过量表达盐地碱蓬叶绿体sAPX基因对拟南芥抗盐性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境胁迫是目前影响世界农作物产量的主要因素之一,它严重地影响到植物的生长、发育和作物的产量与品质。当环境如温度、土壤含水量、土壤盐度等的变化幅度超过植物的耐受范围时,都会使植物体内产生大量的有毒害作用的活性氧。它们可导致植物体内蛋白质变性和膜质过氧化,使植物体遭受氧化胁迫。因此,植物在长期的进化过程中产生了一系列保护机制来清除过多的活性氧,参与这些机制的包括一些小分子物质如抗坏血酸、谷胱甘肽及酚类物质等和抗氧化酶类如SOD、APX和CAT等。
     叶绿体作为植物特有的能量捕捉和转换器官,也是活性氧产生和攻击的主要部位,其中H2O2是叶绿体电子传递链产生的一种主要的活性氧,而APX被认为是叶绿体中清除H2O2的关键酶。定位在叶绿体上的抗坏血酸过氧化物酶包括类囊体膜APX和基质APX。该酶在抗氧化胁迫中的重要性已在某些转基因植物中得到初步证实。但是,到目前为止对APX的研究结果都是针对非盐生植物中的基因进行的,例如番茄,豌豆、水稻及拟南芥等,对盐生植物中叶绿体APX分子水平的研究还比较少,而且结果也是值得讨论的。因此研究盐生植物叶绿体APX与植物抗逆性之间的关系具有重要意义,同时也有待更进一步的深入探讨,APX在抗逆胁迫中的作用可能因植物材料的种类、发育阶段及处理条件的不同而有所差异。
     盐地碱蓬作为一种叶肉质化稀盐盐生植物,在进化过程中可能形成了特殊的耐盐机制,盐生植物和甜土植物在活性氧解毒机制上可能存在显著的差异。此外,目前关于盐分对拟南芥种子萌发效应的研究已有报道,但多集中于植物在基因表达及生理水平对盐胁迫的响应,极少将离子效应和渗透效应分开来研究盐胁迫机理。异源表达盐地碱蓬叶绿体APX能否提高甜土植物的耐盐能力,鉴于拟南芥良好的遗传背景,本研究以哥伦比亚野生型拟南芥和过量表达Ss.sAPX纯合体植株为材料,结合盐胁迫条件下二者的各项生理指标,探讨了二者在盐胁迫下的抗氧化机理,分析了该基因在盐胁迫诱导的氧化胁迫中的作用,希望获得抗逆性提高的植物材料。主要研究结果如下:
     正常生长条件下,野生型和转基因拟南芥的生长状况良好且没有区别。而在NaCl(≥120 mmol/L)处理下,野生型和转基因拟南芥的生长状况均受到一定程度的抑制。与野生型相比,转基因植株在种子萌发阶段受盐胁迫的抑制程度较轻,其种子萌发率、子叶长出率、存活率、主根长度及叶绿素含量均显著高于野生型,表现出较强的耐盐性。
     通过采用NaCl、LiCl和等渗甘露醇处理野生型和过量表达Ss.sAPX拟南芥种子,并测定二者萌发指标,以及与离子胁迫、渗透胁迫及氧化胁迫相关生理指标和抗氧化酶活性,得出盐胁迫下植物的萌发生长受抑制与渗透胁迫和离子毒害两种效应有关,其中NaCl对野生型和过量表达Ss.sAPX拟南芥种子萌发的抑制作用主要是由渗透胁迫造成的,而离子毒害处于次要地位。同时在NaCl处理下,过量表达Ss.sAPX拟南芥的钠钾离子含量、脯氨酸含量、SOD及CAT活性在NaCl处理前后与野生型并无显著差异,而其子叶中的H2O2及MDA含量随着NaCl处理后APX总酶活性的显著升高呈现显著性差异,维持在一个较低的状态。因此,这些结果表明,转基因植株在种子萌发阶段受盐胁迫的抑制程度较小并不是因为其离子毒害和渗透胁迫得到缓解而是由于Ss.sAPX及时清除了叶绿体中的H2O2,从而缓解了盐胁迫导致的氧化胁迫。
Abiotic stress is one of the major enviromental stresses for crop yield and quality worldwide, which severely affects the plant growth and development. Biotic and abiotic stress conditions (such as temperature, soil water content, and soil salinity) produce excessive concentrations of reactive oxygen species (ROS), causing protein denaturation and lipid peroxidation. Because plants are frequently subjected to abiotic stress, they have developed several strategies to avoid and alleviate injury by ROS. Antioxidative defense systems include non-enzymatic and enzymatic components. Non-enzymatic components include ascorbate, reduced glutathione, phenolic compounds, and several other compounds. Enzymatic components include superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and so on.
