小麦抗叶锈近等基因系TcLr45分子标记开发与凝集素类受体蛋白激酶基因的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由小麦叶锈菌(Puccinia triticina Eriks.)引起的小麦叶锈病是影响世界小麦稳产高产的重要病害之一,也是影响我国小麦生产的重要因素。抗叶锈病基因的应用成为防治该病害最经济、有效的方法。小麦抗叶锈病基因Lr45来源于日本小黑麦,目前我国尚无关于克服该基因的叶锈菌株的报道,因此,Lr45为我国小麦叶锈菌有效的抗病基因,具有一定的应用潜力。本研究通过分子标记以及抗病相关基因克隆的方法对小麦抗叶锈病基因Lr45进行研究,为该基因的分子鉴定以及抗病相关机制的研究奠定基础。本论文主要结果包括以下几个方面:
     1、利用定位在黑麦2R染色体的3个SSR标记、6个RAPD标记、1个STS标记以及小麦2A染色体上的4个EST-SSR标记、31个SSR标记筛选与Lr45连锁的分子标记,发现黑麦2R染色体上的SSR标记SCM43、SCM75和小麦2A染色体上的SSR标记WMC63在亲本TcLr45与Thatcher之间表现多态性。
     2、利用小麦抗叶锈病基因Lr25的SCAR标记Lr25F20/Lr25R19对同样来源于黑麦的小麦抗叶锈近等基因系TcLr26、TcLr45和TcLr25以及感病对照Thatcher进行检测,仅在TcLr45中扩增出一条1859bp的条带。经52个小麦抗叶锈近等基因系以及6个普通小麦、5个黑麦和3个小黑麦品种的验证,更正该标记为小麦抗叶锈近等基因系TcLr45特异的分子标记,命名为LR45R/F,遗传距离为14cM。避免了该标记今后在分子辅助选择中的错误使用。
     3、首次利用EST-CAPS技术对小麦抗叶锈近等基因系TcLr45及感病亲本Thatcher进行多态性分析。2A染色体短臂C-2AS5-0.78区域的25对EST引物中有2对引物在亲本之间扩增出差异,100个引物/酶切组合中有4组在TcLr45和Thatcher之间表现多态性。
     4、根据已克隆的小麦抗叶锈病基因Lr34序列中的凝集素类受体蛋白激酶基因设计引物,在小麦抗叶锈近等基因系TcLr45的cDNA中扩增出单一条带,经克隆、测序,该序列为凝集素类受体蛋白激酶基因的部分片段。以该序列为靶序列进行RCAE-PCR,获得基因的cDNA全长片段为2347bp,共编码730个氨基酸。经SMART软件分析,该基因具有典型的凝集素类受体蛋白激酶结构,为L类型,将该基因命名为LecRK-LR45。
Leaf rust, caused by Puccinia triticina Eriks., is one of the most severe diseases of common wheat (Triticum aestivum L.) throughout the world, and also the important factor affecting the wheat yield in China. The application of leaf rust resistance genes became the most economical and effective method to control the disease. Wheat leaf rust resistance gene Lr45 derived from the Japnases triticale, until now there is no report has been found about the leaf rust strain overcoming this gene in China, therefore Lr45 is an effective gene and with potential application in China. Related studies were carried out on wheat leaf rust resistance gene Lr45 for developing molecular markers and cloning resistance related gene, which laid a solid foundation for the molecular identification and annotation the resistance mechanism of Lr gene. The major results are as follows:
     1. 3 SSR markers, 6 RAPD markers and 1 STS marker located on rye 2R chromosome and 4 EST-SSR markers, 31 SSR markers located on wheat 2A chromosome were screened the linkage molecular markers for Lr45. The SSR markers SCM43, SCM75 located on rye chromosome 2R and WMC63 from wheat chromosome 2A amplified the polymorphism between TcLr45 and Thatcher, but with a long genetic distance.
     2. Wheat leaf rust near-isogenic line TcLr26 and TcLr45 which derived the same heredity background as TcLr25, and susceptible background genotype Thatcher were detected with the SCAR marker Lr25F20/R19 of wheat leaf rust resistance gene Lr25. A unique 1859bp band amplified in TcLr45. The amplification results of 52 wheat leaf rust near-isogenic lines, 6 wheat varieties, 5 rye varieties and 3 triticale varieties validated Lr25F20/R19 is a specific molecular maker with 14cM genetic distance for wheat leaf rust resistance gene Lr45, and named LR45R/F. The results corrected the location of the SCAR marker Lr25F20/R19, and will avoid the unreliable of the marker-assisted selection.
