生姜铅胁迫及硅缓解效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铅是土壤主要污染物之一,不仅导致作物生长受抑,产量降低,且极易在植物体内积累,尤以地下器官积累量较大;而硅则对多种重金属有固定作用,降低植物对铅的吸收富集量,并可增强植株抗逆性,对多种作物具有显著的增产效应。生姜(Zingiber officinale Rosc.)是我国主要出口蔬菜,以地下根茎为产品,根系吸收的环境污染物质易在根茎富集,影响产品安全性。有鉴如此,本文采用水培和盆栽试验相结合的方法,研究了铅对生姜生长、产量及产品安全性的影响,以及生姜对铅的吸收富集规律,探讨了硅对生姜铅毒害缓解的生理机制。主要研究结果如下:
     1.土壤铅含量低于250 mg·kg~(-1)时,对生姜生长无显著影响,但随铅含量的增加,生姜植株生长量显著降低,土壤铅含量分别达500和1000 mg·kg~(-1)时,其单株产量分别比对照降低了18.06%和33.25%。但水培条件下,较低的铅浓度就表现出显著的抑制效应,100、250、500 mg·kg~(-1)铅处理生姜根茎的鲜重分别比对照降低了18.90%,25.07%和40.04%。
     2.生姜各器官铅含量随土壤铅含量的升高及生长的进行而显著增加,且以根的铅含量较高,根茎次之,茎、叶较少。土壤铅含量达250 mg·kg~(-1)时,生姜根茎铅含量为0.261 mg·kg~(-1),未超过国家最高允许限量,而土壤铅含量分别达500和1000 mg·kg~(-1)时,根茎铅含量则分别超标175.67%和495.33%。
     3.水培试验表明,铅处理导致生姜根系及叶片MDA含量显著增加,短时间铅胁迫处理生姜根系及叶片SOD、POD、CAT和APX活性增加,但随着胁迫时间的延长,除SOD外,其它酶活性均显著降低,且以根系相关酶活性降幅较大。250 mg·L~(-1)铅胁迫处理30 d时,根系POD、CAT和APX分别比对照降低了18.65%、42.14%、56.70%。
     4.土壤施硅肥可缓解铅对生姜的胁迫,明显促进生姜的生长,提高产量,降低铅在生姜根茎中的积累,提高产品安全性。在土壤铅含量达500 mg·kg~(-1)条件下,施硅肥分别为1、2 g/kg~(-1),株高比比不施硅处理提高11.99%和16.67%,单株产量分别提高33.23%和43.60%,根茎的铅含量分别0.225和0.071 mg·kg~(-1)分别降低72.79%和91.41%。
     5.生姜在铅浓度250 mg·L~(-1)条件下培养30 d,植株根、茎、叶及根茎鲜质量分别比对照降低了19.85%、21.42%、22.89%和18.96%,而添加Si 1.5 mmol·L-1后,则仅比对照分别降低了4.90%、12.35%、18.17%和11.53%;施硅处理水培生姜根、茎、叶和根茎的铅含量分别比不施硅处理降低了58.92%、55.74%、69.82%和58.27%。
     6.生姜在250 mg·L~(-1)铅胁迫条件下,增施1.5 mmol·L~(-1)Si表现出极强的缓解效应。如处理10 d时,施硅处理生姜根系、叶片MDA含量分别降低32.87%和30.43%,根系、叶片CAT和APX活性分别增加153.44%、40.79%和57.29%、60.96%,根系活力提高54.74%,叶片总叶绿素含量增加7.51%,光合速率提高207.50%。
Lead is one of the major pollutants in the soil, not only cause crop growth inhibition, lower production, but also accumulate easily in plants. Particularly the lead accumulation of underground organ are more. Silicon has a fixed effect on a variety of heavy metals, reduce plant the amount of lead absorption enrichment in plant, and strengthen the plant resistance and increase crops yield remarkably. Ginger (Zingiber officinale Rosc.) is one of the main export vegetables to the rhizome in China, roots easily absorb environmental pollutants, which accumulate in the roots and affect product safety. In this view, hydroponic culture and pot experiments were used to study the lead on ginger growth, yield and the impact of product safety, as well as the absorption and accumulation of lead in ginger and discussed the physiological mechanisms for studying the silicon alleviation of lead poisoning of ginger. The main results were as follows:
     1. Soil lead levels less than 250 mg·kg~(-1) had no significant effect on ginger growth. But with the lead content increased, the ginger plant growth was significantly reduced. When they were 500 and 1000 mg·kg~(-1), the single plant yield decreased by 18.06% and 33.25% compared with control, respectively. However, under the conditions of hydroponic culture, the lower lead concentration showed significant inhibitory effect. When they were100, 250 and 500 mg·L-1, fresh weight of ginger rhizome reduced by 18.90%, 25.07% and 40.04%, respectively.
