甜瓜F2群体性状分析及遗传图谱引物筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜瓜是世界十大水果之一,深受各国人民欢迎。因此提高甜瓜产量,品种的育种工作又十分重要的意义。在进行育种工作前,细致的田间工作是十分必要的。同时构建饱和的遗传图谱对于加快育种进度具有极大的帮助。
     本文对甜瓜F2群体的性状遗传进行分析,利用J28-1-4-2(H)-2-2-1和DC-4-1-7-2-1-4-1-1-1杂交得到203个F2个体,2007年对节间长,叶长,叶宽等九个性状进行调查,评价。对所得数据进行方差分析,相关分析,全子集法回归分析,通径分析。结果表明除了节间长性状外,其它的性状都呈正态分布,说明这些性状是数量性状。节间长性状呈双峰分布,与前人的研究结果存在着不同,说明短节间基因间存在着互作。所有测量的形状都与产量有极显著的相关。通径分析表明,节间长度对于果重的直接影响比较小,节间与产量的相关系数较大,主要是由其它性状间接造成的,所以说明节间性状不会影响产量。为甜瓜短节间育种提供理论基础。
     在进行遗传构图前,对引物进行与筛选是十分必要的,从而能够知道两个亲本之间遗传关系的远近,知道那对引物能够在亲本间存在多态性,从而节省大量的时间和经费。
     用100对ISSR引物对亲本进行筛选,有36对能得到比较好的条带,其中有11对引物能够有多态。
     704对AFLP引物组合,对亲本DNA进行PCR扩增。平均每对引物在聚丙烯酰胺胶上分离得到32.3条带,总共检测到了22739个AFLP标记。
     共计检验到2130条多态性条带,AFLP的多态比率为9.37%,平均每对引物有三个多态。说明亲本间多态性高,F2群体适合于下一步的遗传多图。
Melon is one of tenth most famous fruits, liked by everyone. It is very important to breed new melon breed. So it is necessary to do field analysis before breed. At the same time, create a genetic map can improve the pace of breed.
     we analyze F_2 population which drived from hybrid cross of‘J28-1-4-2(H)-2-2-1×DC-4-1-7-2-1-4-1-1-1,we investigate internode length, leaf width, leaf length, and other six traits. Analysed the data by variance analysis, correlation analysis, path analysis. The result reveal all traits observed in the population and the frequency of those was approximately normally disturbed expect internode length. The results suggested the traits except internode length were controlled by QTLs. The internode length was bimodal distributed, which was different from previously result, suggested it existed gene interaction. The correlation between all the investigated traits were significant. The result of path analysis reveal internode length had a low effect on fruit weight. The significant correlation coefficient between internode length and fruit weight may caused by other traits, which suggest the internode length may not affect the fruit weight. It will provide the theory for melon short internode breeding.
     It is very important to use the marker to screen the ploymorphology between the parents genome, in order to know the genetic relation between the parents, at the same time it can identify which primer can be used in the genetic map. It can save the money and time.
     We use 100 ISSR primers to screen the parents. About 36 primers of them amplified clear bands and 11 of them amplified polymorphic band. We use 704 AFLP primers to screen the parents genome, amplified 32.3 bands per primer, and amplified 22739 bands totally.
     All the primers amplified 2130 polymorphic bands, indicating ploymorphology rate is 9.37%, and three polymorphic bands per primer. So the parents have high ploymorphology between each other, the F2 population can be used in genetic mapping.
引文
[1]姚国新,王建设,陈素生, RAPD方法构建甜瓜分子遗传图谱的引物筛选及评价首都师范大学学报(自然科学版),2005,26(1):68-73.
    [2]王坚,蒋有条,林德佩,等.中国西瓜甜瓜[M].北京:中国农业出版社,2000,351-
    [3]刘君璞and马跃,我国西瓜甜瓜种业的现状与发展对策.中国西瓜甜瓜, 2000(003). 2-6.