     3. EST-CAPS was the first time carried on wheat leaf rust near-isogenic line TcLr45 research. 2 of 25 EST markers and 4 of 100 primers/restriction enzyme combinations which located on wheat chromosome 2A short arm C-2AS5-0.78 domain amplified the polymorphism between TcLr45 and Thatcher.
     4. A pair of pimers was disigned based on the lectin-like receptor kinases gene sequence of wheat leaf rust resistance gene Lr34. A single band was amplified in the cDNA of TcLr45. The fragment was cloned and sequenced, and it is a part of lectin-like receptor kinases gene. Based on the target sequence, the complete sequence of cDNA, 2347bp and encoding 730aa, was obtained through RACE-PCR. SMART software was used to analysis this gene found that it has classic LecRKs structures, and belongs to L type, named as LecRK-LR45.
引文
[1] Kolmer J A. Genetics of resistance to wheat leaf rust[J]. Annual Review of Phytopathology, 1996, 34: 435-455.
    [2] Kloppers F J, Pretorius Z A. Effects of combinations amongst genes Lr13, Lr34 and Lr37 on components of resistance in wheat to leaf rust[J]. Plant Pathology, 1997, 46: 737-750.
    [3] Knott D R. The wheat rust breeding for resistance[J]. Theor Appl Genet, 1989, 201: 191-198.
    [4] Colin W, Hiebert J B, Thomas B D, et al. An introgression on wheat chromosome 4DL in RL6007(Thatcher*6/PI250413) confers adult plant resistance to stripe rust and leaf rust (Lr67)[J]. Theor Appl Genet, 2010, 121: 1083-1091.
    [5] Mcintosh R A, Mellings C R, Park R F. Wheat rusts: An atlas of resistance genes. CSIRO publishing, Melbourne, Australia, 1995.
    [6] Mago R, Miah H, Lawrence G J, et al. High-resolution mapping and mutation analysis separate the rust resistance gene Sr31, Lr26, and Yr9 on the short arm of rye chromosome 1[J]. Theor Appl Genet, 2005, 112: 41-50.
    [7]武延超. 2007年我国小麦叶锈菌致病类型鉴定及毒性分析[D]. 2009,河北农业大学硕士学位论文.
    [8] Mcintosh R A, Friebe B, Jiang J, et al. Cytogenetical studies in wheat: XVI. Chromosome location of new gene for resistance to leaf rust in a Japanese-rye translocation line[J]. Euphytica, 1995, 82: 141-147.
    [9]张娜,杨文香,闫红飞,等.小麦抗叶锈基因Lr45的AFLP分子标记[J].中国农业科学, 2005, 38(7) : 1364-1368.
    [10]张娜,杨文香,李亚宁,等.小麦抗叶锈病基因Lr45的SSR分子标记[J].作物学报, 2007, 33 (4): 657-662.
    [11]闫红飞,刘春燕,高士刚,等.小麦抗叶锈基因Lr45的SCAR标记[J].中国农业科学, 2009, 42(1): 124-129.
    [12] Bennett M D, Smith J B. Nuclear DNA amounts in angiosperms[J]. Philos Trans R Soc Lond B, 1976, 274: 227-274.
    [13] Chao S, Sharp P J, Worland A J, et al. RFLP-based genetic maps of wheat homoeologous group 7 chromosomes[J]. Theor Appl Genet, 1989, 78: 495-504.
    [14] Liu Y G, Tsunewaki K. Restriction fragment length polymorphism (RFLP) analysis in wheat.Ⅱ. linkage maps of the RFLP sites in common wheat[J]. Jpn J Genet, 1991, 66: 617-633.
    [15] Devos K M, Millan T, Gale M D. Comparative RFLP maps of the homoeologous group-2 chromosomes of wheat, rye and barley[J]. Theor Appl Genet, 1993, 85: 784-792.
    [16] Delaney D E, Nasuda S, Endo T R, et al. Cytologically based physical maps of the group-2 chromosomes of wheat[J]. Theor Appl Genet, 1995, 91: 568-573.
    [17] Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat(Triticum aestivum L.)[J]. Theor Appl Genet, 2004, 109: 1105-1114.
