脑源性神经营养因子、磷脂酶C基因与环境因素及其相互作用对抗抑郁剂临床疗效的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     临床抗抑郁剂治愈率低、潜伏期长,但其作用机理尚不明确。近年来的研究显示,抗抑郁剂可以作用于单胺类受体影响细胞内信号传导,调节神经细胞生长、增殖、存活和神经可塑性,从而发挥抗抑郁作用。脑源性营养因子(brain-derived neurotrophic factor,BDNF)在调节神经可塑性中起着重要作用,被认为是抗抑郁剂的作用靶点。BDNF也可以通过与酪氨酸激酶(tyrosine kinase,Trk)受体结合激活细胞内促分裂原活化蛋白激酶(mitogenactivated protein kinase,MAPK)等参与抗抑郁剂作用机制的信号传导通路。有研究表明磷脂酰肌醇(phosphoinositide,PI)信号传导通路可能参与抗抑郁剂的作用机制,其中磷脂酶C(phospholipase C,PLC)是调节PI代谢的主要蛋白酶。PLCε蛋白(phospholipase C epsilon)是PLC家族的一员,与Ras蛋白特异性结合。PLCε蛋白不仅参与PI信号传导,还可以通过Ras蛋白参与MAPK信号通路,从而参与抗抑郁剂的作用机制。探讨BDNF、PLCε的PLCE1基因和环境因素及其相互作用对抗抑郁剂治疗抑郁症临床疗效的影响。
     方法
     按照美国诊断和统计手册第4版(Diagnostic and statisticalmanual of mental disorder-IV,DSM-Ⅳ)入组340例抑郁症患者,共302例完成8周抗抑郁剂治疗。治疗前、治疗2周、4周、6周、8周采用汉密尔顿抑郁量表(Hamilton depression rating scale,HDRS)评定抑郁严重程度和治疗疗效,其中188例抑郁症患者完成儿童期创伤问卷(childhood trauma questionnaire,28 item short form,CTQ-SF)及生活事件量表(life events scale,LES),分别评定早期负性生活事件及发病前应激事件刺激量;采用Illumina GoldenGate定制芯片分析患者BDNFVal66Met基因多态性和PLCE1基因各单核苷酸多态性(single nucleotide polymorphism,SNP)(SNP1:rs17109671、SNP2:rs17109674、SNP3:rs17417407、SNP4:rs2274224、SNP5:rs3765524和SNP6:rs2274223)。以4周后HDRS分值减分率≥50%为界,分为有效组和无效组;以8周后HDRS分值≤7为界,分为痊愈组和未痊愈组。采用SPSS11.0、Haploview 4.0、Unphased3.0.13和多因素维降法(multifactor dimensionality r eduction,MDR)软件包进行统计分析。
     结果
     4周抗抑郁剂治疗有效组和无效组间、8周抗抑郁剂治疗痊愈组和未痊愈组间,BDNF Val66Met基因型和等位基因分布频率差异均无统计学意义(P=0.943,0.754;P=0.890,0.845)。PLCE1基因中rs17109671 A等位基因分布频率在无效组中显著高于有效组(P=0.048),而在未痊愈组中AA基因型和A等位基因显著高于痊愈组(P=0.013,0.004);rs1710974 G等位基因和GG基因型分布频率在未痊愈组中显著高于痊愈组(P=0.001,0.008)。在4周有效组-无效组中,单倍型A-C(SNP1-4)、A-G-C (SNP1-2-4)、A-C-G (SNP1-4-5)、G-C-G(SNP2-4-5)和A-C-G-A(SNP1-4-5-6)分布频率在有效组中显著高于无效组(PA-C=0.005,PA-G-C=0.003,PA-C-G=0.003,PG-C-G=0.007,PA-C-G-A=0.004);而在8周痊愈-未愈组中单倍型G-C(SNP1-4)、G-A-C(SNP1-2-6)、G-C-G(SNP1-4-5)、A-C-G-A(SNP2-4-5-6)在痊愈组中分布频率显著高于未愈组(PG-C=0.003,PG-A-C=0.002,PG-C-G=0.003,PA-C-G-A=0.001)。BDNF Val66Met基因多态性与PLCE1基因多态性联合作用对抗抑郁疗效并无统计学意义。CTQ-SF及LES分值在4周有效组与无效组间、8周痊愈组与未痊愈组间的差异无统计学意义。多因素Logistic回归模型分析显示BDNF Val66Met基因多态性与各量表赋值交互作用对短期抗抑郁剂疗效无统计学意义,而PLCE1基因rs2274224基因多态性与CTQ总分交互作用对8周抗抑郁剂疗效具有统计学意义(P=0.041)。
     结论
     携带PLCE1基因rs17109671 A等位基因的患者4周抗抑郁剂治疗疗效差,而分别携带rs17109671(AA基因型和A等位基因)和rs1710974(GG基因型和G等位基因)的患者8周抗抑郁剂疗效差。单倍型A-C(SNP1-4)、A-G-C (SNP1-2-4),A-C-G (SNP1-4-5)、G-C-G(SNP2-4-5)和A-C-G-A(SNP1-4-5-6)与4周抗抑郁剂治疗疗效较好有关。单倍型G-C(SNP1-4)、G-A-C(SNP1-2-6)、G-C-G(SNP1-4-5)和A-C-G-A(SNP2-4-5-6)与8周抗抑郁疗效较好有关。rs2274224基因多态性与儿童期创伤经历对8周抗抑郁剂疗效存在交互作用。而发病前生活事件应激和儿童期创伤经历、BDNF Val66Met基因多态性及两环境因素与BDNF基因交互作用对短期抗抑郁剂疗效没有明显影响。
Objective