     The chloroplast, where light harvesting and tranformation occur, is the organelle in which most ROS are generated under light condition. The electron transfer chain of the chloroplasts is the best-documented source of H2O2, and APXs are the key enzymes responsible for removing H2O2. Chloroplastic APXs include stromal APX (sAPX) and the thylakoid membranes (tAPX). Although researchers recently have examined preliminarily the role of the APX isoforms in protecting against oxidative stress induced by abiotic stress by transgenic plants, so far, all of which focused on the APX of nonhalophytes such as tobacco, rice and Arabidopsis, little study has been done on the role of chloroplastic APXs in the halophytes. Moreover, the results were controversial. Therefore, the research of the relationship between halophyte chloroplate APX and stress tolerance is important, which needs to be further studied. The role of APXs in protecting against oxidative stress tolerance may differ depending on plant species, plant developmental age and stress intensity.
     Suaeda salsa L. is a leaf succulent euhalophyte that may have evolved the unique salt-tolerant mechanism and may have an effective antioxidant system to protect against oxidative stress induced by salt treatment. In addition, the effect of NaCl on seed germination of Arabidopsis has been studied, but all focused on the reponse to salt tolerance at gene expression and physiological level. Little is known about the ionic effect and osmotic effect. To clarify the contribution of Ss.sAPX in the regulation of ROS levels and plant protection against oxidative stress induced by salt tolerance, we produced Arabidopsis lines overexpressing Ss.sAPX and investigated the performance of wild type (WT) and two of these transgenic lines of Arabidopsis under different NaCl conditions. The main results are showed as follows:
     The transgenic plants grew as well as WT plants under normal conditions (no NaCl added) in MS medium. Although the growth of both WT and transgenic lines was inhibited when NaCl (≥120 mmol/L) was added, germination, cotyledon growth, survival rate, root length and total chlorophyll content were all greater in the transgenic lines than in the WT. Overexpressing Ss.sAPX improves salt tolerance of Arabidopsis.
     The seed germination of WT plants and Arobidopsis lines overexpressing Ss.sAPX were examined under NaCl, LiCl and iso-osmotic mannitol treatments, and Na+, K+, proline content, antioxidant enzymes activities, H2O2 and MDA contents of their cotyledons under salt stress were also determined. Iso-mannitol and NaCl had the similar effect, which supports the hypothesis that ion toxicity was not the main cause of germination inhibition, and the osmotic component of salt stress was the main factor. Level of MDA and H2O2 was significantly lower in the transgenic Arabidopsis than in the wild type. Correspondingly, the transgenic lines had higher total APX activity than the WT. Interestingly, transgenic Arabidopsis plants and wild type did not differ in both Na+, K+, proline contents and SOD, CAT activities under salt stress. In contrast, the overexpression of Ss.sAPX in transgenic Arabidopsis markedly enhanced salt tolerance by maintaining a low level of H2O2, which consequently protected the transgenic plants from damage caused by oxidative stress, not by the alleviation of ionic effect and osmotic effect.
引文
[1] Flowers TJ, Colmer TD. Salinity tolerance in halophytes[J]. New Phytologist, 2008, 179: 945-963.
