缺铁胁迫对海豚链球菌生长的影响及铁转运蛋白基因(ftsABCD)的克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海豚链球菌(Streptococcus iniae)是一类重要的鱼类病原菌,由该菌引起的鱼类海豚链球菌病对当今世界的水产养殖业造成了巨大的经济损失。为了能有效的控制海豚链球菌病,需要对海豚链球菌毒力因子进行深入研究,寻找有效的抗原。铁元素是一种生命必须的营养元素,众多研究表明铁元素作为一种重要的环境信号因子影响着细菌相关毒力基因的表达,另外,负责铁转运的复合体属于ABC转运体家族,该转运体上的铁元素受体结合蛋白具有一定的抗原性,能作为亚单位疫苗的候选者之一。基于上述原因,本文选择对海豚链球菌进行铁胁迫以及铁转运基因的研究,希望能初步揭示铁元素对海豚链球菌的重要作用,以及通过分子生物学方法找到海豚链球菌铁转运体并对受体蛋白的抗原性进行验证,为亚单位疫苗的研制打下基础。
     本研究使用次氮基三乙酸钠盐(Nitrilotriacetic acid trisodium salt,NTA)作为铁螯合剂添加到脑心浸液培养基中人为制造缺铁培养环境,观察海豚链球菌的生长情况。结果表明:加入终浓度为5 mM NTA能够延缓海豚链球菌HD-1菌株对数生长期时间6 hr,且静止期细菌密度是0.67,要显著小于对照组0.77,且革兰氏染色发现细菌形成长链状;加入终浓度为15 mM NTA则完全抑制海豚链球菌HD-1生长,再加入100μM血红蛋白或者100mM氯化铁则细菌恢复生长。进一步分析不同条件下生长的海豚链球菌细胞组分(SDS-PAGE电泳分析),发现对照组与5mM NTA处理组相比,其全菌可溶蛋白、全菌不可溶蛋白、原生质体破碎蛋白、胞壁蛋白、原生质体不可溶蛋白、原生质体可溶蛋白等成分均有差异。使用CAS检测法未能检测出海豚链球菌HD-1产生siderophore蛋白。此结果表明海豚链球菌并不是通过分泌siderophore来摄取铁源,而是另有途径。
     在对缺铁胁迫培养条件下海豚链球菌的各种表观特征进行了初步研究后,本研究利用海豚链球菌ATCC 9117菌株盲测序列数据库,与从NCBI中获得的酿脓链球菌FtsABCD铁转运蛋白序列进行tblastn,找到同源性较高的海豚链球菌相关基因,并命名为海豚链球菌ftsABCD。设计特异性引物扩增基因全长后发现ftsA基因全长783 bp,编码260个氨基酸; ftsB基因全长为927 bp,编码308个氨基酸; ftsC基因全长为1,029 bp,编码342个氨基酸; ftsD基因全长为999 bp,编码332个氨基酸。经过生物信息学分析预测海豚链球菌FtsABCD为一个ABC转运体(ABC transporter),其中FtsA基因为ATP水解酶,FtsB为底物结合蛋白,FtsC与FtsD均为通透酶。
     通过克隆引入了BamH I、Xho I双酶切位点的ftsB成熟肽序列,构建了原核表达质粒,然后将质粒转入大肠杆菌BL21进行FtsB重组蛋白的表达。通过优化温度、时间与诱导剂IPTG浓度,最终确定了重组蛋白表达的最佳条件。FtsB重组蛋白分子量为49.6 kDa,由于其带有组氨酸标签,因此用镍柱对混合蛋白进行纯化,然后对纯化的重组蛋白进行脱盐,冷冻干燥浓缩。
     将海豚链球菌HD-1通过腹腔注射到小鼠体内,进行人工感染,在感染后第10天取感染小鼠血清作为一抗,碱性磷酸酶标记的马抗鼠抗体为二抗,对电转到硝酸纤维素膜上的FtsB重组蛋白进行western blot检测。结果发现,一抗能特异性的检测到FtsB重组蛋白。这表明海豚链球菌HD-1在感染小鼠的过程中,ftsB基因转录并表达,且表达产物FtsB蛋白能被小鼠免疫系统识别为有效抗原并产生了相应的抗体。因此,FtsB能够作为亚单位疫苗有效抗原的候选之一。
Streptococcus iniae is one of the most important fish pathogens that caused millions of dollars economic damage every year. In order to control Streptococcus iniae effectively, studies that focused on the virulence factors are needed. In this study, we find that iron starvation caused by addition of NTA in the final concentration 5mM postpones the log phase of bacterial growth almost 6 hours, when examined under microscope the gram stained bacteria showed a long chain appearance and the protein profile changed a lot compared with the positive control. Siderophore could not be detected by the universal CAS assay. Using the protein sequences of Streptococcus pyogene ferrichrome transporter FtsABCD, we searched the raw genome sequence of Streptococcus iniae 9117 provided by the Baylor College of Medicine. Then we designed 2 pairs of nested PCR primers for each gene based on the conserved domains and cloned part sequences of the ftsABCD of Streptococcus iniae. The