     The clinical remission of antidepressant treatment was low with a long incubation period, but the mechanism is unclear. Several studies showed antidepressant could influence intracellular signal transduction, regulate of nerve cell growth, proliferation, survival and neural plasticity by acting on monoamine receptors. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophic family known to regulate neuronal plasticity and survival, may play an important role in the mechanisms underlying antidepressant therapeutic action. BDNF could active mitogenactivated protein kinase (MAPK) pathway, which participated in the mechinsim of antidepressant, through coupling with tyrosine kinase (Trk). Recent studies showed antidepressant could modulate phosphoinositide (PI) by interacting with the phospholipase C (PLC). Phospholipase C epsilon (PLCε) is a member of PLC families, which was initially characterized as a novel Ras-binding protein. PLCεwas not only the enzyme to odulate PI signal transduction, but also a indirect mediator of MAPK signal transduction though Ras, which participate in the mechanism of depression and may be the target of the antidepressant action. The aim of this study was to examine the associations of antidepressant treatment with BDNF Val66Met polymorphism, PLCE1 gene, environment factors and their interactions.
     Methods
     We recruited 340 patients of major depressive disorder (MDD) who met the diagnosis criteria of MDD (DSM-IV Axis I). 302 patients of them were finished 8 weeks antidepressant treatment. The severity of depression was measured with the Hamilton Depression Rating Scale (HDRS) before and after 2 weeks, 4 weeks, 6 weeks and 8 weeks antidepressant treatment. 188 patients finished Childhood Trauma Questionnaire, 28 item Short Form (CTQ-SF) and Life Events Scale (LES) which were used to evaluate childhood adverse and life stress before onset. Using Illumina GoldenGate genotyping to determine BDNF Val66Met polymorphism and the 6 SNPs (1: rs17109671, 2: rs17109674, 3: rs17417407, 4: rs2274224, 5: rs3765524 and 6: rs2274223) of PLCE1 gene. Clinical response to 4 weeks antidepressant treatment was considered when a decrease of at least 50% in the baseline HDRS scores. The remission criterion was HDRS scores equal to or less than 7 scores by the end of 8 weeks of treatment. We doing the statistical analysis used by SPSS package software for Windows version 11.0, UNPHASE the version 3.0.13 program and Multifactor Dimensionality Reduction (MDR) program.