     2. The Pb content of different organs of ginger were both significantly increased with the growing and higher soil Pb contents and the Pb content of roots was higher, followed by rhizomes, that of stems, leaves was less. When the soil Pb content was 250 mg·kg~(-1), the Pb content of ginger rhizome was 0.261 mg·kg~(-1), which did not exceed the state maximum allowable limit, while the soil Pb contents were 500 and 1000 mg·kg~(-1), respectively, the rhizome Pb contents were 175.67% and 495.33% more than national standard, respectively.
     3. Hydroponic experiments showed that MDA content of the ginger root and leaf were significantly increased, short lead stress SOD, POD, CAT and APX activities of ginger root and leaf increased, but with the stress time, in addition to SOD, others were significantly decreased and of enzyme activities of the roots drop considerably. With 250 mg·L~(-1)Pb stress for 30 d, POD, CAT and APX activities of the roots, were reduced by 18.65%, 42.14%, 56.70% compared with control, respectively,.
     4. Silicon fertilizer in soil could alleviate the stress of lead on the ginger, significantly promoted the growth of ginger, increased production, reduced lead accumulation in the ginger rhizome, improved product safety. Under 500 mg·kg~(-1)Pb stress, silicon fertilizer for the amount were 1,2 g·kg~(-1), plant height increased 16.67% and 11.99%, yield increased by 33.23% and 43.60% compared with non-silicon treatment. The lead content of rhizome were 0.225 and 0.071 mg·kg~(-1) decreased by 72.79% and 91.41% than non-silicon treatment.
     5. Ginger in lead concentration 250 mg·L~(-1)cultured 30 d, whose root, stem, leaf and rhizome fresh weight were reduced by 19.85%, 21.42%, 22.89% and 18.96% compared with control, while adding 1.5 mmol·L-1Si, only 4.90%, 12.35%, 18.17% and 11.53% lower than the control. When treated by adding silicon and hydroponic, ginger root, stem, leaves and rhizome of the lead content were 58.92%, 55.74%, 69.82% and 58.27% than non-silicon treatment, respectively.
     6. Under hydroponic ginger 250 mg·L~(-1)lead stress conditions, adding 1.5 mmol·L~(-1)Si significantly showed alleviation effect. Such as treated by silicon for the 10 d, MDA content of ginger root, leaf decreased by 32.87% and 30.43%, CAT and APX activities of root, leaf increased by 153.44%, 40.79% and 57.29%, 60.96%, root activity increased by 54.74%, total chlorophyll content of leaves and photosynthetic rate increased 7.51% and 207.50%, respectively.
引文
白宝璋主编.植物生理学[M].北京:中国科学技术出版社,1994,43-48. 蔡德龙,陈常友,小林均.硅肥对水稻锡吸收影响初探[J] .地域研究与开发,2000,19,69-71.
    蔡德龙,牛安妮.硅肥对甘蔗的增产效果研究[J].地域研究与开发,1997,16 (1).