cloned sequences matched perfectly with the genome sequences of Streptococcus iniae, in this case we designed the ORF primers based on the ORF predictions of the sequences from the database. As a result, the length of ftsA is 783 bp, ftsB is 927 bp, ftsC is 1029 bp, ftsD is 999bp. The results of signal peptide and transmembrane prediction, and combined with the results of NCBI‘s Conserved Domains search indicated that FtsABCD of Streptococcus iniae constitutes an ABC transporter in which FtsA is ATP binding protein, FtsB is substrate binding protein, FtsC and FtsD are permeases. Next, the prokaryote expression system of FtsB was constructed using the PCR products of ftsB mature sequence and the plasmid pET-32a. Then the recombinate FtsB protein was pured by Ni+ affinity chromatography and lyophilized and stored at -80℃.In the serum of mouse that have been infected by Streptococcus iniae we detected antibody against the recombinate FtsB protein specifically by western blot.
     In concluding, iron is an essential nutrient that Streptococcus iniae needs to survive. And the ftsABCD gene of Streptococcus iniae constitutes an ABC transporter, ftsB gene is translated during the infection of mouse by Streptococcus iniae. Finally, the product of ftsB has some kind of immunogenicity and could be used as the candidate of subunit vaccine.
引文
[1] Pier, G.B., Madin, S.H.. Streptococcus iniae sp. nov., a beta-hemolytic Streptoco-ccus isolated from an Amazon freshwater dolphin, Inia geoffrensis. Int. J. Syst. Bacteriol. 1976, 26: 545-553.
    [2] J.T.W. Foo, B. Ho and T.J. Lam. Mass mortality in Siganus canaliculatus due to streptococcal infection. Aquaculture. 1985, 49(3-4): 185-195.
    [3] Tadatoshi KITAO, Takashi AOKI and Ryomei SAKOH. Epizootic caused byβ-Haemoltytic Streptococcus Species in Cultured Freshwater Fish. Fish Pathology. 1981, 15(3-4): 301-307.
    [4] Avi Eldar, Yitzhak Bejerano and Hervc Bereovier. Streptococcus shiloi and strep-tococcus difficile: two new streptococcal species causing a meningoencephalitis in fish. Current Microbiology. 1994, 28: 139-143.
    [5] Yuasa, K., Kitancharoen, N., Kataoka, Y., Al-Murbaty, F.A., 1999. Streptococcus iniae, the causative agent of mass mortality in rabbit?sh Siganus canaliculatus in Bahrain. J. Aquat. Anim. Health 11, 87-93.
    [6] Stoffregen, D., Backman, S., Perham, R., Bowser, P., Babish, J.,1996.Initial disease report of Streptococcus iniae infection in hybrid striped (sunshine) bass and successful therapeutic intervention with the ?uoroquinolone antibacterial enro?oxacin. J. World Aquacult. Soc. 27, 420-434.