     Results
     There was no significant difference of genotype and allele distributions for the BDNF Val66Met polymorphism between responders and non-responders or remitters and non-remitters (P=0.943 and 0.754, P=0.890 and 0.845, respectively). The frequencies of rs17109671 A allele carriers were significant higher in non-responders than responders (P=0.048), but the AA genotype and A allele carries were significant more in non-remitters than remitters (P=0.013 and 0.004, respectively). The frequencies of rs17109674 G allele and GG genotype carriers were significant higher in non-remitters than remitters (P=0.001 and 008, respectively). Haplotypes A-C (SNP1-4), A-G-C (SNP1-2-4), A-C-G (SNP1-4-5), G-C-G (SNP2-4-5) and A-C-G-A (SNP1-4-5-6) displayed higher frequencies in responders and non-responders (PA-C=0.0049, PA-G-C=0.0033, PA-C-G=0.0031, PG-C-G=0.0065 and PA-C-G-A=0.0043, respectively). 4 haplotypes [G-C (SNP1-4), G-A-C (SNP1-2-6), G-C-G (SNP1-4-5) and A-C-G-A (SNP2-4-5-6)] frequencies were significantly higher in remitters than in non-remitters (PG-C=0.0025, PG-A-C=0.0020, PG-C-G=0.0026 and PA-C-G-A=0.0013, respectively). No significant unification between BDNF Val66Met polymorphism and PLCE1 gene was found effect on antidepressant treatment. But there was no significant difference of CTQ scores and LES scores between responders and non-responders or remitters and non-remitters. The binary logistic regression analysis showed no interaction between BDNF Val66Met polymorphism and environment significantly effect on antidepressant treatment. But an interaction of rs2274224 polymorphism with childhood adversity factors was found significantly associated with remission to antidepressant.
     Conclusions
     The rs17109671 A allele carriers were with a poor response efficacy of 4 weeks antidepressant treatment. The rs17109671 (AA genotype and A allele) and rs1710974 (GG genotype and G allele) carriers were with a poor remission of 8 weeks antidepressant. Haplotypes A-C (SNP1-4), A-G-C (SNP1-2-4), A-C-G (SNP1-4-5), G-C-G (SNP2-4-5) and A-C-G-A (SNP1-4-5-6) were asocciated with better response efficacy of 4 weeks antidepressant treatment. 4 haplotypes G-C (SNP1-4), G-A-C (SNP1-2-6), G-C-G (SNP1-4-5) and A-C-G-A (SNP2-4-5-6) were associated with better remission of 8 weeks antidepressant. The interaction of rs2274224 polymorphism and child adversity might be effect on 8 weeks antidepressant outcome. But there were no effect of BDNF Val66Met polymorphism, recently life adverse events, childhood adversity, and the interactions of BDNF Val66Met polymorphism and environment factors on short term antidepressant outcome.
引文
[1] Belmaker RH, Agam G.. Major depressive disorder. N Engl J Med. 2008, 358(1): 55-68.
    [2] Murray CJ, Lopez AD. Evidence-based health policy--lessons from the Global Burden of Disease Study. Science, 1996, 274(5288): 740-743.
    [3] Little A. Treatment-resistant depression. Am Fam Physician, 2009, 80(2): 167-172.
    [4] Kohn Y, Zislin J, Agid O, et al. Increased prevalence of negative life events in subtypes of major depressive disorder. Compr Psychiatry, 2001, 42(1): 57-63.
    [5] Mark PM, Maudsley S, Martin B. BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci, 2004, 27(10): 589-594.