    [4] Eng-Chong Pua and Michael R. Davey, Transgenic Crops [M],Springer Berlin Heidelberg,2007,209
    [5]Pangalo, K. I., 1950: Melons and independent genus Melo Adans Botanichesky Zhurnal 35, 571—580.
    [6]Grebenscikov, I., 1953. Die entwicklung der melonsystematik. Kulturpflanze 1, pp. 121–138
    [7]林德佩等,1991中国甜瓜[M]上海,科学普及出版社,1991
    [8][2] Pitrat, M., Gene list for melon. Cucurbit Genet Coop Rep, 2002, 25: 1-18.
    [9]Dogimont, C., A. Bussemakers, J. Martin, S. Slama, H. Lecoq and M. Pitrat. 1997. Two complementary recessivegenes conferring resistance to Cucurbit Aphid Borne Yellows Luteovirus in an Indian melon line (Cucumis melo L.).Euphytica 96:391-395.
    [10]Nugent, P.E., F.P.J. Cuthbert and J.C. Hoffman. 1984. Two genes for cucumber beetle resistance in muskmelon. JAmer Soc Hort Sci 109:756-759
    [11]Dogimont, C., L. Lecomte, C. Périn, A. Thabuis, H. Lecoq and M. Pitrat. 2000. Identification of QTLs contributing to resistance to different strains of cucumber mosaic cucumovirus in melon. in Cucurbitaceae 2000, VIIth EUCARPIA Meeting on Cucurbit Genetics and Breeding (Ed. Katzir, N. and H. Paris), 19-23/03/2000, Ma'ale Hahamisha (ISR).391-398
    [12]Karchi, Z., S. Cohen and A. Govers. 1975. Inheritance of resistance to CucumberMosaic Virus in melons.Phytopathology 65:479-481.
    [13]Thomas, C.E., J.D. McCreight and E.L. Jourdain. 1990. Inheritance of resistance to Alternaria cucumerina in Cucumis melo line MR-1. Plant Disease 74:868-870.
    [14]Cohen, Y., S. Cohen, H. Eyal and C.E. Thomas. 1985. Inheritance of resistance to downy mildew in Cucumis melo PI 124111. Cucurbit Genet Coop Rep 8:36-38.
    [15]Angelov, D. and L. Krasteva. 2000. Dominant inheritance of downy mildew resistance in melons. in Proceedings of Cucurbitaceae 2000 (Ed. Katzir, N. and H.S. Paris), 19-23/03/2000, Ma'ale Ha Hamisha (ISR). 273-275.
    [16]Epinat, C. and M. Pitrat. 1989. Inheritance of resistance of three lines of muskmelon (Cucumis melo) to downy mildew (Pseudoperonospora cubensis). in 'Cucurbitaceae 89' (Ed. Thomas, C.E.), 29/11-02/12/1998, Charleston (USA). 133-135.
    [17]Kenigsbuch, D. and Y. Cohen. 1992. Inheritance of resistance to downy mildew in Cucumis melo PI 124112 and commonality of resistance genes with PI 124111F. Plant Disease 76:615-617.
    [18]Harwood, R.R. and D. Markarian. 1968. The inheritance for resistance to powdery mildew in the cantaloupe variety Seminole. J Hered 59:126-130.
    [19]Harwood, R.R. and D. Markarian. 1968. A genetic survey of resistance to powdery mildew in muskmelon. J Hered 59:213-217.
    [20]Jagger, I.C., T.W. Whitaker and D.R. Porter. 1938. Inheritance in Cucumis melo of resistance to powdery mildew (Erysiphe cichoracearum). Phytopathology 28:761.
    [21]Bohn, G.W. and T.W. Whitaker. 1964. Genetics of resistance to powdery mildew race 2 in muskmelon. Phytopathology 54:587-591.
