基于氧化物半导体的薄膜晶体管
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对有源驱动表面传导电子发射显示器(SED)对薄膜晶体管工作电流的需求,研究了基于ZnO半导体的薄膜晶体管,并在此基础上改进晶体管的半导体层材料,设计制作了基于In2O3半导体的薄膜晶体管。在全程工艺温度满足“柔性电子”应用需求的基础上,制作的In2O3薄膜晶体管在性能上超越了目前在这方面广泛采用的有机半导体材料薄膜晶体管。
     文中的ZnO半导体薄膜晶体管在普通制版玻璃上制作,整个制作过程全部使用常规薄膜工艺。器件采用薄膜晶体管的底栅结构,绝缘层为直流反应溅射的Ta2O5,半导体层为射频溅射沉积的ZnO。在ZnO膜层的沉积过程中采用了衬底加温、加入栅网屏蔽和优化溅射气氛等工艺手段,有效的改善了器件的性能。最终器件的场致迁移率达到3.8cm2/Vs,开关比105,沟道宽长比为5的器件在晶体管输出特性线性区工作时,工作电流达到160μA,可满足SED在工作电流上对薄膜晶体管的要求。器件的工作特性在耐压范围内稳定,没有发现阈值漂移问题。大气中退火可以提高ZnO薄膜晶体管的场致迁移率,经过400°C处理的器件场致迁移率达到了24cm2/Vs。此外,文中利用Levinson公式成功拟合了器件在低漏极电压下的转移特性,从拟合参数可以推算出器件中ZnO膜层晶粒内电子迁移率和掺杂浓度的信息。
     为降低器件制作的工艺温度,本文提出了基于In2O3半导体的薄膜晶体管,并探索了全程工艺温度低于140°C的器件制作方法。器件绝缘层采用直流反应溅射的Ta2O5,半导体层由In靶直流反应溅射沉积得到。采用向沟道界面扩散Bi的方法钝化界面处的载流子陷阱,使器件的稳定性得到了很大程度的改善,底栅结构In2O3薄膜晶体管器件的场致迁移率达到12cm2/Vs,开关比大于103,顶栅结构In2O3薄膜晶体管器件场致迁移率达到5cm2/Vs,开关比104。
     研究结果表明利用氧化物半导体作为薄膜晶体管的半导体层可以获得足够高的场致迁移率和稳定的器件特性,这个结果为实现下一代有源驱动平板显示器提供了技术基础。针对低温工艺器件还可以开发出“柔性电子”等更为广泛的应用。
Thin film transistors (TFT) based on ZnO and In2O3 semiconductors are demonstrated in this dissertation to meet the demands for switching devices in active matrix Surface-conduction Electron-emitter Display (SED) and flexible electronics, respectively.
     ZnO TFT was fabricated on glass substrate, and only conventional thin film processing technology was used. Bottom-gated structure with reactive sputtered Ta2O5 insulator layer and rf sputtered ZnO semiconductor layer was adopted in the device. The performance of ZnO TFT was effectively improved by shielding the substrates with a metal mesh and tuning the Ar/O2 flow ratio during sputtering deposition of ZnO layer. Field effect mobility of 3.8cm2/Vs and on-off ratio of 105 was obtained. On-state current of the device with width/length ratio of 5 reached 160μA when the device worked in the linear region of the output characteristics. Magnitude of the current meets the demands in application of SED. The devices showed stable performance below the breakdown voltage, and no threshold voltage shift was found. Field effect mobility of the device was further improved by annealing in atmosphere. Devices annealed at 400°C had a field effect mobility of 24cm2/Vs. Levinson expression is successfully employed to simulate the transfer characteristics of the device for low drain voltage. Electron mobility and donor concentration in ZnO crystallite are obtained by matching the curve parameters.