    [6] Hattiangady B, Rao MS, Shetty GA, et al. Brain-derived neurotrophic factor, phosphorylated cyclic AMP response element binding protein and neuropeptide Y decline as early as middle age in the dentate gyrus and CA1 and CA3 subfields of the hippocampus. Exp Neurol, 2005, 195(2): 353-371.
    [7] Karege F, Vaudan G, SchwaldM, et al. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res Mol Brain Res, 2005, 136(1-2): 29-37.
    [8] Castrén E, V?ikar V, Rantam?ki T. Role of neurotrophic factors in depression. Curr Opin Pharmacol, 2007, 7(1): 18-21.
    [9] Tapia-Arancibia L, Rage F, Givalois L, et al. Physiology of BDNF: focus on hypothalamic function. Front Neuroendocrinol, 2004, 25(2): 77-107.
    [10] Xu H, Steven Richardson J, Li XM. Dose-related effects of chronic antidepressants on neuroprotective proteins BDNF, Bcl-2 and Cu/Zn-SOD in rat hippocampus. Neuropsychopharmacology, 2003, 28(1): 53-62.
    [11] Grunblatt E, Hupp E, Bambula M, et al. Association study of BDNF and CNTF polymorphism to depression in non-demented subjects of the“VITA”study. J Affect Disord, 2006, 96(1-2):111-116.
    [12] Ventriglia M, Bocchio Chiavetto L, Benussi L, et al. Association between the BDNF 196 A/G polymorphism and sporadic Alzheimer’s disease. Mol Psychiatry, 2002, 7(2): 136-137.
    [13] Sen S, Nesse RM, Stoltenberg SF, et al. A BDNF coding variant is associated with the NEO personality inventory domain neuroticism, a risk factor for depression. Neuropsychopharmacology, 2003, (2)8: 397-401.
    [14] Tsai SJ, Cheng CY, Yu YW, et al. Association study of a brain-derived neurotrophic-factor genetic polymorphism and major depressive disorders, symptomatology, and antidepressant response. Am J Med Genet B Neuropsychiatr Genet, 2003, 123B(1): 19-22.
    [15] Hong CJ, Huo SJ, Yen FC, et al. Association study of a brain-derived neurotrophic-factor genetic polymorphism and mood disorders, age of onset and suicidal behavior. Neuropsychobiology, 2003, 48(4): 186-189.
    [16] Hwang JP, Tsai SJ, Hong CJ, et al. The Val66Met polymorphism of the brain-derived neurotrophic-factor gene is associated with geriatric depression. Neurobiol Aging, 2006, 27(12): 1834-1837.
    [17] Ribeiro L, Bussnello JV, Cantor RM, et al. The brain-derived neurotrophic factor rs6265 (Val66Met) polymorphism and depression in Mexican-Americans. Neuroreport, 2007, 18(12): 1291-1293.
    [18] Iga J, Ueno S, Yamauchi K, et al. The Val66Met polymorphism of the brain-derived neurotrophic factor gene is associated with psychotic feature and suicidal behavior in Japanese major depressive patients. American Journal of Medical Genetics, Part B Neuropsychiatric Genetics, 2007, 144B(8): 1003-1006.
    [19] Choi MJ, Kang RH, Lim SW, et al. Brain-derived neurotrophic factor gene polymorphism (Val66Met) and citalopram response in major depressive disorder. Brain Res, 2006, 1118(1): 176-182.
    [20] Yoshida K, Higuchi H, Kamata M, et al. The G196A polymorphism of the brain-derived neurotrophic factor gene and the antidepressant effect of milnacipran and fluvoxamine. J Psychopharmacol, 2007, 21(6): 650-666.
    [21] Gratacòs M, Soria V, Urretavizcaya M, et al. A brain-derived neurotrophic factor (BDNF) haplotype is associated with antidepressant treatment outcome in mood disorders. Pharmacogenomics J, 2008, 8(2): 101-112.
