上海大学学报,2009,15 (2):142-146.
    [153]赵丹华,李永新,朱昌青.L-半胱氨酸包覆纳米ZnS荧光探针在测定人血清中蛋白质的应用[J].光谱学与光谱分析,2006,26(7):1318-1321.
    [154]陈红旗,梁阿妮,许轶.CdS/ PPA纳米溶胶荧光探针同步荧光光度法测定水溶液中牛血清白蛋白[J].应用化学,2008,25(12):1484-1486.
    [155]田建袅,韦盛志,赵彦春.CdTe量子点同步荧光法测定人血清白蛋白[J].分析试验室,2008,27 (12):23-26.
    [156]闫炜,张爱梅,梅艳丽,等.水溶性CdTe量子点的合成及其用于荧光猝灭法测定肌红蛋白[J].分析试验室,2008,27(12):1-5.
    [1]大连轻工业学院,华南理工大学,郑州轻工业学院.食品分析[M],2009:214~216.
    [2]韦静,沈星灿,梁宏.牛血红蛋白与纳米雄黄相互作用的光谱研究[J].光谱学与光谱分析, 2008, 28(4): 852~855.
    [3]王守兴,王峰,黄薇.共振光散射测定蛋白质的新方法[J].分析科学学报,2007,23(4):464~466.
    [4]王萌,丰伟悦,陆文伟.电感耦合等离子体质谱间接法测定蛋白质含量[J].分析化学, 2008,36(3):321~324.
    [5]冯宁川,龚国权.亮黄-曲通X-100体系共振瑞利散射法测定蛋白质[J].分析化学, 2002,30(4):425~427.
    [6]陈伟,沈鹤柏,陈艳.新型荧光物质—量子点在生命科学领域的应用研究进展[J].化学通报, 2007,(6):403-408.
    [7]王素梅,蒋治良,梁爱惠.CdTe量子点的光谱特性及其应用[J].光谱学与光谱分析, 2008,28(9):2152~2155.
    [8]彭泽平,邓瑞平,李哲峰.硫化镉纳米粒子的合成及发光性能[J].高等学校化学学报, 2008,29(10):1917~1920.
    [9]张爱梅,王怀生,闫炜.阿米卡星与碲化镉量子点和牛血清白蛋白所形成的复合物之间的相互作用[J].理化检验-化学分册,2008,44(12):1137~1140.
    [1]李伟娜,刘志红,谢皓雪.表面活性剂的结构特点及应用研究进展[J].长春医学,2008,6(2):68~70.
    [2]刘积灵,张玉坤,王丽敏.新型阳离子表面活性剂的研究[J].吉林化工学院学报,2009,26(1):11~13.
    [3]方银军,高慧,蔡辉平.我国阴离子表面活性剂的现状和发展趋势[J].中国洗涤用品行业信息网,2007,2:26~29.
    [4]姜树红,戈延茹,汪珠燕.非离子表面活性剂囊泡的研究进展[J].中国现代药物应用,2007,1(11):98~100.
    [1]蔡彬.纳米CdS的制备与应用研究[J].材料开发与应用,2010,25(6):62~66.
    [2]胡卫平,焦嫚,董学芝,等.CdS量子点荧光光度法测定蛋白质的含量[J].光谱学与光谱分析,2011,31(2):444~447.
    [3]鄂永胜.8-羟基喹啉的合成[J].辽宁科技学院学报,2009,11(2):42~43.
    [1]段慧玲,宣益民,韩玉阁,等.半导体粒子CdS的光学性质研究[J].工程热物理学报,2011,32(3):455~458.
    [2]蔡晓军,于郭,崔文国,等.核壳结构CdS/ZnS荧光量子点的制备与荧光性能研究[J].功能材料,2009,10(40):1643-1646.
    [3]冯仕,李金钗,冯秀丽.ZnO/ZnS核-壳纳米杆的制备及其光学性质[J].武汉大学学报,2009,55(5):535-538.
    [1]胡卫平,董学芝,何智娟.三苯甲烷类染料在催化动力学分析中的应用及研究进展[J].理化检验,2005,41(4): 284~290.
    [2]杨秀英,冯尚彩.三苯甲烷类染料的应用进展-络合(或缔合)显色体系[J].理化检验,2002,38(9):480~485.
    [3]杜鹃.结晶紫分光光度法测定蛋白质的含量[J].化学分析计量,2006,15(4):46-47.
    [1]刘国绕,李秉龙,毕华.食品中糖精钠分析方法概述[J].预防医学情报杂志, 2004,20(1):31.
    [2]查玉兵,王哓芳,杨春亮,等.高效液相色谱法测定水果罐头中苯甲酸、山梨酸和糖精钠[J].安徽农业科学,2008,36(6):2172–2173.
    [3]周彤,戈早川.多波长线性回归导数分光光度法同时测定饮料中糖精钠和苯甲酸[J].分析试验室,1999,18(3):87-88.
    [4]张国胜,董学芝,王爱芳,等.甲基紫-糖精钠体系共振瑞利散射光谱的研究及其应用研究[J].分析实验室.2008,27:358-361.
    [5]刘维华,郭银燕.薄层层析法同时测定饮料中甜蜜素和糖精钠[J].中国公共卫生.2000,16(8):766.
    [6]姚孝友.线扫极谱法测定食品中糖精钠的探讨[J].职业与健康,2001,17(9):37-38.
    [7]李侠,武传贵.非水滴定法快速测定食品中的糖精钠[J].中国酿造.2006,35(2):31-32.
    [8]姚丽,李培莲.紫外光谱法同时测定饮料中山梨酸、苯甲酸、糖精钠含量的研究[J].纪念边城卫生检疫建局二十周年论文专辑.183-184.
    [9]王守兰,谢杨.荧光光度法测定饮料中糖精钠含量[J].光谱实验室.2001,18(5):603.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700