    [7] Bromage, E.S., Thomas, A., Owens, L. . Streptococcus iniae, a bacterial infection in barramundi Lates calcarifer. Dis. Aquat. Org. 1999, 36: 177-181.
    [8] S M Zhou, M Q Xie, X Q Zhu, Y Ma, Z L Tan and A X Li. Identification and genetic characterization of Streptococcus iniae strains isolated from diseased fish in China. Journal of Fish Diseases. 2008, 31:869–875.
    [9] Weinstein, M.R., Litt, M., Kertesz, D.A., Wyper, P., Rose, D., Coulter, M., McGeer, A., Facklam, R., Ostach, C., Willey, B.M., Borczyk, A., Low, D.E., 1997. Invasive infections due to a ?sh pathogen Streptococcus iniae. New England J. Med. 337, 589-594.
    [10] Goh, S.H., Driedger, D., Gillett, S., Low, D.E., Hemmingsen, S.M. Amos, M., Chan, D., Lovgren, M., Willey, B.M., Shaw, C. Smith, J.A. . Streptococcus iniae, a human and animal pathogen: speci?c identi?cation by the chaperonin 60 gene identi?cation method. J. Clin. Microbiol. 1998, 36, 2164-2166.
    [11] Lau, S.K.P., Woo, P.C.Y., Tse, H., Leung, K.-W., Wong, S.S.Y. and Yuen. Invasive Streptococcus iniae infections outside North America. J. Clin. Microbiol. 2003, 41, 1004–1009.
    [12] Koh, T.H., Kurup, A., Chen, J. Streptococcus iniae discitis in Singapore. Emerg. Infect. Dis. 2004, 10, 1694-1696.
    [13] Facklam, R., Elliott, J., Shewmaker, L., Reingold, A.. Identi?cation and charac-terization of sporadic isolates of Streptococcus iniae isolated from humans. J. Clin.Microbiol. 2005, 43, 933-937.
    [14] Hansen GR, Woodall J, Brown C, Jaax N, McNamara T, Ruiz A. Emerging zoo-notic diseases. Panel summary from the International Conference on EmergingInfectious Diseases Conference, Atlanta, Georgia, 2000. Emerg Infect Dis. 2001, 7:537.
    [15] Wendy Agnew, Andrew C. Barnes. Streptococcus iniae: An aquatic pathogen of global veterinary significance and a challenging candidate for reliable vaccine-tion. Veterinary Microbiology. 2007, 122:1-15.
    [16] Gilad Bachrach, Amir Zlotkin, Avshalom Hurvitz, Donald L. Evans and Avi Eldar. Recovery of Streptococcus iniae from Diseased Fish Previously Vacci-nated with a Streptococcus Vaccine. Applied Env Micro. 2001, 67(8): 3756-3758
    [17] A. L. Bisno, M. O. Brito and C. M. Collins. Molecular basisi of group A strept-ococcal virulence. Lancet Infectious Diseases. 2003, 3: 191-199.
    [18] Geyer A, Schmidt KH. Genetic organisation of the M protein region in human isolates of group C and G streptococci: two types of multigene regulator-like (mgrC) regions. Mol Gen Genet 2000, 262(6):965-976.
    [19] Pinho MD, Melo-Cristino J, Ramirez M. Clonal relationships between invasive and noninvasive Lancefield group C and G streptococci and emm-specific differences in invasiveness. J Clin Microbiol. 2006, 44(3): 841-846.
    [20] Courtney HS, Hasty DL, Dale JB. Anti-phagocytic mechanisms of Streptococcus pyogenes: binding of fibrinogen to M-related protein.Mol Microbiol. 2006, 59(3): 936-947.
    [21] Meehan M, Lynagh Y, Woods C, Owen P. The fibrinogen-binding protein (FgBP) of Streptococcus equi subsp. equi additionally binds IgG and contributes to virulence in a mouse model. Microbiology. 2001, 147: 3311-3322.