    [22] Guo L, Hu S. PI-PLC signal pathway: A possible pathogenesis link post-myocardial infarction to depression. Med Hypotheses, 2009, 73(2): 156-157.
    [23] Berridge MJ. Inositol trisphosphate and calicum signalling. Nature, 1993, 361(6410): 315-325.
    [24] Rhee SG. Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem, 2001, 70: 281-312.
    [25] Dwivedi Y, Agrawal AK, Rizavi HS, et al. Antidepressants reduce phosphoinositide-specific phospholipase C (PI-PLC) activity and the mRNA and protein expression of selective PLC beta 1 isozyme in rat brain. Neuropharmacology, 2002, 43(8): 1269-1279.
    [26] Citro S, Malik S, Oestreich EA, et al. Phospholipase Cepsilon is a nexus for Rho and Rap-mediated G protein-coupled receptor-induced astrocyte proliferation. Proc Natl Acad Sci U S A, 2007, 104(39): 15543-15548.
    [27] Mizoguchi K, Yuzurihara M, Ishige A, et al. Chronic stress differentially regulates glucocorticoid negative feedback response in rats. Psychoneuroendocrinology, 2001, 26(5): 443-459.
    [28] Vellucci SV, Parrott RF, Mimmack ML. Down-regulation of BDNF mRNA,with no effect on trkB or glucocorticoid receptor m RNAs, in the porcine hippocampus after acute dexamethasone treatment. Res Vet Sci, 2001, 70(2):157-162.
    [29] Manji HK, Duman RS. Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics. Psychopharmacol Bull, 2001, 35(2): 5-49.
    [30] van Praag HM.Can stress cause depression? Prog Neuropsychopharmacol Biol Psychiatry, 2004, 28(5): 891-907.
    [31] Kendler KS, Hettema JM, Butera F, et al. Life event dimensions of loss, humiliation, entrapment, and danger in the prediction of onsets of major depression and generalized anxiety. Arch Gen Psychiatry, 2003, 60(8): 789-796.
    [32] Paykel ES. Life events and affective disorders. Acta Psychiatr Scand Suppl, 2003, (418): 61-66.
    [33] Young EA, Abelson JL, Curtis GC, et al. Childhood adversity and vulnerability to mood and anxiety disorders. Depress Anxiety, 1997, 5(2): 66-72.
    [34] Poulton R, Caspi A, Milne BJ, et al. Association between children's experience of socioeconomic disadvantage and adult health: a life-course study. Lancet, 2002, 23(360): 1640-1645.
    [35] Harkness KL, Wildes JE. Childhood adversity and anxiety versus dysthymia co-morbidity in major depression. Psychol Med, 2002, 32 (7): 1239-1249.
    [36] Brodsky BS, Oquendo M, Ellis SP et al. The relationship of childhood abuse to impulsivity and suicidal behavior in adults with major depression. Am J Psychiatry, 2001, 158(11): 1871-1877.
    [37] Caspi A, Sugden K, Moffitt TE, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science, 2003, 18(301): 386-389.
    [38] Wilhelm K, Mitchell PB, Niven H, et al. Life events, first depression onset and the serotonin transporter gene. Br J Psychiatry, 2006, 188: 210-215.
    [39] Gillespie NA, Whitfield JB, Williams B, et al. The relationship between stressful life events, the serotonin transporter (5-HTTLPR) genotype and major deproession. Psychol Med, 2005, 35 (1): 101-110.
    [40] Surtees PG, Wainwright NW, Willis-Owen SA, et al. Social adversity, the serotonin transporter (5-HTTLPR) polymrphism and major depressive disorder. Biol Psychiatry, 2006, 59 (3): 224-229.
    [41] Gotlib IH, Joormann J, Minor KL, et al. HPA axis reactivity: a mechanism underlying the associations among 5-HTTLPR, stress, and depression. Biol Psychiatry, 2008, 63(9): 847-851.
