桃果实成熟期基因的SSR标记与定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桃果实不耐贮运,成熟期成为影响桃供应期的重要因素。因此,定位控制桃果实成熟期的基因对桃分子标记辅助育种工作具有重要意义。
     本研究以我国北方主栽品种大久保桃的自交后代作为定位群体,通过集群分离分析法(Bulked Segregant Analysis, BSA)对桃果实成熟期基因进行SSR标记定位研究,主要研究结果如下:
     1.对来自桃的165对SSR引物在早/晚熟等基因池间进行多态性引物的筛选,并对表现出差异的引物进一步在混池单株中进行扩增验证,获得差异表现较稳定的引物有3对,分别为:BPPCT015、UDP97-402和UDP96-003。
     2.用这3对多态性引物在100个随机后代中进行扩增,对扩增的基因型与果实成熟期表现型进行单标记方差分析,其中BPPCT015、UDP97-402、UDP96-003各自标记的不同基因型的成熟期之间差异均达到极显著水平。利用FsLinkageMap 2.0遗传作图软件绘制出这3个标记的连锁图,其相对排列顺序为:BPPCT015、UDP97-402和UDP96-003,相邻标记间的遗传距离分别为13.2cM和21.0 cM。参考已有的核果类分子遗传图,3个标记均位于第4号连锁群上。进一步利用FsQtlMap数量性状定位软件将控制桃果实成熟期的一个主效基因定位在BPPCT015和UDP97-402之间,其LOD值为13.35,遗传值为0.623。该位点单基因的效应值为15 d。
     3.将位于果实成熟期两侧的标记BPPCT015、UDP97-402在88个不同成熟期的桃品种中进行验证,发现所标记出的基因型与果实成熟期表现型之间有较好的对应关系,其中BPPCT015在果实发育期<75 d和>120 d的品种中符合度分别为82%、84%;UDP97-402在果实发育期<75 d和>120 d的品种中符合度分别为92%、47%。这说明标记BPPCT015对桃的早熟、晚熟性状具有较高的鉴别能力,UDP97-402对桃早熟性状具有高鉴别能力。
     本试验中桃成熟期的基因定位结果对桃成熟期分子标记辅助育种具有重要的应用价值。
The maturity date of peach fruit is an important trait for peach supply due to its unsuitablity for storage and transporting. Mapping the fruit maturity date genes has important significance for peach marker-assisted breeding.
     In this experiment self-crossed progenies from Okubo peach which is the main cultivar in north China, simple sequence repeats (SSR) markers and Bulked Segregant Analysis (BSA) strategy were used to locating the fruit maturity date genes in peach. The main results of this research were as followed:
     1.Screening 165 pairs of SSR primes from Prunus persica with two pairs Early/Late ripen DNA pools, three markers:BPPCT015, UDP97-402 and UDP96-003 showed stable different bands pattern between Early/Late ripen DNA pools were obtained.
     2.The associating relation between three markers BPPCT015、UDP97-402 UDP96-003 and fruit maturity date were confirmed by genotyping100 random progenies with three SSR markers above. Through single marker analysis method there were very significant difference in fruit maturity date among genotypes of the all the three marker. A local genetic map of the three markers was drawn used FsLinkageMap2.0 software, their sequence was BPPCT015、UDP97-402 and UDP96-003, the genetic distance between adjoining marker was 13.2 and 21.0cM, respectively. With reference to recent published Prunus genetic maps, all the three markers belong to linkage group 4. Using interval mapping method through FsQtlMap software this major quantitative trait locus (QTL) was further mapped between BPPCT015 and UDP97-402 with log of odds (LOD) value of 13.35, and heredity value of 0.623. The effect value of sigle gene in this locus is 15d.
     3. BPPCT015 and UDP97-402 were further tested in 88 peach accessions with different maturity date, amplification band types has good corresponding relation to phenotypes of fruit maturity date. The conformity percentages of BPPCT015 in early maturity varieties (fruit development period<75d) and late maturity varieties (fruit development period>120d) were 82% and 84%, respectively. The conformity percentages of UDP97-402 in early maturity varieties (fruit development period<75d) and late maturity varieties (fruit development period>120d) were 92% and 47%, respectively. This indicate BPPCT015 have higher distinguishing ability to both of the early maturity and late maturity of peach, and UDP97-402 have high distinguishing ability to early maturity of peach.
     The mapping of the major QTL that controlling the fruit maturity date of peach has significance in peach marker-assisted breeding.