    [18] Gao L F, Jing R L, Hou N X, et al. One hundered and one new microsatellite loci derived from ESTs(EST-SSRs) in bread wheat[J]. Theor Appl Genet, 2004, 108: 1392-1400.
    [19] Korzum V, Malyshev S, Kartel N, et al. A genetic linkage map of rye (Secale cereale L.)[J]. Theor Apple Genet, 1998, 96: 203-208.
    [20] Bednarek P T, Masojc P, Lewandowska R, et al. Saturating rye genetic map with amplified fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) markers[J]. J Appl Genet, 2003, 44(1): 21-33.
    [21] Khlestkina E K, Than M H M, Pestsova E G, et al. Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags[J]. Theor Appl Genet, 2004, 109: 725-732.
    [22] Pawel M, Aneta B T, Karolina L, et al. New genetic map of rye composed of PCR-based molecular markers and its alignment with the reference map of the DS2×RXL10 intercross[J]. J Appl Genet, 2007, 48(1): 11-24.
    [23] Gustafson J P, Ma X F, Korzun V, et al. A consensus map of rye integrating mapping data from five mapping populations[J]. Theor Appl Genet, 2009, 118: 793-800.
    [24] Adams M D, Kelly J M, Gocayne J D, et al. Complementary DNA sequencing expressed sequence tags and human genome project[J]. Science, 1991, 252: 1651-1656.
    [25]白玉. DNA分子标记技术及应用[J].安徽农业科学, 2007, 35(24): 7422-7424.
    [26]李小白,崔海瑞,张明龙. EST分子标记开发及在比较基因组学中的应用[J].生物多样性, 2006, 14(6): 541-547.
    [27] Calderwood S B, Baker M A, Carroll P A, et al. Use of cleaved amplified polymorphic sequences to distinguish strains of Staphylococcus epidermidis[J]. J Clin Microbiol, 1996, 34(11): 2860- 2865.
    [28] Weiland J J, Yu M H. A cleaved amplified polymorphic sequence (CAPS) marker associated with root-knot nematode resistance in sugarbeet[J]. Crop Sci, 2003, 43(5): 1814-1818.
    [29] Moury B, Pflieger S, Blattes A, et al. A CAPS marker to assist seletion of tomato spotted wilt virus (TSWV) resistance in pepper[J]. Genome, 2000, 43(1): 137-142.
    [30] Nikaido A M, Ujion T, Iwata H, et al. AFLP and CAPS linkage maps of Cryptomeria japonica[J]. Theor Appl Genet, 2000, 100(6): 825-831.
    [31] Temesgen B, Brown G R, Harry D E, et al. Genetic mapping of expressed sequence tag polymorphism (ESTP) markers in loblolly pine (Pinus taeda)[J]. Theor Appl Genet, 2001, 102(5): 664-675.
    [32] Tani N, Takahashi T, Iwata H, et al. A consensus linkage map for sugi (Cryptomeria japonica) from two pedigrees, based on microsatellites and expressed sequence tags[J]. Genetics, 2003, 165(3): 1551-1568.
    [33] Konovalov F, Toshchakova E, Gostimsky S. A CAPS marker set for mapping in linkage groupⅢof pea (Pisum sativum L.)[J]. The Plant Journal, 1993, 4(2): 403-410.
    [34] Herve C, Dabos P, Galaud J P, et al. Characterization of an Arabidopsis thaliana gene that defines a new class of putative plant receptor kinases with an extracellular lectin-like domain[J]. J Mol Biol, 1996, 258: 778-788.
    [35] Barre A, Herve C, Lescure B, et al. Lectin receptor kinases in plants[J]. Critical reviews in plant sciences, 2002, 21: 379-399.
    [36] Bouwmeester K, Govers F. Arabidopsis L-type lectin receptor kinases: phylogeny classification, and expression profies[J]. J Exp Bot, 2009, 60(15): 4383-4396.
    [37] Naithani S, Chookajorn T, Ripoll D R, et al. Structural modules for receptor dimerization in the S-locus receptor kinase extracellular domain[J]. Proceedings of the National Academy of Sciences, USA, 2007, 104: 12211-12216.
    [38] Andre S, Siebert H C, Nishiguchi M, et al. Evidence for lectin activity of a plant receptor-like protein kinase by application of neoglycoproteins and bioinformatic algorithms[J]. Biochimica et Biophysica Acta, 2005, 1725: 222-232.