    [22] Geyer A, Roth A, Vettermann S, Gunther E, Groh A, Straube E, Schmidt K: M protein of a Streptococcus dysgalactiae human wound isolate shows multiple binding to different plasma proteins and shares epitopes with keratin and human cartilage. FEMS Immunol Med Microbiol. 1999, 26(1): 11-24.
    [23] Carlsson F, Sandin C, Lindahl G: Human fibrinogen bound to Streptococcus pyogenes M protein inhibits complement deposition via the classical pathway. Mol Microbiol. 2005, 56(1): 28-39.
    [24] Justice CF Baiano, Reiny A Tumbol, Aarti Umapathy and dAndrew C Barnes. Identification and molecular characterisation of a fibrinogen binding protein from Streptococcus iniae.BMC Microbiology. 2008, 8: 67
    [25] Locke JB, Aziz RK, Vicknair MR, Nizet V, Buchanan JT. Streptococcus iniae M-like protein contributes to virulence in ?sh and is a target for live attenuated vaccine development. PLoS One. 2008, 3: e2824.
    [26] Jesse D. Miller and Melody N. Neely. Large-scale screen highlights the import-ance of capsule for virulence in the zoonotic pathogen Streptococcus iniae. Infec and Immun. 2005, 73(2): 921-934.
    [27] Beth A. Lowe, Jesse D. Miller and Melody N. Neely. Analysis of the polysaccharide capsule of the systemic pathogen Streptococcus iniae and its implication in virulence. Infec and Immun. 2007, 75(3): 1255-1264.
    [28] Kimihiro Shutou, Kinya Kanai and Kazuma Yoshikoshi. Virulence attenutaion of capsule polysaccharide-deleted mutants of Streptococcus iniae in Japanese flounder Paralichthys olivaceus. Fish Path. 2007, 42(1): 41-48.
    [29] Kiminitro Shutou, Kinya Kanai and Kazuma Yoshikoshi. Role of capsule in imunog-enicity of Streptococcus iniae to Japanese flounder Paralichthys olivaceus. Fish Path. 2007, 42(2): 101-106.
    [30] Jeffrey B. Locke,Kelly M. Colvin,Anup K. Datta,Silpa K. Patel, Nandita N. Naidu, Melody N. Neely, Victor Nizet and John T.Buchananl. Streptococcus iniae Capsule Impairs Phagocytic Clearance and Contributes to Virulence in Fish. J of Bacteri. 2007, 189(4): 1279-1287.
    [31] Shelly Bolotin, Jeffrey D. Fuller, Darrin J. Bast, Terry J. Beveridge and Joyce C.S de Azavedo. Capsule expression regulated by a two-component signal transducti-on system in Streptococcus iniae. FEMS Immunol Med Microbiol. 2007, 50: 366-374.
    [32] Shelly Bolotin, Jeffrey D. Fuller, Darrin J. Bast, Terry J. Beveridge and Joyce C.S de Azavedo. The two-component system sivS/R regulates virulence in Streptoco-ccus iniae. FEMS Immunol Med Microbiol. 2007, 51: 547-554.
    [33] Jeffrey D. Fuller, Alvin C. Camus, Carla L. Duncan, Victor Nizet, Darrin J. Bast, Ronald L. Thune, Donald E. Low and Joyce C. S. de Azavedo. Identification of a streptolysin S-associated gene cluster and its role in the pathogenesis of Strepto-coccus iniae disease. Infection and Immunity. 2002,70 (10) : 5730-5739
    [34] Jeffrey B. Locke, Kelly M. Colvin, Nissi Varki, Mike R. Vicknair, Victor Nizet and John T. Buchanan. Streptococcus iniaeβ-hemolysin streptolysin S is a virulence factor in fish infection. Dis Aqu Org. 2007, 76:17-26.
    [35] John T. Buchanan, Jason A. Stannard, Xavier Lauth, Vaughn E. Ostland, Henry C. Powell, Mark E. Westerman and Victor Nizet. Streptococcus iniae phosphoglucomutase is a virulence factor and a target for vaccine development. Infection and Immunity. 2005, 73(10):6935-6944.