引文
[1]马之胜.桃优良品种及无公害栽培技术.北京:中国农业出版社,2003
    [2]俞明亮,马瑞娟,汤秀莲.桃杂种(F1)成熟期的遗传研究.江苏农业学报,1997,13(3):176-181
    [3]张立彬,肖啸,吴学仁.深州蜜桃若干性状的变异与遗传倾向.园艺学报,2004,31(6):791-793
    [4]韩明玉,赵彩平,田玉命.桃杂种后代果实成熟期遗传趋向的分析研究.西北农林科技大学学报(自然科学版),2008,12:155-160
    [5]张立彬,肖啸.大久保桃自交后代若干性状的变异和遗传倾向.果树学报,2004,21(4):306-308
    [6]景士西,吴禄平.园艺学年评.北京:科学出版社,1996,2:15-46
    [7]申爱荣,谭著明,肖炳光,等.分子标记在烟草育种中的应用.湖南农业科学,2007,(3):62-65
    [8]石琰璟.桃不同类型品种群的RAPD分析:[硕士学位论文].泰安:山东农业大学,1999
    [9]杨新国,张开春,秦岭,等.桃种质亲缘演化关系的RAPD分析.果树学报,2001,18(5):276-279
    [10]程中平,程志伟,胡春根.利用分子标记对桃属植物识别及其亲缘关系分析.华中农业大学学报,2001,20(3):199-204
    [11]程中平,程志伟,胡春根,等.寿星桃种质资源的RAPD分析.北京林业大学学报,2002,24(3):74-77
    [12]程中平.水蜜桃种质资源的RAPD分析.西北植物学报,2004,24(1):111-119
    [13]程中平,程志伟,胡春根,等.油桃品种的RAPD分析.中国农业大学学报,2002,7(3):63-68
    [14]程中平,程志伟,胡春根,等.利用RAPD技术对蟠桃品种的分析.河北农业大学学报,2003,26(1):28-32
    [15]程中平.硬肉桃种质资源分子生物学多态分析.安徽农业大学学报,2003,30(2):182-187
    [16]程中平.利用RAPD技术对蜜桃种质资源的分析.南京农业大学学报,2003,26(1):10-13
    [17]程中平,程志伟,胡春根,等.利用RAPD技术对新疆桃分类地位的探讨.园艺学报,2001,28(3):211-217
    [18]郭金英,王力荣,范崇辉,等.桃遗传多样性及其亲缘关系的RAPD分析.园艺学进展(第六辑),185-191
    [19]杨英军,张开春,林柯.常见桃属植物RAPD多态性及亲缘关系分析.河南农业大学学报,2002,36(2):187-190
    [20]张春英,林同香,戴思兰,等.桃花种质资源亲缘演化关系的RAPD研究分析.北京林业大学学报,1999,21(5):26-31
    [21]俞明亮,马瑞娟,徐建兰,等.桃种间亲缘关系的鉴定.果树学报,2004,21(2):106-112
    [22]马艳,马荣才.扁桃种质资源的AFLP分析.果树学报2004,21(6):552-555
    [23]沈志军,马瑞娟,俞明亮.早熟油桃紫金红1号亲本的SSR鉴定.华北农学报,2009,24(6):205-209
    [24]徐崇志,廖胜刚.分子标记技术在果树种质资源及遗传育种研究中的应用,塔里木大学学报,2006,18(3):39-45
    [25]孙萍.RAPD技术在甘肃桃遗传多样性与种质资源分析中的应用:[硕士学位论文],兰州:甘肃农业大学,2005
    [26]陈薇.基于生物学性状和标记进行桃种质遗传多样性的研究:[硕士学位论文],南京:南京农业大学,2007
    [27]Eldredge L, Ballard R, Baird W V. Application of RFLP analysis to genetic linkage mapping in peaches. Hort Science,1992,27(2):160-163
    [28]Direwager E, Bodo C. Molecular genetic linkage mapof peach. Euphytica,1994, 77:101-103
    [29]Rajapakse S, Belthoff L D, HE G, et al. Genetic linkage mapping in peach using morphological, RFLP and RAPD markers. Theory of Applied Genetics,1995, 90:503-510
    [30]Wang Y, Georgi L L, Reighard G L, et al, Genetic Mapping of the evergrowing Gene in Peach [Prunus persica(L.) Batsch]. The Journal of Heredity,2002, 93(5):352-358
    [31]Dirlewanger E, Graziano E, Joobeur T. Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA,2004,101:9891-9896
    [32]乔飞,王力荣,范崇辉,等.利用AFLP和RAPD标记构建桃的遗传连锁图谱.果树学报,2006,23(5):766-769
    [33]乔飞,王力荣,范崇辉,等。利用RAPD标记评价桃种间杂交一代群体的分离方式.果树学报,2003,20(4):310-312
    [34]吴俊,束怀瑞,张开春,等.桃分子连锁图谱的构建与分析.园艺学报,2004,31(5):593-597
    [35]高妍,韩明玉,赵彩平,等.桃分子连锁图谱的构建.果树学报,2008,25(4):478-484
    [36]Gardiner SE, Bassett HCM, Noiton DAM, et al. A detailed linkage map around an apple scab resistance gene demonstrates that two disease resistance classes both carry the Vf gene. Theor Appl Genet,1996,93(4):485-493
    [37]Michelmore P W, Paran I, Kesseli R V. Identification of markers linked to disease resistance gene by Bulked Segregation Analysis:a rapid method to detect markers in specific regions by using segregation population. Proc Natl Acad Sci USA,1991,88:9829-9832