    蔡德龙,钱发军,邓挺,等.硅肥对苹果生长产量及品质影响的研究[J].地域研究与开发,1995,14 (2).
    蔡德龙.中国硅营养研究与硅肥应用[M].郑州:黄河水利出版社,2000,3-14.
    蔡一新,阙少聪,华永有.福建省蔬菜中铅、砷、镉含量背景值与分布分析[J].卫生研究,2004(4):500-501.
    陈怀满.土壤-植物系统中的重金属污染.北京:科学出版社,1996,115-125.
    陈义芳,周卫东,刘爱平,等.铅在不同基因型稻米中的富集[J].生物技术通报,2007,1:128-132.
    杜连彩.铅胁迫对小白菜幼苗叶绿素含量和抗氧化酶系统的影响[J].中国蔬菜,2008(5):17~19.
    房江育,马雪泷.硅对马铃薯试管苗生长及其细胞壁形成的影响[J].作物学报,2006,32(1)152-154.
    冯建鹏,史庆华,王秀峰,等.镉对黄瓜幼苗光合作用、抗氧化酶和氮代谢的影响[J].植物营养与肥料学报,2009,15(4):970-974.
    付世景,宗良纲,张丽娜,孙静克.镉、铅对板蓝根种子发芽及抗氧化系统的影响[J] .种子,2007,3:14-17.
    顾明华,黎晓峰.硅对减轻水稻铝胁迫效应及其机理研究[J].植物营养与肥料学报,2002,8(3):360-366.
    郭衍银,王秀峰,徐坤,等.南方根结线虫对生姜生长及内源激素的影响[J].植物病理学报,2004,34(l):49-54.
    韩玉林. Pb-Cu复合胁迫对马蔺幼苗生长和生理指标的影响[J].植物资源与环境学报,2010,19(4):24-30.
    何冰,叶海波,杨肖娥.铅胁迫下不同生态型东南景天叶片抗氧化酶活性及叶绿素含量比较[J].农业环境科学学报,2003,22(3):274-278.
    何电源.土壤和植物中的硅[M] .土壤学进展,1980,56:1-10.
    胡文海,喻景权.低温弱光对番茄叶片光合作用和叶绿素荧光参数的影响[J].园艺学报,2001,28 (1):41-46.
    胡忻,陈逸,王晓蓉,等.稀土元素铈对小麦幼苗镉伤害的防护效应[J].南京大学学报(自然科学),2001,37(6):671-677.
    黄益宗,朱永官,胡莹,等.玉米和羽扇豆、鹰嘴豆间作对作物吸收积累Pb、Cd的影响[J] .生态学报,2006,5:184-191.
    纪秀娥,张美善,于海秋,等.植物的硅素营养[J].农业与技术,1998,11-13.
    江行玉,赵可夫.铅污染下芦苇体内铅的分布和铅胁迫相关蛋白[J].植物生理与分子生物学学报,2002,28(3):169-174.
    江行玉,赵可夫.植物重金属伤害及其抗性机理[J].应用与环境生物学报,2001,1:93-100.
    蒋高明,韩荣庄,孙建中.闪电河流域六种农作物磷元素含量动态变化规律研究[J].植物生态学报,1995,19 (4): 329-334.
    雷冬梅,段昌群,张红叶.矿区废弃地先锋植物齿果酸模在Pb、Zn污染下抗氧化酶系统的变化[J].生态学报,2009,29(10):5417-5423.
    李波,林玉锁.公路两侧农田土壤铅污染及对农产品质量安全的影响[J].环境监测管理与技术,2005,17(1):11-14.
    李发林,叶光,张锦元,等. 1995年云南省烟草施用硅肥试验研究.硅肥的开发与研究[M]. 云南科技出版社,1999.
    李合生主编.现代植物生理学[M].北京:高等教育出版社,2002,188~193. 李其林,黄昀.重庆市近郊蔬菜基地蔬菜中重金属含量变化及污染情况[J].农业环境与发展,2000,17(2):42-44.