     In2O3 is one of the semiconductor materials that can be treated at lower temperature and shows higher carrier mobility. In2O3-TFT with the whole fabrication process carried out at temperature lower than 140°C is demonstrated. Reactive sputtered Ta2O5 film was adopted as insulator layer of the device, and the semiconductor layer was deposited by reactive dc sputtering of an indium target. Stability of the device was greatly improved by passivating the carrier traps at the channel interface by diffusing bismuth into the channel. For bottom-gated structure In2O3 TFT, field effect mobility of 12cm2/Vs and On-Off ratio of 103 was obtained. For top-gated structure In2O3 TFT, field effect mobility of 5cm2/Vs and On-Off ratio of 104 was obtained.
     The results show that by using oxide semiconductor as the semiconductor layer in thin film transistors, high field effect mobility and stable performance can be obtained. The devices are expected to be used in the next generation active matrix flat panel display. Applications such as "flexible electronics" can be developed based on devices fabricated with low temperature processing technology.
引文
[1] Lilienfeld J E. Device for Controlling Electric Current: US Patent, (1,900,018): 1933-1903-1907.
    [2] Lecomber P G, Spear W E and Ghaith A. Amorphous-Silicon Field-Effect Device and Possible Application. Electronics Letters, 1979, 15: 179-181.
    [3] Displaysearch Reports Double-Digit Growth in Q3'07 Global TV Market on Strength in Europe, Developing Regions and at 1080p [EB/OL]. (2007-11-19). http://www.displaysearch.com/cps/rde/xchg/SID-0A424DE8-81761A69/displaysearch/hs.xsl/5548.asp
    [4] Oguchi T, Yamaguchi E, Sasaki K, et al. Inviited Paper: A 36-Inch Surface-Conduction Electron-Emitter Display (SED). Digest of Technical Papers - SID International Symposium, 2005, 36(2): 1929-1931.
    [5] Zhu D, Li D and Wang J. Electron Emission from Carbon film on Island-Like Tin Oxide Layer. Chemical Physics Letters, 2007, 447: 320-323.
    [6]朱儒晖,李宏建and闫玲玲. T F T - O L E D像素单元电路及驱动系统分析.中国集成电路, 2005, (11): 70-76.
    [7] Kumar A, Nathan A and Jabbour G E. Does TFT Mobility Impact Pixel Size in AMOLED Backplanes? IEEE Transactions on Electron Devices, 2005, 52(11): 2386-2394.
    [8] Brody P and Page D. Flexible Thin-Film Transistors Stretch Performance, Shrink Cost. Electronics, 1968, 41(17): 100-103.
    [9] Fihn M. The Challenges of Commercializing Flexible Displays. Solid State Technology, 2006, 49(5): 43-46.
    [10] Cantatore E, Geuns T C T, Gelinck G H, et al. A 13.56-Mhz RFID System Based on Organic Transponders. IEEE Journal of Solid-State Circuits, 2007, 42(1): 84-92.
    [11] Macdonald W A. Engineered Films for Display Technologies. Journal of Materials Chemistry, 2003:
    [12] Sun Y and Rogers J A. Inorganic Semiconductors for Flexible Electronics. Advanced Materials, 2007, 19: 1897-1916.
    [13] Yuan H-C, (Roberts) M M K, Savage D E, et al. Thermally Processed High-Mobility Mos Thin-Film Transistors on Transferable Single-Crystal Elastically Strain-Sharing Si/SiGe/Si Nanomembranes. IEEE Transactions on Electron Devices, 2008, 55(3): 810-815.
    [14] Wehrspohn R B, Powell M J and Deane S C. Kinetics of Defect Creation in Amorphous Silicon Thin Film Transistors. Journal of Applied Physics, 2003, 93(9): 5780-5788.
    [15] Voutsas a T. A New Era of Crystallization: Advances in Polysilicon Crystallization and Crystal Engineering. Applied Surface Science, 2003, 208-209: 250-262.