    [22]Anagnostou, K., M. Jahn and R. Perl-Treves. 2000. Inheritance and linkage analysis of resistance to zucchini yellow mosaic virus, watermelon mosaic virus, papaya ringspot virus and powdery mildew in melon. Euphytica 116:265-270.
    [23]Kenigsbuch, D. and Y. Cohen. 1989. Independent inheritance of resistance to race 1 and race 2 of Sphaerotheca fuliginea in muskmelon. Plant Disease 73:206-208.
    [24]Bohn, G.W., A.N. Kishaba, J.A. Principe and H.H. Toba. 1973. Tolerance to melon aphid in Cucumis melo L. J Amer Soc Hort Sci 98:37-40.
    [25]Sambandam, C.N. and S. Chelliah. 1972. Cucumis callosus (Rottl.) Logn., a valuable material for resistance breeding in muskmelons. in 3rd International Symposium Sub-tropical Horticulture . 63-68.
    [26]Esquinas Alcazar, J.T. 1981. Allozyme variation and relationships among Spanish land races of Cucumis melo L.Kulturpflanze 29:337-352.
    [27]Chen, F.C., C.H. Hsiao, Y.M. Chang and H.W. Li. 1990. Isozyme variation in Cucumis melo L. I. Peroxidase and shikimate dehydrogenase variation in four melon varieties and its application for F1 hybrid identification. J Agric Res China 39:182-189。
    [28]Dane, F. 1983. Cucurbit. in Isozymes in plant genetics and breeding, part B (Ed. Tanksley, S.D. and T.J. Orton),Elsevier Science Publication, Amsterdam (NL). 369-390.
    [29]Lee, C.W. and J. Janick. 1978. Inheritance of seedling bitterness in Cucumis melo. HortScience 13:193-194
    [30]Bohn, G.W. 1968. A red stem pigment in muskmelon. Veg Improv Newslet 10:107
    [31]Mockaitis, J.M. and A. Kivilaan. 1965. A green corolla mutant in Cucumis melo L. Naturwissenschaften 52:434
    [32]Ganesan, J. and C.N. Sambandam. 1979. Inheritance of certain qualitative characters in muskmelon (Cucumis melo L.). Annamalai Univ Agric Res Annals 9:41-44
    [33]Gabillard, D. and M. Pitrat. 1988. A fasciated mutant in Cucumis melo. Cucurbit Genet Coop Rep 11:37-38
    [34]Anderson, C.W., Hardy, M.M., Dunn, J.J., et al., Independent, spontaneous mutants of adenovirus type 2-simian virus 40 hybrid Ad2+ND3 that grow efficiently in monkey cells possess identical mutations in the adenovirus type 2 DNA-binding protein gene. J. Virol, 1983. 48. 31-39
    [35]EM Southern Detection of specific sequences among DNA fragments separated by gel electrophoresis J Mol Biol, 1975.98(3).503-517.
    [36]张海英and许勇,分子标记技术概述(上).长江蔬菜, 2001(002). 4-6.
    [37]John Welsh and Michael McClelland Fingerprinting genomes using PCR with arbitrary primers .Nucleic Acids Research, 1990, Vol. 18, No. 24 7213-7218
    [38]Moore, S.S., Sargeant, L.L., King, T.J., et al., The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. Genomics, 1991. 10(3). 654-60.
    [39]Zabeau, M. and Vos, P., Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application, 1993. 92402629(7).
    [40]Tang, K., Ngoi, S.M., Gwee, P.C., et al., Distinct haplotype profiles and strong linkage disequilibrium at the MDR1 multidrug transporter gene locus in three ethnic Asian populations. Pharmacogenetics, 2002. 12(6). 437-50.
    [41]Cooper, D.N., B.A. Smith, H.J. Cooke et al., An estimate of unique DNA sequence heterozygosity in the human genome . Hum Genet, 1985, 69: 201-205.
    [42]Reich, D.E., S.F. Schaffner, M.J. Daly et al., Human genome sequence variation and the influence of gene history, mutation and recombination . Nature Genet, 2002, 32(1): 135-142.