    李其林,刘光德,赵中金,等.重庆市菜地土壤重金属污染现状与防治对策[J] .农业环境与发展,2001:30-32.
    梁永超,张永春,马同生.植物的硅素营养[J].土壤学进展,1993,21(3):7-14.
    凌乃规.蔬菜品种重金属元素含量差异性分析[J].广西农业科学,2000(1):13-15.
    刘素纯.铅对黄瓜幼苗生长发育的影响[D].湖南,湖南农业大学,2006.
    柳丹,潘凡,杨肖娥.铅富集植物对铅的吸收及其耐性生理机制进展研究[J].池州学院报,2007,21(5):88-91.
    陆景陵.植物营养学(上) [M].北京:中国农业大学出版,1994,79-82.
    闵焕,祖艳群,李元. Pb胁迫对圆叶无心菜(Arenaria rotumdifolia Bieberstein)生长和生理特征的影响[J].农业环境科学学报,2010,29(增刊):15-19.
    明华,曹莹,胡春胜,等.铅胁迫对玉米光合特性及产量的影响[J].玉米科,2008,16(1):74~78.
    庞欣,王东红,彭安.铅胁迫对小麦幼苗抗氧化酶活性的影响[J].环境科学,2001,22(5):108-111.
    彭鸣,王焕校,吴玉树.镉、铅诱导的玉米幼苗细胞超微结构的变化[J].中国环境科学,1991,11:426-431.
    秦淑琴,黄庆辉.硅对水稻吸收镉的研究[J].塔里木农垦大学学报,1996,8(2):17-20.
    秦淑琴,黄庆辉.硅对水稻吸收镉的影响.新疆环境保护,1997,19:51-53.
    秦天才,吴玉树,王焕校.镉、铅及其相互作用对小白菜生理生化特性的影响[J].生态学报,1994,14:46-50.
    饶立华,覃莲祥,娄春荣,等.硅对杂交水稻形态结构和生理的效应[J].土壤通报,1986,30 (4):20-24.
    任安芝,高玉葆,刘爽.铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响[J].应用与环境生物学报,2006,6(2)112-116.
    沈振国,刘友良.重金属超量积累植物研究进展.植物生理学通讯,1998,34(2):133-139.
    史庆华,朱祝军,李娟,等.高锰胁迫与低pH对黄瓜根系氧化胁迫和抗氧化酶的复合效应[J].中国农业科学,2005,38(5):999-1004.
    史庆华,朱祝军,王永传等.不同辐照度下高浓度锰对黄瓜叶片活性氧产生和抗氧化酶活性的影响[J].植物生理与分子生物学学报,2006,32(3):325-329.
    史庆华,朱祝军,应泉盛,等.不同光强下高锰对黄瓜光合作用特性的影响[J].应用生态学报,2005 b,16(6):1047-1050.
    田福平,张自和,陈子萱,等.硅对紫花苜蓿产量的影[J].甘肃农业大学学报,2005,(1):42-47.
    田福平,张自和,陈子萱,等.硅对紫花苜蓿生长发育影响[J].草原与草坪,2005,(1):34-37.
    王荔军,王运华,周益林,等.纳米结构SiO2与植物真菌病害发生的关系[J].华中农业大学学报,2001,20:593-397.
    王文杰,李文馨,祖元刚,等.紫茎泽兰茎和叶片色素及叶绿素荧光相关参数对不同温度处理的响应差异[J].生态学报,2009,29(10):5424-5433.
    魏国强,朱祝军,方学智,等. NaCl胁迫对不同品种黄瓜幼苗生长、叶绿素荧光特性和活性氧代谢的影响[J].中国农业科学,2004,37(11):1754-1759.
    吴顺,黄杰,罗光宇.铅胁迫对小白菜幼苗生长的影响及不同品种耐铅差异研究[J].种子,2009,19(28):13-15.
    吴顺,萧浪涛.植物体内活性氧代谢及其信号传导[J].湖南农业大学学报(自然科学版),2003,29(5).