    [16] Hiroaki J, Mitsutoshi M, Satoshi I, et al. High-Performance Polycrystalline Silicon Thin-Film Transistors Fabricated by High-Temperature Process with Excimer Laser Annealing. Japanese Journal of Applied Physics: Part 1, 2004, 43(6A): 3293-3296.
    [17] Kontogiannopoulos G P, Farmakis F V, Kouvatsos D N, et al. Hot-Carrier Stress Induced Degradation of SLS ELA Polysilicon TFTs - Effects of Gate Width Variation and Device Orientation. Solid-State Electronics, 2008, 52(3): 388-393.
    [18] Hou C-Y and Wu Y S. A Simple Method for Gettering of Nickel within the Ni-Metal-Induced Lateral Crystallization Polycrystalline Silicon Film. Electrochemical and Solid-State Letters, 2006, 9(7): H65-H67.
    [19] Li J, Bansal A and Roy K. Poly-Si Thin-Film Transistors: An Efficient and Low-Cost Option for Digital Operation. IEEE Transactions on Electron Devices, 2007, 54(11): 2918-2929.
    [20] Chan K-Y, Bunte E, Knipp D, et al. Microcrystalline Silicon Thin-Film Transistors for Large Area Electronic Applications. Semiconductor Science and Technology, 2007, 22: 1213-1219.
    [21] Wehrspohn R B, Powell M J, Deane S C, et al. Dangling-Bond Defect State Creation in Microcrystalline Silicon Thin-Film Transistors. Applied Physics Letters, 2000, 77(5): 750-752.
    [22] Cabarrocas P R I, Djeridane Y, Bui V D, et al. Critical Issues in Plasma Deposition of Microcrystalline Silicon for Thin Film Transistors. Solid-State Electronics, 2008, 52(3): 422-426.
    [23] Han S-M, Kim S-J, Park J-H, et al. High Quality Nanocrystalline Silicon Thin Film Fabricated by Inductively Coupled Plasma Chemical Vapor Deposition at 350°C. Journal of Non-Crystalline Solids, 2008, 354(19-25): 2268-2271.
    [24] Cheng I-C, Wagner S and Vallat-Sauvain E. Contact Resistance in Nanocrystalline Silicon Thin-Film Transistors. IEEE Transactions on Electron Devices, 2008, 55(4): 973-977.
    [25] Dimitrakopoulos C D and Mascaro D J. Organic Thin-Film Transistors: A Review. IBM Journal of Research and Development, 2001, 45(1): 11-27.
    [26] Jang J and Han S H. Electrical and Chemical Stabilities of Organic Thin-Film Transistors for Display Applications. SID International Symposium - Digest of Technical Papers, 2006: 108-111.
    [27] Hoffman R L, Norris B J and Wager J F. ZnO-Based Transparent Thin-Film Transistors. Applied Physics Letters, 2003, 82(5): 733-735.
    [28] Carcia P F, Mclean R S, Reilly M H, et al. Transparent ZnO Thin-Film Transistor Fabricated by Rf Magnetron Sputtering. Applied Physics Letters, 2003, 82(7): 1117-1119.
    [29] Nishii J, Hossain F M, Takagi S, et al. High Mobility Thin Film Transistors with Transparent ZnO Channels. Japanese Journal of Applied Physics, 2003, 42(4A): L347-L349.
    [30] Ou C-W, Dhananjay, Ho Z Y, et al. Anomalous P-Channel Amorphous Oxide Transistors Based on Tin Oxide and Their Complementary Circuits. Applied Physics Letters, 2008, 92: 122113.
    [31] Hiroshi I, Masao N, Shigeru H, et al. Field-Effect Transistor with Deposited Graphite Thin Film. Japanese Journal of Applied Physics: Part 1, 2007, 46 ( 4B): 2615-2617.
    [32] Kobayashi S, Takenobu T, Mori S, et al. Fabrication and Characterization of C60 Thin-Film Transistors with High Field-Effect Mobility. Applied Physics Letters, 2003, 82(25): 4581-4583.