    [42] Murphy DL, Lesch KP. Targeting the murine serotonin transporter: insights into human neurobiology. Nat Rev Neurosci, 2008, 9(2): 85-96.
    [43] El Hage W, Powell JF, Surguladze SA. Vulnerability to depression: what is the role of stress genes in gene x environment interaction? Psychol Med, 2009, 39(9): 1407-1411.
    [44] Strauss J, Barr CL, George CJ, et al. Brain-derived neurotrophic factor variants are associated with childhood-onset mood disorder: confirmation in a Hungarian sample. Mol Psychiatry, 2005, 10(9): 861-867.
    [45] Surtees PG, Wainwright NW, Willis-Owen SA, et al. No association between the BDNF Va166Met polymorphism and mood status in a non-clinincal community sample of 7389 older adults. J Psychiatr Res, 2007, 41(5): 404-409.
    [46] Musazzi L, Mallei A, Tardito D, Gruber SH et al. Early-life stress and antidepressant treatment involve synaptic signaling and Erk kinases in a gene-environment model of depression. J Psychiatr Res 2009 [Epub ahead of print].
    [47] El Khoury A, Gruber SHM, M?rk A, et al. Adult life behavioral consequences of early maternal separation are alleviated by escitalopram treatment in a rat model of depression. Prog Neuropsychopharmacol Biol Psychiatry, 2006, 30(3):535-540.
    [48] Mandelli L, Marino E, Pirovano A, et al. Interaction between SERTPR and stressful life events on response to antidepressant treatment. Eur Neuropsychopharmacol, 2009, 19(1): 64-67.
    [49] Bukh JD, Bock C, Vinberg M, et al. No interactions between genetic polymorphisms and stressful life events on outcome of antidepressant treatment. Eur Neuropsychopharmacol, 2010, 20(5): 327-335.
    [50] Bemstein DP, Fink L. Childhood Trauma Questionnaire. A retrospective self-report Manual. San Antonio. The Psychological Corporation, Harcourt Brace & Company, 1998.
    [51]张亚林,杨德森.生活事件的致病作用-72例癔症资料分析.中国神经精神疾病杂志,1998,2(14):65-68.
    [52] American Psychiatry Association Diagnostic and statistical manual of mentaldisorders, fourth edition (DSM-Ⅳ) . Washington DC: APA, 1994, 256-258.
    [53] Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry, 1960, 23: 56-62.
    [54] Arias B, Serretti A, Mandelli L, et al. Dysbindin gene (DTNBP1) in major depression: association with clinical response to selective serotonin reuptake inhibitors. Pharmacogenet Genomics 2009, 19(2): 121-128.
    [55] Sambrook J, Lasel DW.分子克隆实验指南(第三版)(黄培堂译).北京:科学出版社出版,2002年.483-485.
    [56] Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat Neurosci, 2007, 10(9): 1089-1093.
    [57] Huang TL, Lee CT, Liu YL. Serum brain-derived neurotrophic factor levels in patients with major depression: effects of antidepressants. J Psychiatr Res, 2008, 42(7): 521–525.
    [58] Chen B, Dowlatshahi D, MacQueen GM, et al. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry, 2001, 50(4): 260-265.
    [59] Schumacher J, Jamra RA, Becker T, et al. Evidence for a relationship between genetic variants at the brain-derived neurotrophic factor (BDNF) locus and major depression. Biol Psychiatry, 2005, 58(4): 307–314.
    [60] Ozana E, Okur H,Akarsub N, et al. The effect of depression, BDNF gene val66met polymorphism and gender on serum BDNF levels. Brain Res Bull, 2010, 81(1): 61-65.
    [61] Anttila S, Huuhka K, Huuhka M, et al. Interaction between 5-HT1A and BDNF genotypes increases the risk of treatment-resistant depression. J Neural Transm, 2007, 114(8): 1065-1068.