    夏圣益,王歧山.棉花硅肥效应研究[J].中国棉花,1998,25 (8).
    肖承坤.我国铅污染现状分析[J].中国环境科学学会,2007:159~161.
    徐澜,杨锦忠,安伟,等. Cr、P b单一及其复合胁迫对小麦生理生化的影响[J].中国农学通报,2010,26 (6):119-126.
    徐明飞,张永志,王钢军,等.铅对辣椒生长特性及其细胞组织超微结构的影响[J].中国农学通报,2008,3(24):369-373.
    许建光,李淑仪,王荣萍.硅肥抑制作物吸收重金属的研究进展[J].中国农学通报,2006,22(7):495-99.
    杨超光,豆虎,梁永超,等.硅对土壤外源福活性和玉米吸收锡的影响[J].中国农业科学,2005,38:116-121.
    杨丹慧.重金属离子对高等植物光合膜结构与功能的影响[J].植物学通报,1991,8:26-29.
    杨慧芬,李明之.食品卫生现代检验标准手册[M].北京:中国标准出版社,1997.
    杨久峰,张雪梅,汪建飞.蔬菜中铅的含量及分布规律研究[J].安徽农学通报,2007,13(5):67.
    杨苏才,南忠仁,曾静静.土壤重金属污染现状与治理途径研究进展[J].安徽农业科学,2006,34(3):549-552.
    叶春,徐进,李卓士.高效硅肥对草莓的使用效果初报.硅肥应用技术与前景[M].北京:中国农业科技出版社,1994.
    殷云龙,李晓明,华建峰.土壤和叶面Pb污染对小麦生长及体内Pb分布和积累的影响[J].植物资源与环境学报,2010,19(2):28-33.
    张国平,深见元弘,关本根.不同镉水平下小麦对镉和矿质养分的吸收和积累的品种间差异[J].应用生态学报,2002,13(4):454-457.
    张国芹,徐坤,王兴翠.硅对生姜叶片水、二氧化碳交换特性的影响[J].应用生态学报2008,19(8):1702-1707.
    张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
    张义贤,李晓科.镉、铅及其复合污染对大麦幼苗部分生理指标的影响[J].植物研究,2008,28(1):43-47.
    张义贤.汞、镉、铅胁迫对油菜的毒害效应[J].山西大学学报(自然科学版),2004,27(4):410-413.
    张中星,程滨,李荣田.钢渣肥对玉米增产效果研究[J].土壤通报,1997,28 (2):82-84.
    赵世杰,史国安,董新纯.植物生理试验技术指导[M].北京:中国农业科学技术出版社,2002.
    中国环境监测总站.中国土壤元素背景值.中国环境科学出版社,1990.
    中国农业持续发展和综合生产力研究组.中国农业持续发展和综合生产力研究.济南:山东科技出版社,1995:306-307.
    周朝彬,胡庭兴,胥晓刚,等.铅胁迫对草木樨抗氧化系统的影响[J].草业科学,2006,23(3):43-46.
    周启星,宋玉芳.污染土壤的修复原理与方法[M].北京:科学出版社,2004. Alloway B J. Heavy metals in soils[M]. Blackie Academic and Professional, London, UK. 1995.
    Ando H, K akuda K, Fujii H, et al. Growth and canopy structure of rice plants grown under field conditions as affected by Si application[J]. Soil Science and Plant Nutrition, 2002, 48: 429-432.
    Barcefo J, Guevara P, Poschenrieder C. Silicon amelioration of alumium toxicity in teosinte(Zea Mays L.ssp.Mexicana)[J]. Plant Soil. 1993, 154: 245-255.
    Belanger R R, Benhamou N, Menzies J G. Cytological evidence of an active role of silicon in wheat resistance to powdery mildew[J]. Phytopathology, 2003, 93(4): 402-412.