    [33] Taizoh S, Hayato K, Atsushi K, et al. Ge-Channel Thin-Film Transistor with Schottky Source/Drain Fabricated by Low-Temperature Processing. Japanese Journal of Applied Physics: Part 1, 2007, 46(3B): 1250-1253.
    [34] Satoshi K, Shuichi N, Kenichi U, et al. Optical and Electrical Properties of Nano-Crystalline GaN Thin Films and Their Application for Thin-Film Transistor. Journal of Crystal Growth, 1998, 189-190: 749-752.
    [35] Kim I-D, Lim M-H, Kang K, et al. Room Temperature Fabricated ZnO Thin Film Transistor Using High-k Bi1.5Zn1.0Nb1.5O7 Gate Insulator Prepared by Sputtering. Applied Physics Letters, 2006, 89: 022905.
    [36] Siddiqui J, Cagin E, Chen D, et al. ZnO Thin-Film Transistors with Polycrystalline (Ba,Sr)TiO3 Gate Insulators. Applied Physics Letters, 2006, 88: 212903.
    [37] Kim I-D, Choi Y and Tuller H L. Low-Voltage ZnO Thin-Film Transistors with High-k Bi1.5Zn1.0Nb1.5O7 Gate Insulator for Transparent and Flexible Electronics. Applied Physics Letters, 2005, 87(043509):
    [38] Look D C. Progress in ZnO Materials and Devices. Journal of Electronic Materials, 2006, 35(6): 1299-1305.
    [39] Look D C. New Developments in ZnO Materials and Devices. Proceeding of the IEEE, 2007, 6474: 647402.
    [40] Fortunato E M C, Barquinha P M C, Pimentel a C M B G, et al. Wide-Bandgap High-Mobility ZnO Thin-Film Transistors Produced at Room Temperature. Applied Physics Letters, 2004, 85(13): 2541-2543.
    [41] Fortunato E, Pimentel A, Pereira L, et al. High field-Effect Mobility Zinc Oxide Thin film Transistors Produced at Room Temperature. Journal of Non-Crystalline Solids, 2004, 338-340: 806-809.
    [42] Fortunato E, Barquinha P, Pimentel A, et al. Fully Transparent ZnO Thin-Film Transistor Produced at Room Temperature. Advanced Materials, 2005, 17(5): 590-594.
    [43] Bae H S, Yoon M H, Kim J H, et al. Photodetecting Properties of ZnO-Based Thin-Film Transistors. Applied Physics Letters, 2003, 83(25): 5313.
    [44] Bae H S and Im S. ZnO-Based Thin-Film Transistors of Optimal Device Performance. Journal of Vaccum Science and Technology B, 2004, 22(3): 1191-1195.
    [45] Bae H S and Im S. Ultraviolet Detecting Properties of ZnO-Based Thin Film Transistors. Thin Solid Films, 2004, 469-470: 75-79.
    [46] Bae H S, Kim J H and Im S. Mobility Enhancement in ZnO-Based TFTs by H Treatment. Electrochemical and Solid-State Letters, 2004, 7(11): G279-G281.
    [47] Heo Y W, Tien L C, Kwon Y, et al. Depletion-Mode ZnO Nanowire Field-Effect Transistor. Applied Physics Letters, 2004, 85(12): 2274-2276.
    [48] Nomura K, Ohta H, Ueda K, et al. Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor. Science, 2003, 300: 1269-1272.
    [49] Cheng H-C, Chen C-F and Lee C-C. Thin-Film Transistors with Active Layers of Zinc Oxide (ZnO) Fabricated by Low-Temperature Chemical Bath Method. Thin Solid Films, 2006, 498: 142-145.