    [2] Tester M, Davenport R. Na+ tolerance and Na+ transport in high plants[J]. Annals of Botany, 2003, 91: 503-507.
    [3]王宝山. 2010.逆境植物学.北京:高等教育出版社.
    [4] Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7: 405-410.
    [5] Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annu. Rev. Plant Biology, 2004, 55: 373-399.
    [6] Davletova S, Rizhsky L, Liang HJ, Zhong SQ, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis[J]. The Plant Cell, 2005, 17: 268-281.
    [7] Asada K. The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons[J]. Annu Rev Plant Physiol Plant Mol Bio, 1999, 150: 601-639.
    [8] Sweetlove LJ, Foyer CH. 2004. Roles for reactive oxygen species and antioxidants in plant mitochondria. In DA Day, AH Millar, J Whelan, eds, Plant Mitochondria: From Genome to Function, Vol 1, Advances in Photosynthesis and Respiration. Kluwer Academic Press, Dordrecht, The Netherlands, pp. 307-320.
    [9] del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB. Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling[J]. Plant Physiology, 2006, 141: 330-335.
    [10] Pang CH, Wang BS. Oxidative stress and salt tolerance in plants[J]. Progress in Botany, 2008, 69: 231-245.
    [11] Buchanan BB, Gruissem W, Jones RL. 2000. Biochemistry & Molecular Biology of Plants. Rockville Maryland: The American Society of Plant Physiologists.
    [12]Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK. Antioxidative response mechanisms in halophytes: their role in stress defence[J]. Journal of Genetics, 2006, 85: 237-254.
    [13]Asada K, Kanematsu S, Okada S, Hayakawa T. 1980. Phylogenic distribution of three types of superoxide dismutase in organisms and cell organelles. In Chemical and Biochemical Aspects of Superoxide Dismutase (ed. J.V. Bannister and H.A.O. Hill), Amsterdam: Elsevier, pp. 136-153.
    [14] Milla MAR, Maurer A, Huete AR, Gustafson JP. Glutathione peroxidase genes in Arabidposis are ubiquityous and regulated by abiotic stresses though diverse signaling pathways[J]. The Plant Journal, 2003, 36: 602-615.
    [15] Alscer RG. Biosynthesis and antioxidant function of glutathione[J]. Plant Phsiol, 1989, 77: 457-464.
    [16] Chen Z, Gallie DR. Increasing tolerance to ozone by elevating foliar ascorbic acid confersgreater protection against ozone than increasing avoidance[J]. Plant Physiol, 2005, 138: 1673-1689.
    [17] Noctor G, Foyer GH. Ascorbate and glutathion: keeping active oxygen under control[J]. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 249-279.
    [18] Willekens H, Chamnongpol S, Davey M, et al. Catalase is a sink for H2O2 and is indispensable for stress defece in C3 plants[J]. The EMBO Journal, 1997, 16: 4806-4816.
    [19] Tanaka Y, Hibino T, Hayadhi Y, et al. Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts[J]. Plant Science, 1995, 148:131-138.
    [20]杜秀敏,殷文璇,赵彦修,张慧.植物中活性氧的产生及清除机制[J].生物工程学报. 2001, 17(2): 121-125.
    [21] Asada K. Ascorbate peroxidase-a hydrogen peroxide-scavenging enzyme in plants[J]. Physiol Plant, 1992, 85: 235-241.
    [22] Mathews MC, et al. Ascorbate peroxidase: a novel antioxidant enzyme in insects[J]. Archive of Insect Biochemistry and Physiology, 1997, 34: 57-68.
    [23]沈文飚,黄丽琴,徐朗莱.植物抗坏血酸过氧化物酶[J].生命的化学. 1997, 17(5): 24-26.
    [24]田国忠,李怀方,裘维蕃.植物过氧化物酶研究进展[J].武汉植物学研究. 2001, 19(4): 332-344.
    [25] Leonardis SD, Dipierro N, Dipierro S. Purification and characterization of an characterization of an ascorbate peroxidase from potato tuber mitochondria[J]. Plant Physiol Biochem, 2000, 38: 773-779.