    [38]ChaParro JX, Wemer DJ, Malley DO, et al. Targeted mapping and linkage analysis of morphological isolzyme, and RAPD markers in Peach. Theor Appl Genet.1994,87:805-815
    [39]ElfredgeL, BallardR, BairdWV, et al. Amplification of RFLP Analysis to Genetie Linkage Mapping in peach. Hort science,1992,27(2):160-163
    [40]Sosinski B, sossey-Alaoui K, LuZX, et al. Use of AFLP and RFLP markers to create a combined linkage map in peach[Prunus persica(L.)Batsch]for use in marker assisted selection. Acta Hort.1998,465:61-89
    [41]Abbott AG, Rajapakse S, Sosinski B, et al. Construction of saturated linkage maps of peach crosses segregating for characters controlling fruit quality, tree architecture and pest resistance. Acta Horticuturae,1998.465:41-49
    [42]Yamamoto T, Yamaguchi M, Hayashi T. An itegrated genetic linkage map of peach by SSR, STS, AFLP and RAPD. Japan Soc Hort Sci,2005,74(3): 204-213
    [43]Quarta R, Dettori M T, Broda Z, et al. Genetic analysis of agronomic traits and genetic linkage mapping in a BC1 peach population using RFLPs and RAPDs. Acta Horticulturae,1998,465:51-58
    [44]Dettori M T, Quarta R, Verde I. A peach linkage map integration RFLPs, SSRs, RAPDs, and morphological markers. Genome,2001,44:783-790
    [45]Etienne C, Rothan C, Moing A, et al. Candidate genes and QTLs for suger and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet, 2002,105:145-159
    [46]Direwanger E, Cosson P, Boudehri K, et al. Development of a second-generation genetic linkage map for peach [Prunus persica(L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genetics & Genomes, 2006,3:1-13
    [47]Warburton M L, Beeerra-Velasquez V L, Goffreda J C, et al. Utility of RAPD markers inidentifying genetic linkages to genes of economic interest in peach. Theor Appl Genet,1996(93):920-925
    [48]杨英军,张开春,李荣旗.桃果实有毛/无毛、白肉/黄肉性状得RAPD分子标记.华北农学报,2000,15(3):6-9
    [49]Jun J H, Chung K H, Jeong S B, et al. Identification of RAPD and SCAR markers linked to the flesh adhesion gene F in Peach [Prunus Persiea (L.) Batsch]. Journal of Horticultural Seience and Biotechnology,2002,77(5): 598-603
    [50]Bliss F A, Arulsekar S, Foolad M R, et al. An expanded genetic linkage map of Pruus based on an interspecific cross between almond and peach. Genome, 2002,45:52-529
    [51]Dirlewanger E, Pronier V, Parvery C, et al. Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers. Theor ApplGenet,1998,97:888-895
    [52]Guo J Y, Jiang Q, Zhang K C, et al. Sereening for the molecular marker linked to saucer gene of peach fruit shape. Acta Horticulturae,2002,592:267-271
    [53]Dirlewanger E, Paseal T, Zuger C. Analysis of molecular markers associated with Powdery mildew resistance in peach (Prunus Persiea (L.) Batsch)×Prunus daxidiana hybrids. Theor Appl Genet,1996,93:909-919
    [54]Viruel MA, Madur D, Dirlewanger E, et al. Mapping quantitative trait loci controlling peaeh leaf eurl resistance. Acta Hort,1998,465:79-90
    [55]Dirlewanger E, Cossn P, Howad W, et al. Micro satellite genetic linkage maps of myrobalan plum and an almond-peach hybrid-location of root-knot nematode resistancegenes. Theor Appl Genet,2004,109:827-838