    [36] Kenneth N. Raymond and Carl J. Carrano. Coordination chemistry and microbial iron transport. Acc. Chem. Res. 1978, 12:183-190.
    [37] Colin Ratledge and Lynn G Dover. Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol. 2000, 54: 881-941.
    [38] Jorge H. Crosa, Alexandra R. Mey and Shelley M. Payne, 2004. Iron transport in bacteria. American Society for Microbiology Press.ISBN:1-55581-292-9.Page4.
    [39] Volkmar Braun?, Michael Braun. Iron transport and signaling in Escherichia coli . FEBS Letters. 2002, 529: 78-85.
    [40] RJ Courcol, D Trivier, MC Bissinger, GR Martin and MR Brown. Siderophore produ-ction by Staphylococcus aureus and identification of iron-regulated proteins.Infec Immun. 1997, 65(5): 1944-1948.
    [41] James J. De Voss, Kerry Rutter, Benjamin G. Schroeder and Clifton E. Barry III. . Iron Acquisition and Metabolism by Mycobacteria. Journal of Bacteriology. 1999, 181(15): 4443-4451.
    [42] Rosa Aznar, Carmen Amaro, Elena Alcaide and Manuel L. Lemos. Siderophore product-ion by environmental strains of Salmonella species. FEMS Microbiology Letters. 1989, 57(1):7-12.
    [43] S M Payne and R A Finkelstein. Siderophore production by Vibrio cholerae. Infect Immun. 1978, 20(1): 310-311.
    [44] Tohru Kokubo, Takaji Iida and Hisatsugu Wakabayashid. Production of Sidero-phore by Edwardsiella tarda. Fish Pathology. 1990, 25(4): 237-241.
    [45] Matthias Strieker, Alan Tanovic′and Mohamed A Marahiel. Nonribosomal peptide synthetases: structures and dynamics .Current Opinion in Structural Biology. 2010, 20: 234-240.
    [46] Robert Finking and Mohamed A. Marahiel. Biosynthesis of nonribosomal peptid-es. Annu. Rev. Microbiol. 2004, 58: 453-88.
    [47] Cecile Wandersman and Philippe Delepelaire. Bacterial iron sources: from siderophores to hemophores. Annu. Rev. Microbiol. 2004, 58: 611-647.
    [48] Iain L. Lamont, Paul A. Beare, Urs Ochsner, Adriana I. Vasil, and Michael L. Vasil. Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. PNAS. 2002, 99(10): 7072-7077.
    [49] Oide S, Moeder W,Hass H,Krasnoff S,Gibson D,Hubertus Haas,Keiko Yoshioka and B. Gillian Turgeon. NPS6, encoding a nonribosomal peptide synthetase involved in siderphore-mediated iron metabolism is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell. 2006, 18: 2836-2853.
    [50] Hubertus Haas, Martin Eisendle and B. Gillian Turgeon.Siderophores in fungal physiology and virulence .Annu. Rev. Phytopathol. 2008, 46:149-87.
    [51] Angus Buckling, Freya Harrison1, Michiel Vos, Michael A. Brockhurst, Andy Gardner, Stuart A. West and Ashleigh Grif?n. Siderophore-mediated cooperation and virulence in Pseudomonas aeruginosa. FEMS Microbiol Ecol. 2007, 62: 135-141.
    [52] Schwyn B., Neilands J.B. Universal CAS assay for the detection and determin-ation of siderophores. Anal. Biochem. 1987, 160: 47-60.
    [53] Sung Heui Shin, Yong Lim, Shee Eun Lee, Nam Woong Yang and Joon Haeng Rhee. CAS agar diffusion assay for the measurement of siderophores in biological fluids. J Micro Method. 2001, 44:89-95.
    [54] S. Perez-Miranda, N. Cabirol, R. George-Tellez, L.S. Zamudio-Rivera and F.J. Fernandez. O-CAS, a fast and universal method for siderophore detection. J Micro Method. 2007, 70: 127-131.