    [26] Yoshimura K, Yabuta Y, Ishikawa T, et a1. Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses[J]. Plant Physiol, 2000, 123: 223-233.
    [27] Yamaguchi K, Mori H, Nishimufa MA. NoVel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf per-oxisomal membranes in pumpkin[J]. Plant Cen Physiol, 1995, 36: 1157-1162.
    [28] Miyake C, Asada K. Thylakoid-bound ascorbate peroxidase in spinacb chloroplasts and photofeduclion of its primary product monodehydroascorbate radical in thylakoids[J]. Plant Cell Physiol, 1992, 33: 541-553.
    [29] Ishikawa T, Sakai K, Yoshimura K, Takeda T, Shigeoka S. cDNAs encoding spinach stromal and thylakoid-bound ascorbate peroxidase, differing in the presence or absence of their 3'-coding regions[J]. FEBS Letters, 1996, 384: 289-293.
    [30]孙卫红,王伟青,孟庆伟.植物抗坏血酸过氧化物酶的作用机制、酶学及分子特性[J].植物生理学通讯. 2005, 41(2): 143-147.
    [31] Kubo A, Saji H, Tanaka K, et al. Cloning and sequencing of a cDNA encoding ascorbate peroxidase from Arabidopsis thaliana[J]. Plant Mol Bio, 1992, 18:691-701.
    [32] Charles R, Frank J, Michael B. Identification of two cytosolic ascorbate peroxidase cDNAs from soybean leaves and characterization of their products by functional expression in E. coli[J]. Planta, 1998, 204: 120-126.
    [33] Tanaka K, Takeuchi E, Kubo A, et al. Two immunologically different isozymes of ascorbate peroxidase from spinach leaves[J]. Arch Biochim Biophys, 1991, 286: 371-375.
    [34] Koshiba K. Cytosolic ascorbate peroxidase in seedlings and leaves of maize Zea mays[J]. Plant Cell Physiol, 1993, 34: 713-721.
    [35] Chen GX, Sanom S, Asada K. The amino acid sequence of ascorbate peroxidase from tea has a high degree of homology to that of cytochrome c peroxidase from yeast[J]. Plant Cell Physiol, 1992, 33: 109-116.
    [36] Miyake C, Cao WH, Asada K. Purification and molecular properties of thylakoid-bound ascorbate peroxidase from spinach chloroplasts[J]. Plant Cell Physiol, 1993, 34: 881-889.
    [37]庞彩红(2007).盐地碱蓬叶绿体APX(CHLAPX)基因的克隆及功能分析.博士论文.山东:山东师范大学生命科学学院. PP. 62-63.
    [38] Mano S, Yamaguchi K, Hayashi M, Nishimura M. Stromal and thylakoid-bound ascorbate peroxidases are produced by alternative splicing in pumpkin[J]. FEBS Letters, 1997, 413: 21-26. [39 Jespersen HM, Kjaersg?rd IVH, ?stergaard L, Welinder KG. From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase[J]. Biochemical Journal, 1997, 326: 305-310.
    [40] Schutzendubel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godblod DL, Polle A. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots[J]. Plant Physiol, 2001, 127: 887-898.
    [41] Ye B, Gressel J. Transient, Oxidant-induced antioxidant transcript and enzyme levels correlate with greater oxidant resistance in paraquat-resistant Conyza bonariensis[J]. Planta, 2000, 211: 50-61.
    [42] Maruta T, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S. Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual role in photoprotection and gene regulation under photooxidative stress[J]. Plant Cell Physiol, 2010, 2: 190-200.
    [43] Murgia I, Tarantino D, Vannini C, Bracale M, Carrabvieri S, Soave C. Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show resistance to paraquat-induced photooxidative stress and to nitric oxide-induced cell death[J]. Plant Journal, 2004, 38: 940-995.
    [44]Yabuta Y, Motoki T, Yoshimura K, Takada T, Ishikawa T, Shigeoka S. Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress[J]. Plant Jourmal, 2002, 32: 912-925.