    [43]Collins, F.S, M.S. Guyer and A. Chakravarti, Variations on a theme: Cataloging human DNA sequence variation. Science, 1997, 278(5343): 1580– 1581.
    [44]Kimchi-Sarfaty, C., J.M. Oh, I.-W. Kim et al., A "silent" polymorphism in the MDR1 gene changes substrate specificity. Science, 2007, 315 (5811): 525– 528.
    [45]Gottgens, B., L.M. Barton, J.G. Gilbert et al., Analysis of vertebrate SCL loci identifies conserved enhancers. Nature Biotechnol, 2000, 18: 181-186.
    [46]Loots, G.G., R.M. Locksley, C.M. Blankespoor et al., Identification of a coordinate regulator of interleukins 4, 13 and 5 by cross-species sequence comparisons. Science, 2000, 288 (5463): 136-140.
    [47]Ren, J.,High-throughput single-strand conformation polymorphism analysis by capillary electrophoresis. J Chromatog B: Biomed Sci Appl, 2000, 741(2): 115–128.
    [48]Sauer, S., D. Lechner, K. Berlin et al., A novel procedure for efficient genotyping of single nucleotide polymorphisms. Nucl Acids Res, 2000, 28(5): E13.
    [49]Cotton, R.H., N.R. Rodrigues and R.D. Campbell, Reactivity of cytosine and thymine in single base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations. PNAS, 1988, 85 (2): 4397–4401.
    [50]Peyret, N., A. Seneviratne, H.T. Allawi and J. Jr. SantaLucia, Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A·A, C·C, G·G, and T·T mismatches . Biochemistry, 1999, 38: 3468–3477.
    [51]Tabone, T., G. Sallmann and E. Webb, Detection of 100% of mutations in 124 individuals using a standard UV/Vis microplate reader: A novel concept for mutation scanning. Nucl Acids Res, 2006, 34(6): e45.
    [52]Myers, R.M., S.G. Fischer, L.S. Lerman et al., Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucl Acids Res, 1985, 13(9): 3131-3145.
    [53]]Landegren, U., R. Kaiser, J. Sanders et al., A ligase-mediated gene detection technique. Science, 1988, 241(4869): 1077–1080.
    [54]Alves, A.M. and F.J. Carr, Dot blot detection of point mutations with adjacently hybridising synthetic oligonucleotide probes. Nucl Acids Res, 1988, 16(17): 8723.
    [55] Newton, C.R., A. Graham, L.E. Heptinstall et al., Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucl Acids Res, 1989, 17(7): 2503–2516.
    [56] Holland, P.M., R.D. Abramson, R. Watson et al., Detection of specific polymerase chain reaction product by utilizing the 5'→3' exonuclease activity of Thermus aquaticus DNA polymerase. PNAS, 1991, 88(16): 7276–7280.
    [57] Syv?nen, A.C., K. Aalto-Setala, L. Harju et al., A primer-guided nucleotide incorporation assay in the genotyping of apolipoprotein E . Genomics, 1990, 8(4): 684-692.
    [58] Syv?nen, A.C., A. Sajantila and M. Lukka, Identification of individuals by analysis of biallelic DNA markers, using PCR and solid-phase minisequencing. Am J Hum Genet, 1993, 52: 46-59.
    [59] Konieczny, A. and F.M. Ausubel, A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific markers. Plant J, 1993, 4(2): 403-410.
    [60] Lyamichev, V., M.A. Brow and J.E. Dahlberg, Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases. Science, 1993, 260(5109): 778–783.
    [61] Roest, P.A.M., R.G. Roberts, S. Sugino et al., Protein truncation test (PTT) for rapid detection of translation-terminating mutations. Hum Mol Genet. 1993, 2(10): 1719–1721.