    [56]Yamamoto T, Shimada T, Lmai T, et al. Characterization of morphological traits based on a genetic linkage map in peach. Breeding Science,2001,51:271-278
    [57]Fan shenghua, Douglas G, Tetyana N, et al. Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytologist,2010,185:917-930
    [58]王逢寿.核果类(桃、樱桃)育种材料的主要经济性状遗传.落叶果树,1978,03:30-32
    [59]庄恩及,吴钮良,蔡吴平,等.白花桃若干性状的遗传研究.园艺学报,1980,7(2):5-9
    [60]浙江省农业科学院园艺所桃课题组.桃遗传性状的初步观察.浙江农业科学,1975(1):51-56
    [61]俞明亮,汤秀莲,马瑞娟,等.蟠桃主要性状的遗传倾向.园艺学报1995,22(4):389-390
    [62]田建保,王占和.桃杂交后代主要经济性状遗传变异分析.果树科学,1996,13(增刊):15-29
    [63]北京市农林科学院林果所桃育种组.黄肉罐桃遗传倾向的观察.农业新技术,1987,03
    [64]汤秀莲,周建涛,郭洪,等.罐藏黄桃若干性状遗传倾向的分析.江苏农业学报,1997,13(2):115-120
    [65]Connors CH. Some notes on the inheritance of unit characters in the peach. Proc Amer Soc Hort Sci,1920(16):24-36
    [66]Connors CH. Peach breeding. A summary of results. Proc Amer Soc Hort Sci, 1923, (19):108-115
    [67]Bailey C H, Hough L F. An hypothesis for the inheritance of season of ripening in progenies from certain early ripening peach varieties and selections. Proc Amer Soc Hort Sci,1959, (73):125-133
    [68]Blake M A. Some results of crosses of early ripening varieties of peaches. Proc Amer Soc Hort Sci,1940, (37):232-241
    [69]Weinberger J H. Characteristics of the progeny of certain peach varieties. Proc Amer Soc Hort Sci,1944, (45):233-238
    [70]Quilot B, Wu B. H, Kervella J, et al. QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P.Davidiana. Theor Appl Genet.2004,109:884-897
    [71]张桂粉,韩明玉,赵彩平,等.桃熟性性状的SSR标记.西北农业学报,2007,16(3):112-115
    [72]章秋平,王力荣,李疆,等.核果类果树遗传连锁图谱的研究进展.果树学报,2009,26(4):532-538
    [73]王力荣,朱更瑞,等.桃种质资源描述规范和数据标准.北京:中国农业出版社,2005
    [74]http//fgbio.njfu.edu.cn/tong/FslinkageMap/FslinkageMap.htm
    [75]Cipriani G, Lot G, Huang W-G, et al. AC/GT and AG/CT microsatellite repeats in peach[Prunus persica(L.)Batsch]:isolation, characterization and cross species amplification in prunus. Theor Appl Genet,1999,99:65-72
    [76]Sosinski B, Gannavarapu M, Hager L D, et al. Characteriation of microsatellite markers in peach[Prunus persica (L.)Batsch]. Theor Appl Genet,2000,101: 421-428
    [77]Dirlewanger E, Cosson P, et al. Development of microsatellite markers in peach [Prunus persica(L.)Batsch] and their use in genetic diversity analysis in peach and sweet cherry. Theor Appl Genet,2002,121:127-138
    [78]Aranzana M J, Garcia-Mas J, Carbo J, et al. Development and variability analysis of microsatellite markers in peach. Plant Breeding,2002,121:87-92
    [79]马之胜,贾云云.大久保桃在我国桃育种中的应用研究进展.河北农业科学,2006,10(4):103-105
    [80]Aranzana M J, Pineda A, Cosson P, et al. A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet,2003,106:819-825
    [81]宋健,高妍,韩明玉,等.桃果肉颜色、离粘核性状的SSR标记.西北农业学报,2008,17(4):234-237
    [82]俞明亮,马瑞娟,沈志军,等.桃果肉颜色、果皮茸毛和花粉育性性状的分子标记.园艺学报,2006,33(3):511~517
    [83]何晓薇,王彩虹,田义轲,等.苹果果皮颜色性状的SSR标记.果树学报,2009,26(3):379-381
    [84]田义柯,王彩虹,戴洪义,等.苹果Co基因的SSR标记定位.试验生物学报,2005,38(3):272-275

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700