    [39] Wan J, Patel A, Mathieu M, et al. A lectin receptor-like kinase is required for pollen development in Atabidopsis[J]. Plant molecular biology, 2008, 67: 469-482.
    [40] Navarro-Gochicoa M T, Camut S, Timmers A C J, et al. Characterization of four lectin-like receptor kinases expressed in roots of Medicago truncatula. Structure, location, regulation of expression, and potential role in the symbiosis with Sinorhizobium meliloti[J]. Plant physiology, 2003, 133: 1893-1910.
    [41] Chen X, Shang J, Chen D, et al. A B-lectin receptor kinase gene conferring rice blast resistance[J]. The Plant Journal, 2006, 46: 794-804.
    [42] Sasabe M, Naito K, Suenaga H, Ikeda T, et al. Elicitin-responsive lectin-like receptor kinase genes in BY-2 cells[J]. DNA Seq, 2007, 18(2): 152-159.
    [43]杨晓坡.水稻OsLecRK1基因功能研究初探[D]. 2007,厦门大学硕士学位论文.
    [44] Simon G K, Evans S L, Wolfgang S, et al. A putative ABC Transporter confers durable resistance to multiple fungal pathogens in wheat[J]. Science, 2009, 323(5919): 1360-1363.
    [45] Frohman M A, Dush M K, Martin G R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer[J]. Proceedings of the National Academy of Sciences, USA, 1988, 85(23): 8998-9002.
    [46]王凯,张增艳,黄璜,等.小麦SGT1基因的克隆与表达特性的分析[J].麦类作物学报, 2007, 27(6): 952-956.
    [47]郭营,许云峰,蒋方山,等.小麦抗黄矮病基因相关cDNA片段的克隆[J].西北植物学报, 2008, 28(4): 645-650.
    [48]王海燕,杨文香,张汀,等.小麦LRR类抗病相关基因及其cDNA 3’末端的克隆与分析[J].植物病理学报, 2007, 37(3): 317-320.
    [49]王海燕,刘大群,杨文香,等. TcLr35小麦中病程相关蛋白1基因的克隆及分析[J].植物遗传资源学报, 2007, 8(1): 16-20.
    [50] Andrea G, Robert M D K, Carla C. A candidate for Lr19, an exotic gene conditioning leaf rustresistance in wheat[J]. Functional & Integrative Genomics, 2009, 9(3): 325-334.
    [51]胡英考.诱导产生小麦外源基因易位系的研究进展[J].首都师范大学学报(自然科学版), 2001, 23(3): 54-64.
    [52] Seyfarth R, Feuillet C, Schachermayr G, et al. Development of a molecular marker for adult plant leaf rust resistance gene Lr35 in wheat[J]. Theor Appl Genet, 1999, 99: 554-560.
    [53] Roelfs A P. Race specificity and method of study. Bushnell W R, Roelfs A P. The cereal rust. Vol.I: Origins, specificity, structure and physiology. Academic Press, Orlando, 1984, 2: 131-164.
    [54] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA[J]. Nucleic Acids Res, 1980, 8(19): 4321-4325.
    [55] Bernhard S, Gunter W. Development of simple sequence repeat markers in rye (Secale cereale L.)[J]. Genome, 1999, 42(5): 964-972.
    [56] Lee J H. Detection of rye chromosome 2R using the polymerase chain reaction and sequence–spec ific DNA primers[J]. Genome, 1994, 37: 19-22.
    [57] Cecilia G, Manuel V C, César B. Chromosomal location of 46 new RAPD markers in rye (Secale cereale L.)[J]. Genetica, 2002, 115: 205-211.
    [58] Procunier D. Disease resistance. Leaf rust resistance Lr29 - Lr25. http://maswheat.ucdavis. edu/ protocols/Lr29/index.htm.
    [59]庄丽芳,宋立晓,冯祎俐,等.小麦EST-SSR标记的开发和染色体定位及其在追踪黑麦染色体中的应用[J].作物学报,2008, 34(6): 926-933.
    [60]刘春燕,闫红飞,杨文香,等.黑麦重复序列在检测小麦品种中外源染色体的应用[J].分子植物育种, 2011, 9(1): 97-103.
    [61]李晓燕,王曙光,李瑞,等.黑麦优良基因在小麦育种中的应用[J].山西农业科学, 2007, 35(10): 15-19.