    [62] Nilsson, M., H. Malmgren, M. Samiotaki et al., Padlock probes: Circularizing oligonucleotides for localized DNA detection . Science, 1994, 265(5181): 2085-2088.
    [63] Youil, R., B.W. Kemper and R.G. H. Cotton, Screening for mutations by enzyme mismatch cleavage with T4 endonuclease VII. PNAS, 1995, 92(1): 87–91.
    [64] Mashal, R.D., J. Koontz and J. Sklar, Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nature Genet, 1995, 9(2): 177-183.
    [65] Hawkins, G.A. and L.M. Hoffman, Base excision sequence scanning . Nature Biotechnol, 1997, 15: 803-804.
    [66] Day, I.N. and S.E. Humphries, Electrophoresis for genotyping: Microtiter array diagonal gel electrophoresis on horizontal polyacrylamide gels, hydrolink, or agarose. Anal Biochem, 1999, 222 (2): 389–395.
    [67] Lyamichev, V., A.L. Mast, J.G. Hall et al., Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nature Biotechnol, 1999, 17(3): 292-296.
    [68] Mandrekar, M., K. Lewis, D. Leippe et al., The reversed enzyme activity DNA interrogation test—A new method for mutation detection. In Patrick A. Limbach,John C. Owicki, Ramesh Raghavachari, Weihong Tan, Editors. Advances in nucleic acid and protein analyses, manipulation, and sequencing. Proc SPIE, 2000, 3926: 111-116.
    [69] Gaunt, T.R., L.J. Hinks, H. Rassoulian et al., Manual 768 or 384 well microplate gel‘dry’electrophoresis for PCR checking and SNP genotyping. Nucl Acids Res, 2003, 31(9): e48.
    [70] Nordfors, L., M. Jansson, G. Sandberg et al., Large-scale genotyping of single nucleotide polymorphisms by PyrosequencingTM and validation against the 5’nuclease (Taqman?) assay. Hum Mut, 2002, 19 (4): 395-401.
    [71] Fischer, S.G. and L.S. Lerman, Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis. Cell, 1979, 16 (1): 191–200.
    [72] Rosenbaum, V. and D. Riesner, Temperature-gradient gel electrophoresis. Thermodynamic analysis of nucleic acids and proteins in purified form and in cellular extracts. Biophys Chem, 1987, 26(2-3): 235–246.
    [73] Orita, M., H. Iwahana, H. Kanazawa et al., Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. PNAS, 1989, 86 (8): 2766-2770.
    [74] Ganguly, A., M.J. Rock and D.J. Prockop, Conformation-sensitive gel electrophoresis for rapid detection of single-base differences in double-stranded PCR products and DNA fragments: Evidence for solvent-induced bends in DNA heteroduplexes. PNAS, 1993, 90 (21): 10325-10329.
    [75] Howell, W.M., M. Jobs, U. Gyllensten et al., Dynamic allele-specific hybridization. A new method for scoring single nucleotide polymorphisms. Nature Biotechnol, 1999, 17(1): 87-88.
    [76] Lipsky, R.H., C.M. Mazzanti, J.G. Rudolph et al., DNA melting analysis for detection of single nucleotide polymorphisms. Clin Chem, 2001, 47: 635-644.
    [77] Underhill, P.A., L. Jin, R. Zemans et al., A pre-Columbian Y chromosome-specifictransition and its implications for human evolutionary history. PNAS, 1996, 93(1): 196-200.
    [78] Wallace, R.B., J. Shaffer, R.F. Murphy et al., Hybridization of synthetic oligodeoxyribonucleotides toΦX 174 DNA: the effect of single base pair mismatch. Nucl Acids Res, 1979, 6(11): 3543-3558.
    [79]唐棣,王志民,SNPs检测方法研究进展。《上海交通大学学报农业科学版》,2007.
    [80]程振家,甜瓜白粉病抗性遗传机制及抗病基因AFLP分子标记研究. 2006.