    Cakmak I, MarschnerH. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorate peroxidase, and glutathione reductase in bean leaves [J]. Plant cell Physiol, 1992, 98: 1222-1227.
    Smith E, Juhasz A. L, Weber J. Arsenic uptake and speciation in vegetables grown undergreenhouse conditions[J]. Environ Geochem Health (2009) 31: 125-132.
    Esser K B. Can the application of fused calcium silicate to rice contribute to sustained yields and higher pest resistance? [J]. Outlook on Agriculture, 2002, 31(3): 199-201.
    Foy C D, Chaney R L, White M C. The Physiology of metal toxicity in Plants[J]. Annual Review of Plant Physiology. 1978, 29: 511-566.
    Galvez L, Clark R B, Gourley L M, et al. Silicon interaction with manganese and aluminum Toxicity in sorghumb,Journal of Plant Nutrition. 1987, 10: 1139-1147.
    Gao X, Zou C, Wang L, et al. Silicon improves water use efficiency in maize plants[J]. Journal of Plant Nutrition, 2004, 27: 1457-1470.
    Horiguchi T, Morita S. Mechanism of manganese toxicity and tolerance of Plants. IV. Effect of Silicon on alleviation of manganese toxiciry of barley, J Plant Nutr. 1987, 10: 2299-2310.
    Horst W J, Marschner H. Effect of silicon on manganese tolerance of bean Plants(Phaseolus vulgaris L.), Plant and Soil. 1978, 50: 287-303.
    Hossain M T, Mori R, Soga K, et al. Growth promotion and an increase in cellwall extensibility by silicon in rice and some other seedlings[J]. Journal of Plant Research, 2002, 115: 23-27.
    Hurney, A. P. A progress reports on calcium silicate investigation[M]. In: Proc. of Conf. of Queensland Soc. of Sugar Cane Technol. Brisbane, Australia. 1973, (40): 109-113.
    Inanaga S, Higuchi Y, Chishaki N. Effect of silicon application on reproductive growth of rice plant [J]. Soil Science and Plant Nutrition, 2002, 48: 341-345.
    Iwasaki K, Matsushima A. Effect of silicon on alleviation of manganese toxicity in pumpkin, Soil Sci Plant Nutr. 1999, 45: 909-920
    Dat J, Vandenabeele S, Vranova E. Dual action of the active oxygen species during plant stress responses[J]. Cellular and Molecular Life Sciences, 2000, 57: 779–795.
    Jarvis M D, Leung D W M. Chelated lead transport in Pinus radiata: An ultrastructural study. Environmental and Experimental Botany, 2002, 48: 21-32.
    Jaworski J F, Nriagu J, Denny P, Hart B T, Lasheen M R, Subramanian V and Mong M H. Group report; Ledd. In: Hutehinson T C and Meema K M. Lead, mercury, cadmium and arsenic in the environment. John Wiley and Sons Ltd., Chichester, U K, 1987. pp. 3-16.
    Kozo I, Peter M, Marion F, et al. Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea(Vigna unguiculata(L.)Walp.), Plant and Soil. 2002, 238: 281-288.
    Krall J P, Edward GE. Relationship between photosystemIIactivities and CO2 fixation in leaves [J]. Physiol. Plant., 1992, 86: 180-187.
    Li W B, Shi X H, Wang H, et al. Effects of silicon on rice leaves resistance to ultraviolet[J]. Acta Botanica Sinica, 2004, 46(6): 691-697.
    Liang Y C, Sun W C, Zhu Y G, et al. Mechanisms of silicon mediated alleviation of abiotic stresses in higher plants: a review[J]. Environmental Pollution, 2007, 147 (2): 422-428.
    Malecka A, JarmuszkiewiczW, Tomaszewska B. Antioxidative defense to lead stress in subcellular compartments of pea root cells[J]. Acta Biochimica Polonica, 2001, 48: 687-698.
    Nakano Y, Asada K. Hydrogen peroxide scanvenged by ascorbated specific peroxidase in spinach chloroplast[J]. Plant Cell Physiol, 1981, 22: 867-880.