    [45]韩瑞丽,陆海.转APX基因烟草抗旱能力研究[J].成都大学学报(自然科学版). 2007, 26(2): 94-96.
    [46] Lu H, Han RL, Jiang XN. Heterologous expression and characterization of a proxidomal ascorbate peroxidase from Populus tomentosa[J]. Mol Biol Rep, 2009, 36: 21-27.
    [47] Xu WF, Shi WM, Ueda A, Takabe T. Mechanisms of salt tolerance in transgenic Arabidopsis thaliana carrying a peroxisomal ascorbate peroxidase gene from barley[J]. Pedosphere, 2008, 18: 486-495.
    [48] Lu ZQ, Liu D, Liu SK. Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis[J]. Plant Cell Report, 2007, 26: 1909-1917.
    [49] Cheng H, He QW, Huo YM, Hou LX, Junfen Lv. Molecular cloning, characterization and expression analysis of CmAPX[J]. Mol Biol Rep, 2009, 36: 1531-1537.
    [50] Sun WH, Duan M, Li F, Shu DF, Yang S, Meng QW. Overexpression of tomato tAPX gene in tobacco improves tolerance to high or low temperature stress[J]. Biologia Plantarum, 2010, 54: 614-620.
    [51] Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA. Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress[J]. Journal of Experimental Botany, 2011, 62: 1-15.
    [52] Vansuyt G, Lopez F, Inze D, Briat JF, Fourcroy P. Iron triggers a rapid induction of ascorbate peroxidase gene expression in Brassica napus[J]. FEBS Letters, 1997, 410: 195-200.
    [53] Torsethaugen G, et al. Overproduction of ascorbate peroxidase in the tobacco chloroplast does not provide protection against ozone[J]. Plant Physiol, 1997, 114: 529-537.
    [54] Giacomelli L, Masi A, Ripoll DR, Lee MJ, van Wijk KJ. Arabidopsis thaliana deficient in two chloroplast ascorbate peroxidases shows accelerated light-induced necrosis when levels of cellular ascorbate are low[J]. Plant Molecular Biology, 2007, 65: 627- 644.
    [56] Kangasj?vi S, Lepist? A, H?nik?inen K, Piippo M, Luomala EM, Aro EM, Rintam?ki E. Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses[J]. Biochemical Journal, 2008, 412: 275-285.
    [56]马长乐,王萍萍,曹子谊,赵彦修,张慧.盐地碱蓬(Suaeda salsa L.)APX基因的克隆及盐胁迫下的表达[J].植物生理与分子生物学报. 2002, 28(4): 261-266.
    [57] Pang CH, Zhang SJ, Gong ZZ, Wang BS. NaCl treatment markedly enhances H2O2-scavenging system in leaves of halophyte Suaeda salsa[J]. Physiologia Plantarum, 2005, 125: 490-499.
    [58] Jeannette K, Martin H, Alexander M, Ales S, Wilhelm B. Isolating intact chloroplasts from small Arabidopsis samples for proteomic studies[J]. Analytical Biochemistry, 2010, 398: 198-202.
    [59] Jiménez A, Hernández JA, del Río LA, Sevilla F. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves[J]. Plant Physiol, 1997, 114: 275-284.
    [60]刘萍,周玲玲,王军.盐分和水分胁迫对补血草种子萌发的影响[J].干旱地区农业研究. 2008, 26(4): 167-170.
    [61]刘海龙,杜娟,吴立柱,孙敬磊,王冬梅,潘延云.拟南芥种子萌发及幼苗生长对干旱和NaCl胁迫的响应[J].河北农业大学学报. 2008, 31(2):11-15.
    [62]邵群(2007).盐地碱蓬阳离子转运载体SsHKT1的基因克隆及其功能分析.博士论文.山东:山东师范大学生命科学学院. PP. 76-86.
    [63] Zhu JK. Plant salt tolerance[J]. Trends Plant Sci, 2001, 6: 66-71.