    [50] Subramanian V, Fréchet J M J, Chang P C, et al. Progress toward Development of All-Printed RFID Tags: Materials, Processes, and Devices. Proceedings of the IEEE, 2005, 93(7): 1330-1338.
    [51] Yao Q J and Li D J. Fabrication and Property Study of Thin film Transistor Using rf Sputtered ZnO as Channel Layer. Journal of Non-Crystalline Solids, 2005, 351(40-42): 3191-3194.
    [52] Hsieh H-H and Wu C-C. Scaling Effects on ZnO Transparent TFTs. SID International Symposium - Digest of Technical Papers, 2006: 21-24.
    [53] Remashan K, Janga J H, Hwang D K, et al. ZnO-Based Thin Film Transistors Having High Refractive Index Silicon Nitride Gate. Applied Physics Letters, 2007, 91: 182101.
    [54] Carcia P F, Mclean R S, Reilly M H, et al. A Comparison of Zinc Oxide Thin-Film Transistors on Silicon Oxide and Silicon Nitride Gate Dielectrics. Applied Physics Letters, 2007, 102: 074512.
    [55] Hsieh H-H and Wua C-C. Amorphous ZnO Transparent Thin-Film Transistors Fabricated by Fully Lithographic and Etching Processes. Applied Physics Letters, 2007, 90: 013502.
    [56] Chen H J H, Yeh B B L, Pan H-C, et al. ZnO Transparent Thin-Film Transistors with HfO2/Ta2O5 Stacking Gate Dielectrics. Electronics Letters, 2008, 44(3): 20083215.
    [57] Kim J H, Ahn B D, Lee C H, et al. Characteristics of Transparent ZnO Based Thin Film Transistors with Amorphous HfO2 Gate Insulators and Ga Doped ZnO Electrodes. Thin Solid Films, 2008, 516: 1529-1532.
    [58]袁广才,徐征,张福俊, et al.以Al2 O3/AlN为复合绝缘缓冲层的ZnO-TTFT透过率的研究.功能材料, 2007, 38(2): 185-189.
    [59] Hirao T, Furuta M, Furuta H, et al. High Mobility Top-Gate Zinc Oxide Thin-Film Transistors (ZnO-TFTs) for Active-Matrix Liquid Crystal Displays. SID International Symposium - Digest of Technical Papers, 2006: 18-20.
    [60] Hosono H, Kikuchi N, Ueda N, et al. Working Hypothesis to Explore Novel Wide Band Gap Electrically Conducting Amorphous Oxides and Examples. Journal of Non-Crystalline Solids, 1996, 198-200: 165-169.
    [61] Hosono H, Yasukawa M and H.Kawazoe. Novel Oxide Amorphous Semiconductors: Transparent Conducting Amorphous Oxides. Journal of Non-Crystalline Solids, 1996, 203: 334-344.
    [62] Orita M, Ohta H, Hirano M, et al. Amorphous Transparent Conductive Oxide InGaO3(ZnO)(M) (M <= 4): A Zn 4s Conductor. Philosophical Magazine. B, 2001, 81(5): 501-515.
    [63] Kumomi H, Nomura K, Kamiya T, et al. Amorphous Oxide Channel TFTs. Thin Solid Films, 2008, 516: 1516-1522.
    [64] Kamiya T, Hiramatsu H, Nomura K, et al. Device Applications of Transparent Oxide Semiconductors: Excitonic Blue LED and Transparent Flexible TFT. Journal of Electroceramics, 2006, 17(2): 267-275.
    [65] Nomura K, Kamiya T, Ohta H, et al. Carrier Transport in Transparent Oxide Semiconductor with Intrinsic Structural Randomness Probed Using Single-Crystalline InGaO3(ZnO)5 Films. Applied Physics Letters, 2004, 85(11): 1993-1995.
    [66] Nomura K, Ohta H, Takagi A, et al. Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors. Nature, 2004, 432: 488-492.