    [55] Stanley S. Tai, Chi-Jen Lee and Ruth E. Winter. Hemin utilization is related to virulence of Streptococcus pneumoniae. Infection and Immunity. 1993, 61(12): 5401-5405.
    [56] Anne Clancy, Jesse W. Loar, Craig D. Speziali, Michael Oberg, David E. Heinri-chs and Craig E. Rubens. Evidence for siderophore-dependent iron acquisition in group B streptococcus. Molecular Microbiology. 2006, 59(2): 707-721.
    [57] Wolfgang Koster. ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B12. Res. Microbiol. 2001, 152: 291-301.
    [58] Kaspar Hollenstein, Roger JP Dawson and Kaspar P Locher. Structure and mech-anism of ABC transporter proteins. Current Opinion in Structural Biology. 2007, 17: 412-418.
    [59] Sutcliffe and Harrington. Lipoproteins of Mycobacterium tuberculosis: an abundant and functionally diverse class of cell envelope components. FEMS Microbiol. Rev. 2004, 28: 645-659.
    [60] Sutcliffe, I. C. and Hutchings, M.I. Putative lipoproteins identified by bioinfor-matic genome analysis of Leifsonia xyli ssp. xyli, the causative agent of sugarc-ane ratoon stunting disease. Mol.Plant Pathol. 2007, 8, 121-128
    [61] Bengtsson, J. et al. Bacillus subtilis contains two small c-type cytochromes with homologous heme domains but different types of membrane anchors. J. Biol. Chem. 1999, 274: 26179-26184.
    [62] Sutcliffe, I.C. and Harrington, D.J. Pattern searches for the identification of putative lipoprotein genes in Gram-positive bacterial genomes. Microbiology. 2002, 148, 2065-2077.
    [63] Babu, M.M. et al. A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. J. Bacteriol. 2006, 188: 2761-2773.
    [64] Matthew I. Hutchings, Tracy Palmer, Dean J. Harrington and Iain C.Sutcliffe. Lipoprotein biogenesis in Gram- positive bacteria: knowing when to hold'em, knowing when to fold'em. Trends in Microbiology. 2008, 17(1):13-21.
    [65] Brown J. S., A.D. Ogunnii, M.C. Woodrow, D.W.Holden and J.C. Paton. Immun-ization with components of two iron uptake ABC transporters protects mice agai-nst systemic Streptococcus pneumoniae infection. Infect. Immun. 2001, 69:6702-6706.
    [66] Benfang Lei, Mengyao Liu, Gillian L. Chesney and James M. Musser. Identifica-tion of new candidate vaccine antigens made by Streptococcus pyogenes: purify-cation and charac- terization of 16 putative extracellular lipoproteins. J Infectious Diseases. 2003, 189: 79-89.
    [67] Robert Janulczyk, Jan Pallon and Lars Bjorck. Identification and characterization of a Streptococcus pyogenes ABC transporter with multiple specificity for metal cations. Mol Micro. 1999, 34(3):596-606.
    [68] Tracey S Hanks, Mengyao Liu, Michael J McClure and Benfang Lei. ABC transporter FtsABCD of Streptococcus pyogenes mediates uptake of ferric ferrichrome. BMC Micro. 2005, 5: 62.
    [69] Lei B, Liu M, Smoot LM, Menning HM, Voyich JM, Kala SV, DeLeo FR, Musser JM. Identification and characterization of a novel heme-associated cell-surface protein made by Streptococcus pyogenes. Infect Immun. 2002, 70: 4494-4500.
    [70] Lei B, Liu M, Voyich JM, Prater CI, Kala SV, DeLeo FR, Musser JM. Identifi-cation and Characterization of HtsA, A Second Heme-Binding Protein Made by Streptococcus pyogenes.Infect Immun. 2003, 71: 5962-5969.