    [62] Rajewska-Rager A, Skibińska M, Szczepankiewicz A, et al. Association between polymorphisms of Val66Met in the BDNF gene and the response to escitalopram and nortriptyline treatment in the light of the neurodevelopmental hypothesis of depression. Psychiatr Pol, 2008, 42(6): 915-923.
    [63] Domschke1 K, Lawford B, Laje G, et al. Brain-derived neurotrophic factor (BDNF) gene: no major impact on antidepressant treatment reponse. Int J Neuropsychopharmacol, 2010, 13(1): 93-101.
    [64] Berg KA, Clarke WP. Regulation of 5-HT(1A) and 5-HT(1B) receptor systems by phospholipid signaling cascades. Brain Res Bull, 2001, 56(5): 471-477.
    [65] Blier, P, de Montigny, C. Serotonin and drug-induced therapeutic responses in major depression, obsessive-compulsive and panic disorders. Neuropsychopharmacol, 1999, 21(2): 91S-98S.
    [66] Qi X, Lin W, Li J, et al. Fluoxetine increases the activity of the ERK-CREB signal system and alleviates the depressive-like behavior in rats exposed to chronicforced swim stress. Neurobiol Dis, 2008, 31(2): 278-285.
    [67] Balciuniene J, Emilsson L, Oreland L, et al. Investigation of the functional effect of monoamine oxidase polymorphisms in human brain. Hum Mol Genet, 2002, 110(1): 1-7.
    [68] Van Eerdewegh P, Little RD, Dupuis J, et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature, 2002, 418(6896):426-430.
    [69] Rybakowski JK, Suwalska A, Skibinska M, et al. Response to lithium prophylaxis: interaction between serotonin transporter and BDNF genes. Am J Med Genet B Neuropsychiatr Genet, 2007, 144B(6): 820-823.
    [70] Dmitrzak-Weglarz M, Rybakowski JK, Suwalska A, et al. Association studies of the BDNF and the NTRK2 gene polymorphisms with prophylactic lithium response in bipolar patients. Pharmacogenomics, 2008, 9(11): 1595-1603.
    [71] Kaplan MJ, Klinetob NA. Childhood emotional trauma and chronic posttraumatic stress disorder in adult outpatients with treatment-resistant depression. J Nerv Ment Dis, 2000, 188(9): 596-601.
    [72] Klein DN, Arnow BA, Barkin JL, Dowling F, et al. Early adversity in chronic depression: clinical correlates and response to pharmacotherapy. Depress Anxiety, 2009, 26(8): 701-710.
    [73] Nemeroff CB, Heim CM, Thase ME, et al. Differential responses to psychotherapy versus pharmacotherapy in patients with chronic forms of major depression and childhood trauma. Proc Natl Acad Sci U S A, 2003, 100(24): 14293-14296.
    [74] Amital D, Fostick L, Silberman A, et al. Serious life events among resistant and non-resistant MDD patients. J Affect Disord, 2008, 110(3): 260-264.
    [75] Weissman, MM., Bland, R, Joyce, PR, et al. Sex differences in rates ofdepression: crossnational perspectives. J Affect Disord, 1993, 29(2-3): 77-84.
    [76] Scheibe S, Preuschhof C, Cristi C, et al. Are there gender differences in major depression and its response to antidepressants? J Affect Disord, 2003, 75(3): 223-235.
    [77] Kornstein SG, Schatzberg AF, Thase ME, et al. Gender differences in treatment response to sertraline versus imipramine in chronic depression. Am J Psychiatry, 2000, 157(9): 1445-1452.
    [78]蔡焯基,王刚.阿米替林治疗无效的抑郁症患者的相关因素分析.中华精神科杂志,1998,31(3):148-151.
    [79]杜爱玲,薛玉香.难治性抑郁症危险因素的对比研究.中国民康医学,2006,18(6):445-446.