    [67] Yabuta H, Sano M, Abe K, et al. High-Mobility Thin-Film Transistor with Amorphous InGaZnO4 Channel Fabricated by Room Temperature rf-Magnetron Sputtering. Applied Physics Letters, 2006, 89: 112123.
    [68] Jeong J K, Jeong J H, Yang H W, et al. High Performance Thin Film Transistors with Cosputtered Amorphous Indium Gallium Zinc Oxide Channel. Applied Physics Letters, 2007, 90: 113505.
    [69] Kang D, Lim H, Kim C, et al. Amorphous Gallium Indium Zinc Oxide Thin Film Transistors: Sensitive to Oxygen Molecules. Applied Physics Letters, 2007, 90: 192101.
    [70] Suresh A and Muth J F. Bias Stress Stability of Indium Gallium Zinc Oxide Channel Based Transparent Thin Film Transistors. Applied Physics Letters, 2008, 92: 033502.
    [71] Chung H-J, Jeong J H, Ahn T K, et al. Bulk-Limited Current Conduction in Amorphous InGaZnO Thin Films. Electrochemical and Solid-State Letters, 2008, 11(3): H51-H54.
    [72] Dehuff N L, Kettenring E S, Hong D, et al. Transparent Thin-Film Transistors with Zinc Indium Oxide Channel Layer. Journal of Applied Physics, 2005, 97: 064505.
    [73] Barquinha P, Pimentel A, Marques A, et al. In?uence of the Semiconductor Thickness on the Electrical Properties of Transparent TFTs Based on Indium Zinc Oxide. Journal of Non-Crystalline Solids, 2006, 352 1749-1752.
    [74] Yaglioglu B, Yeom H Y, Beresford R, et al. High-Mobility Amorphous In2O3–10 Wt %ZnO Thin Film Transistors. Applied Physics Letters, 2006, 89: 062103.
    [75] Wang L, Yoon M-H, Lu G, et al. High-Performance Transparent Inorganic-Organic Hybrid Thin-Film N-Type Transistors. Natrue Materials, 2006, 5: 893-900.
    [76] Wang Y-L, Ren F, Lim W, et al. Room Temperature Deposited Indium Zinc Oxide Thin Film Transistors. Applied Physics Letters, 2007, 90: 232103.
    [77] Fortunato E, Barquinha P, Pimentel A, et al. Amorphous IZO TTFTs with Saturation Mobilities Exceeding 100 cm2/Vs. Physica Status Solidi (Rapid Research Letters), 2007, 1(1): R34-R36.
    [78] Wang L, Yoon M-H, Facchetti A, et al. Flexible Inorganic/Organic Hybrid Thin-Film Transistors Using All-Transparent Component Materials. Advanced Materials, 2007, 19: 3252-3256.
    [79] Lim W, Wang Y-L, Renb F, et al. Indium Zinc Oxide Thin Films Deposited by Sputtering at Room Temperature. Applied Surface Science, 2008, 254: 2878-2881.
    [80] Yao Q and Li D. Indium Oxide Thin Film Transistors Via Reactive Sputtering Using Metal Targets. Physica Status Solidi (a), 2008, 205(2): 389-391.
    [81] G?rrn P, H?lzer P, Riedl T, et al. Stability of Transparent Zinc Tin Oxide Transistors under Bias Stress. Applied Physics Letters, 2007, 90: 063502.
    [82] G?rrn P, Lehnhardt M, Riedl T, et al. The Influence of Visible Light on Transparent Zinc Tin Oxide Thin Film Transistors. Applied Physics Letters, 2007, 91: 193504.
    [83] Presley R E, Hong D, Chiang H Q, et al. Transparent Ring Oscillator Based on Indium Gallium Oxide Thin-film Transistors. Solid-State Electronics, 2006, 50: 500-503.
    [84] Chiang H Q, Hong D, Hung C M, et al. Thin-Film Transistors with Amorphous Indium Gallium Oxide Channel Layers. Journal of Vaccum Science and Technology B, 2006, 24(6): 2702-2705.