    [71] Liu M, Lei B. Heme transfer from streptococcal cell-surface protein Shp to HtsA of transporter HtsABC.Infect Immun. 2005, 73: 5086-5092.
    [72] Bates CS, Montanez GE, Woods CR, Vincent RM, Eichenbaum Z. Identification and characterization of a Streptococcus pyogenes operon involved in binding of hemoproteins and acquisition of iron.Infect Immun. 2003, 71: 1042-1055.
    [73] Jeremy S. Brown, Sarah M. Gilliland, Javier Ruiz-Albert and David W. Holden. Characterization of Pit, a Streptococcus pneumoniae iron uptake ABC transporter. Infect Immun. 2002, 70(8): 4389-4398.
    [74] Brown J. S., M. Gilliland and D. W. Holden. A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake andvirulence. Mol. Microbiol. 2001, 40: 572-585.
    [75] Brown J. S., A. D. Ogunniyi, M. C. Woodrow, D. W. Holden and J. C. Paton. Immun-ization with components of two iron-uptake ABC transporters protects mice against systemic infection with Streptococcus pneumoniae. Infect. Immun. 2001, 69: 6702-6706.
    [76] Shelly Bolotin, Jeffrey D. Fuller, Darrin J. Bast and Joyce C.S. de Azavedo. The two-component system sivS/Rregulatesvirulence in Streptococcus iniae. FEMS Immunol Med Microbiol. 2007, 51: 547-554.
    [77] Eugene D. Weinberg. Iron and infection. Microbiol Rev. 1978, 42(1): 45-66.
    [78] Christine M. Litwin and Stephen B. Calderwood. Role of iron in regulation of virulence genes. Clinical Microbiology Reviews. 1993, 6(2): 137-149.
    [79] Wei Li, Lei Liu, Huanchun Chen and Rui Zhou. Identification of Streptococcus suis genes preferentially expressed under iron starvation by selective capture of transcribed sequences. FEMS Microbiol Lett. 2009, 292: 123-133.
    [80] R. Gupta, P. Shah, E. Swiatlo. Differential gene expression in Streptococcus pneumonia in response to various iron sources. Microbial Pathogenesis. 2009, 47: 101-109.
    [81] M. Laura Perez Vidakovics, Jaime Paba, Yanina Lamberti, C. Andre Ricart, Marcelo Valle de Sousa and M. Eugenia Rodriguez. Profiling the Bordetella pertussis proteome during iron starvation. J Proteome Research. 2007, 6: 2518-2528.
    [82] Katsushiro Miyamoto, Kazutaka Kosakai, Satomi Ikebayashi, Takahiro Tsuchiya, Shigeo Yamamoto and Hiroshi Tsujibo. Proteomic analysis of Vibrio vulnificus M2799 grown under iron-repleted and iron-depleted conditions. Microbial Pathogenesis. 2009, 46: 171-177.
    [83] Blanca De Las Rivas, Jose′L. García, Rubens Lo′pez and Pedro García. Purifica-tion and Polar Localization of Pneumococcal LytB, a Putative Endo-N-Acetylg-lucosaminidase: the Chain-Dispersing Murein Hydrolase. J Bacteriology. 2002, 184(18): 4988-5000.
    [84] Wai-Leung Ng, Krystyna M. Kazmierczak and Malcolm E. Winkler. Defective cell wall synthesis in Streptococcus pneumonia R6 depleted for the essential PcsB putative murein hydrolase or the VicR (YycF) response regulator. Molecular Microbiology. 2004, 53(4): 1161-1175.
    [85] Bernhard Schwyn and J. B. Neilands. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry. 1987, 160(1): 47-56.
    [86]沈智华,钱冬,许文军,顾金华,邵健忠。红拟石首鱼海豚链球菌分离、鉴定及致病性研究。水生生物学报.2005,29(6):678-683.
    [87]周素明,李安兴,马跃,刘瑞明.养殖鱼类链球菌病病原的分离鉴定及其16S rDNA分析.中山大学学报(自然科学版).2007, 46(2).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700