    [62]魏育明,郑有良,周荣华.应用荧光原位杂交和RFLP标记检测多小穗小麦新种质10-A中的黑麦染色质[J].植物学报, 1999, 41(7): 722-725.
    [63]毛龙,胡含,朱立煌,等.应用RAPD分析1个抗条锈的小麦-黑麦易位系[J].科学通报, 1994, 39(22): 2088- 2090.
    [64] Dirlewanger E, Cosson P, Tavaud M, et al. Development of microsatellite markers in peach [Prumus persica (L) Batsch.] and their use in genetic diversity analysis in peach and sweet cherry ( Prunus avium L.)[J]. Theor Appl Genet, 2002, 105: 127-138.
    [65] Ma J, Zhou R H, Dong Y S, et al. Microsatellite mapping and detection of the stripe rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers[J]. Euphytica, 2001, 120: 219-226.
    [66] Huang X Q, Wang L X, Xu M X, et al. Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.)[J]. Theor Appl Genet, 2003, 106: 858-865.
    [67] Xie C J, Sun Q X, Ni Z F, et al. Chromosomal location of a Triticum dicoccoides-derived powdery mildew resistance gene in common wheat by using microsatellite markers[J]. Theor Appl Genet, 2003, 106: 341-345.
    [68] Zhu Z D, Kong X Y, Zhou R H, et al. Identification and microsatellite markers of a resistance gene to powdery mildew in common wheat introgressed from Triticum durum[J]. Acta Botanica Sinica, 2004, 46(7): 867-872.
    [69]张娜.小麦抗叶锈基因Lr45的AFLP和SSR分子标记[D]. 2005,河北农业大学硕士学位论文.
    [70]杨景华,王士伟,刘训言,等.高等植物功能性分子标记的开发与利用[J].中国农业科学, 2008, 41(11): 3429-3436.
    [71] Sunnucks P. Efficient genetic markers for population biology[J]. Trends in Ecology and Evolution, 2000, 15: 199-203.
    [72] Rafalski J A, Tingey S V. Genetic diagnostics in palnt breeding: RAPDs, microsatellites and machines[J]. Trends in Genetics, 1993, 9: 275-280.
    [73] Blaszczyk L, Kramer I, Ordon F, et al. Validity of selected DNA markers for breeding leaf rust resistant wheat[J]. Cereal Res Com, 2008, 36: 201-213.
    [74] Vida G, Gal M, Uhrin A, et al. Molecular markers for the identification of resistance genes and marker-assisted selection in breeding wheat for leaf rust resistance[J]. Euphytica, 2009, 170: 67-76.
    [75]张兆沛,王志伟,张慧蓉.植物类受体蛋白激酶研究概况[J].山西农业科学, 2009, 37(8): 75-78.
    [76] Kerk D, Bulgrien J, Smith D W, et al. The complement of protein phosphatases catalytic subunits encoded in the genome of Arabidopsis[J]. Plant physiol, 2002, 129(2): 908-925.
    [77] Feuillet C, Schachermayr G, Keller B. Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat[J]. The plant journal, 1997, 11(1): 45-52.
    [78] Peumans W J, Van Damme E J M. Lectins as plant defense proteins[J]. Plant Physiol, 109(2): 347-352.
    [79]高莹,瞿礼嘉,陈章良.植物凝集素的分子生物学研究[J].生物技术通报, 2000, 5: 18-22.
    [80]汤继凤,曹永生,高丽锋,等.用生物信息学技术构建cSSR分子标记开发体系[J].中国农业科学, 2004, 37(3): 328-332.
    [81]周立敬,周宜君,高飞,等.拟南芥谷胱甘肽过氧化物酶的生物信息学分析[J].中央名族大学学报(自然科学版), 2010, 19(2): 11-16.
    [82]符稳群,林莹,黄惠玲,等.水稻组蛋白脱乙酰化酶HD2 HDACs蛋白质的生物信息学分析[J].漳州师范学院学报(自然科学版), 2009, 4: 92-98.
    [83] Shah K, Vervoort J, de Vries S C. Role of threonines in the Arabidopsis receptor kinase AtSERK1 activation loop in phosphorylation[J]. J Biol Chem, 2001, 276(44): 41263-41269.
    [84]邓克勤.植物凝集素类受体蛋白激酶LecRK-b2的生物信息学分析及基因功能研究[D]. 2009,湖南大学博士学位论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700