    [80] Klabbers G, Bosma H, Van der Does AJ, et al. The educational patterning of health-related adversities in individuals with major depression. J Affect Disord, 2010, 16. [Epub ahead of print]
    [1] Fava M, Kendler KS. Major depressive disorder. Neuron, 2000, 28(2): 335-341.
    [2]潘玉芹,林文娟.海马5-羟色胺系统与抑郁症.中国行为医学科学,2006,15(4):379-380.
    [3] Chen TJ, Yu YW, Hong CJ, et al. Association analysis for the C-1019G promoter variant of the 5-HT1A receptor gene with auditory evoked potentials in major depression. Neuropsychobiology, 2004, 50(4): 292-295.
    [4] den Boer JA. Looking beyond the monoamine hypothesis. London: European neurological disease, 2006: 2-3.
    [5] Svenningsson P, Chergui K, Rachleff I, et al. Alterations in 5-HT1B receptor function by p11 in depression-like states. Science, 2006, 311(5757): 77-80.
    [6] Tsai SJ. The P11, tPA/plasminogen system and brain-derived neurotrophic factor: Implications for the pathogenesis of major depression and the therapeutic mechanism of antidepressants. Med Hypotheses, 2007, 68(1):180-183.
    [7] Santarelli L, Saxe M, Gross C, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 2003, 301(5634): 805-809.
    [8] Gage FH. Mammalian neural stem cells. Science, 2000, 287(5457): 1433-1438.
    [9] Campbell S, Macqueen G. The role of the hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci, 2004, 29(6): 417-426.
    [10] Chen SJ, Kao CL, Chang YL, et al. Antidepressant administration modulates neural stem cell survival and serotoninergic differentiation through bcl-2. Curr Neurovasc Res, 2007, 4(1): 19-29.
    [11] Tapia-Arancibia L, Rage F, Givalois L, et al. Physiology of BDNF: focus on hypothalamic function. Front Neuroendocrinology, 2004, 25(2): 77-107.
    [12] Pang PT, Teng HK, Zaitsev E, et al. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science, 2004, 306(5695): 487-491.
    [13] Tsai SJ. The possible role of tissue-type plasminogen activator and the plasminogen system in the pathogenesis of major depression. Med Hypothesis, 2006, 66(2): 319-322.
    [14] Eskandari F, Mistry S, Martinez PE, et al. Younger, premenopausal women with major depressive disorder have more abdominal fat and increased serum levels of prothrombotic factors: implications for greater cardiovascular risk. Metabolism, 2005, 54(7): 918-924.
    [15] Thase ME, Friedman ES, Berman SR, et al. Is cognitive behavior therapy just a‘nonspecific’intervention for depression? A retrospective comparison of consecutive cohorts treated with cognitive behavior therapy or supportive counseling and pill placebo. J Affect Disord, 2000, 57(1-3): 63-71.
    [16] de Jonghe F, Hendricksen M, van Aalst G, et al. Psychotherapy alone and combined with pharmacotherapy in the treatment of depression. Br J Psychiatry, 2004, 185: 37-45.
    [17] Ebmeier KP, Donaghey C, Steele JD. Recent developments and current controversies in depression. Lancet, 2006, 367(9505): 153-167.
    [18] Isacsson G, Holmgren P, Ahlner J. Selective serotonin reuptakeinhibitor antidepressants and the risk of suicide: a controlled forensic database study of 14,857 suicides. Acta Psychiatr Scand, 2005, 111(4): 286-290.
    [19] Greenberg RM, Kellner CH. Electroconvulsive therapy: a selected review. Am J Geriatr Psychiatry, 2005, 13(4): 268-281.
    [20]刘萍.抑郁症非药物治疗概况.中国行为医学科学,2006,16(2):186-187.
    [21] Garcia-Toro M, Mayoi A, Arnillas H, et al. Modest adjunctive benefit with transcranial magnetic stimulation in mediction-resistant depression. J Affect Disor, 2001, 64(2-3): 271-275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700