    Neumann D, Nieden U Z, Schwieger W, et al. Heavy metal tolerance of Minuartis Vema[J]. Plant Physiol, 1997, 151: 101-108.
    Patra J, Lenka M, Panda, BB. Tolerance and co-tolerance of the grass Chloris barbata Sw. to mercury, cadmium and zinc[J]. New Phytologist, 1994, 128: 165-171.
    Piechalak A, Tomaszewska B, Baralkiewicz D, et al.Accumulation and detoxification of lead ions in legumes[J]. Phytochemistry, 2002, 60: 153-160.
    Prochazkova R K D, Sairam G C, Srivastava D V. Single oxidative stress and antioxidant activity as the basis of senescence in maize leaves[J]. Plant Sci., 2001, 161: 765-771.
    Reddy A M, Kumar S G, Jyothsnakum ari G, et al. Lead induced changes in antioxidant metabolism of horsegram(Macrotyloma uniflorum(Lam.) Verdc.) and bengalgram(Cicer arietinumL. ). Chemosphere, 2005, 60: 97-104.
    Renata R, StefanW, Edward G. Free radical formation and activity of antioxidant enzymes in lipin roots exposed to lead[J]. Plant physiology Biochemistry, 1999, 37: 187-194.
    Rodrigues F A, Vale F X R, Korndorfer G H, et al. Influence of silicon on sheath blight of rice in Brazil[ J]. Crop Protection, 2003, 22: 23-29.
    Savant N K, Korndorfer G H, Datnoff L E, et al. Silicon nutrition and sugarcane production: Areview [J]. Journal of Plant Nutrition, 1999, 22: 1853-1903.
    Seema Mishra, S. Srivastava, R D. Tripathi, R. Kumar, C S. Seth b, D K. Gupta. Lead detoxification by coontail(Ceatophyllum demersum L.)involves induction of phytochelatins and antioxidant system in response to its accumulation[J]. Chemosphere, 2006, 65: 1027-1039.
    Shiue, J. J. Criteria for predicting silicate slag demand for sugar cane[J]. Rep. Taiwan Sug. Res. Inst. 1973, 59: 15-24.
    Smith C J, Hopmans P, Cook F J. Accumulation of Cr, Pb, Cu, Ni, Zn and Cd in soil following irrigation with treated urban effluent in Australia[J]. Environ Poll, 1996,94(3): 317-323
    Tabaldi L A, Ruppenthal R, Cargnelutti D, Morsch V M, Pereira L B and Schetinger M R C. Effects of metal elements on acid Phosphatase activity in cucumber(Cucumis sativusL.)seedlings. Environ Exp Bot, 2007, 59, 43-48.
    Upadhyay A R and TriPathi B D. Principle and Process of Biofiltration of Cd, Cr, Co, Ni&Pb from Tropical Opencast Coalmine Effluent. Water Air Soil Poll, 2007, 180: 213-223.
    Walker T.S, Bais H P, Grotewold E, et al. Root exudation and rhizosphere biology. Plant Physiology, 2003, 132: 44-51.
    WANG Xiao shan, HAN Jian guo. Changes of Proline Content, Activity, and Active Isoforms of Antioxidative Enzymes in Two Alfafa Cultivar Under Salt Stress [J]. Science Direct. 2009, 8(4): 431-440.
    Williams C, Hand D J, David. The effect of superphosphate on the cadmium content of soils and plants[J]. Austr. J. Soil Res, 1973, 11: 43~56.
    Wozny A, Goozdz E A. The effect of lead and kinetin on green barley leaves. Biology Plant, 1995, 37: 541-552.
    Yulia Pinchasov, Tamar Berner, Zvy Dubinsky. The effect of lead on photosynthesis, as determined by photoacoustics in Synechococcus Leopoliensis[J]. Water, Air, and Soil Pollution , 2006, 175: 117–125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700