    [81]Michelmore, R.W., Paran, I., and Kesseli, R.V., Identification of markers linked to disease genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA, 1991. 88. 9828-9832.
    [82]Baudracco-Arnas, S. and M. Pitrat, A genetic map of melon (Cucumis melo L.) with RFLP, RAPD, isozyme, disease resistance and morphological markers. Theor Appl Genet, 1996, 93: 57-64.
    [83]Wang, Y.H., Thomas, C.E., and Dean, R.A., A genetic map of melon (Cucumis melo L.) based on amplified fragment length polymorphism (AFLP) markers. TAG Theoretical and Applied Genetics, 1997. 95(5). 791-798.
    [84]Liou, P.C., Y.M. Chang et al., Construction of linkage map in Cucumis melo L. using random amplified polymorphic DNA markers. Acta Hort, 1998, 461: 123-131.
    [85]Brotman, Y., L. Silberstein, I. Kovalski et al., Linkage groups of Cucumis melo, including resistance gene homologues and known genes. Acta Hort, 2000, 510: 441-448.
    [86]Oliver, J.L., J. Garcia-Mas, M. Cardus et al., Construction of a reference linkage map of melon. Genome, 2001, 44: 836-845.
    [87]Danin-Poleg, Y., Tadmor, Y., Tzuri, G., et al., Construction of a genetic map of melon with molecular markers and horticultural traits, and localization of genesassociated with ZYMV resistance. Euphytica, 2002. 125(3). 373-384.
    [88]Périn, C., L. Hagen, V. De Conto et al., A reference map of Cucumis melo based on two recombinant inbred line populations. Theor Appl Genet, 2002, 104:1017-1034. [ 89]Park, Y., Katzir, N., Brotman, Y., et al., Comparative mapping of ZYMV resistances in cucumber (Cucumis sativus L.) and melon (Cucumis melo L.). TAG Theoretical and Applied Genetics, 2004. 109(4). 707-712.
    [90]M. J. Gonzalo1, M. Oliver1, 3, J. Garcia-Mas Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.) . TAG Theoretical and Applied Genetics, 2005 110(5). 802-811
    [91]Zalapa, J.E., Staub, J.E., McCreight, J.D., et al., Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US Western Shipping melon germplasm. TAG Theoretical and Applied Genetics, 2007. 114(7). 1185-1201.
    [92]姚建春,利用香瓜×哈密瓜F2群体构建SRAP连锁图. 2006. 34-36.
    [93]中国农科院郑州果树所等.中国西瓜甜瓜[ M].北京:中国农业出版社,2000
    [94] Knavel D E. Inheritance of short-internode mutant of main steam muskmelon [J].Hortscience 1990,25 (1 0):1274—1275.
    [95] Harry S. Paris, Haim Nerson, Zvi Karchi Paris H S genetics of internode length in melons [J].J Herid, 1984,75: 4103-407.
    [96]郭龙彪,罗利军,邢永忠.籼优63重组自交系群体重要农艺性状遗传分析和利用[J].作物学报. 2002,28(5):644-649.
    [97]孙蕾,程须珍,王素华,等栽培绿豆V2709抗豆象特性遗传分析. [J].植物遗传资源学报2007, 8 (2) : 209-212.
    [98]高惠璇实用统计方法与SAS系统[M].北京:北京大学出版社,2001:69-105.
    [99]任红松,吕新,曹连莆,等通径分析的S AS实现方法[J].计算机与农业,2003,4:17-19.
    [100]张天伦,崔艳超,徐恒玉通径分析在EXCEL上的实现[J].农业网络信息, 2004, 8:36-37.
    [101]宋曙辉,晓伟,张立杰.甜瓜短蔓性状的遗传分析[J].华北农学报.2003 ,18 (4) :58 -60.
    [102]郭龙彪,罗利军.籼粳交重组自交群体主要农艺性状分析[J].中国水稻科学. 2001, 15(3):221-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700