    [64] Motoaki S, Marin, Junko I. Monitoring the expression profiles of 7000 arabidopsis genes under drought cold and high-salinity stresses using a full-length cDNA microarray[J]. Plant Journal, 2002, 31: 279-292.
    [65] Badawi GH, Kawano N, Yamauchi Y, Shimada E. Overexpression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit[J]. Physiol Plant, 2004, 121: 231-238.
    [66]闫留华,陈敏,王宝山. NaCl胁迫对2种表型盐地碱蓬种子萌发的渗透效应和离子效应研究[J].西北植物学报. 2008, 28(4): 0718-0723.
    [67]张宝泽,赵可夫. 1991.植物抗性生理研究.济南:山东科学技术出版社.
    [68] Yan SG, Shen YY, Ren JZ, Baker DA. Mechanism of the effect of salt on germination of Puccinellia tenuiolia[J]. Acta Agrestia Sinica, 1994, 2: 12-19.
    [69] Mohammed B, Jean-marie K, Stanley L. Osmotic and ionic effects of NaCl on germination early seedling growth and ion content of Atriplex halimus (Chenopodiaceae) [J]. Canadian Journal Botany, 2002, 80: 297-304.
    [70] Asish KP, Bhavanath J. Salt tolerance mechanisms in mangroves: a review[J]. Trees- Structure and Function, 2010, 24: 199-217.
    [71]宋杰(2005).内陆干旱区几种盐生植物种子和幼苗抗盐性的研究.博士论文.北京:中国农业大学资源与环境学院. PP. 75-82.
    [72]曾幼玲,蔡忠贞,马纪,张富春,王波.盐分和水分胁迫对两种盐生植物盐爪爪和盐穗木种子萌发的影响[J].生态学杂志. 2006, 25: 1014-1018.
    [73]张万钧,王斗天,范海.盐生植物种子萌发的特点及其生理基础[J].应用与环境生物学报. 2001, 7: 117-121.
    [74] Wang BS, Lunge U, Ratajczak R. Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa[J]. J. Exp. Bot, 2001, 52: 2355-2365.
    [75]王宝山,赵可夫.小麦叶片中Na、K提取方法的比较[J].植物生理学通讯. 1995, 31: 50-52.
    [76]朱广廉.植物体内游离脯氨酸的测定[J].植物生理学通讯. 1986, 22: 35-37.
    [77]林植芳,李双顺,林桂珠.水稻叶片的衰老与超氧化物岐化酶活性及脂质过氧化作用的关系[J].植物学报. 1984, 26: 605-615.
    [78] Wolfe W. Spectrophotometric Determination of Hydroperoxide in Diethyl Ether[J]. Analytical chemistry, 1962, 34: 1328-1330.
    [79] Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB. Subcellular localization of H2O2 inplants. H2O2 accumulation in papillae and hypersensitive response during the barley- powdery mildew interaction[J]. Plant Journal, 1997, 11: 1187-1194.
    [80] Rao MV, Paliyath G, Ormrod DP. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2–metabolizing enzymes[J]. Plant Physiol, 1997, 115: 137-149.
    [81] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72: 248-254.
    [82] Giannopolitis CN, Ries SK. Superoxide dismutases, I. Occurrence in higher plants[J]. Plant Physiol, 1977, 59: 309-314.
    [83] Xue Y, Peng R, Xiong A, Li X, Zha D, Yao Q. Over-expression of heat shock protein gene hsp26 in Arabidopsis thaliana enhances heat tolerance[J]. Biologia Plantarum, 2010, 54: 105-111.
    [84] Cao SQ, Ye M, Huang Q, Zhang RX. A role for SPINDLY gene in the regulation of oxidative stress response in Arabidopsis[J]. Russian Journal Plant Physiology, 2006, 53: 541-547.
    [85]孙卫红(2008).番茄类囊体膜抗坏血酸过氧化物酶基因的克隆及功能分析.博士论文.山东:山东农业大学生命科学学院. PP. 72-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700