    [85]黄静华and李德杰.射频溅射ZnO薄膜的晶体结构和电学性质.真空科学与技术, 2002, 22(3): 186-188.
    [86] Liu X and Li D. Influence of Charged Particle Bombardment and Sputtering Parameters on the Properties of HfO2 Films Prepared by dc Reactive Magnetron Sputtering. Applied Surface Science, 2006, 253: 2143-2147.
    [87]杨琦.复合活性层薄膜晶体管的研究.博士论文, 2007:
    [88] Hoffman R L. ZnO-Channel Thin-Film Transistors: Channel Mobility. Journal of Applied Physics, 2004, 95(10): 5813-5819.
    [89] Castro M S and Aldao C M. Different Degradation Processes in ZnO Varistors. Ceramics International, 1996, 22: 39-43.
    [90] Fang G, Li D and Yao B-L. Fabrication and Characterization of Transparent Conductive ZnO:Al Thin films Prepared by Direct Current Magnetron Sputtering with Highly Conductive ZnO(ZnAl2O4) Ceramic Target. Journal of Crystal Growth, 2003, 247: 393-400.
    [91] Agashe C, Kluth O, Hu¨Pkes J, et al. Efforts to Improve Carrier Mobility in Radio Frequency Sputtered Aluminum Doped Zinc Oxide Films. Journal of Applied Physics, 2004, 95(4): 1911-1917.
    [92] Xu J, Pan Q, Shun Y A, et al. Grain Size Control and Gas Sensing Properties of ZnO Gas Sensor. Sensors and Actuators B, 2000, 66: 277-279.
    [93] Pearton S J, D. P. Norton K I, Heo Y W, et al. Recent Advances in Processing of ZnO. Journal of Vaccum Science and Technology B, 2004, 22(3): 932-948.
    [94] Lee C-C, Hsu J-C and Wong D-H. The Characteristics of Some Metallic Oxides Prepared in High Vacuum by Ion Beam Sputtering. Applied Surface Science, 2001, 171: 151-156.
    [95] Noha Y S, Chatterjeeb S, Nandib S, et al. Characteristics of MIS Capacitors Using Ta2O5 Films Deposited on ZnO/p-Si Microelectronic Engineering, 2003, 66(1-4): 637-642.
    [96] Wager J F. Transparent Electronics: Schottky Barrier and Heterojunction Considerations. Thin Solid Films, 2008, 516: 1755-1764.
    [97] Robertson J. Disorder, Band Offsets and Dopability of Transparent Conducting Oxides. Thin Solid Films, 2008, 516: 1419-1425.
    [98] Robertson J. Band Offsets of Wide-Band-Gap Oxides and Implications for Future Electronic Devices. Journal of Vaccum Science and Technology B, 2000, 13(8): 1785-1793.
    [99] Yoshino Y, Inoue K, Takeuchi M, et al. Effect of Substrate Surface Morphology and Interface Microstructure in ZnO Thin Films Formed on Various Substrates. Vacuum, 2000, 59: 403-410.
    [100] Ryzhikov a S, Vasiliev R B, Rumyantseva M N, et al. Microstructure and Electrophysical Properties of SnO2, ZnO and In2O3 Nanocrystalline Films Prepared by Reactive Magnetron Sputtering. Materials Science and Engineering, 2002, B96: 268-274.
    [101]马晓翠,柳文军,朱德亮, et al.氧含量对rf磁控溅射ZnO薄膜结构特性的影响.半导体学报, 2007, 28(增刊):
    [102] ?zgürü, Alivov Y I, Liu C, et al. A Comprehensive Review of ZnO Materials and Devices. Journal of Applied Physics, 2005, 98: 041301.
    [103] Chen M, Pei Z L, Sun C, et al. Surface Characterization of Transparent Conductive Oxide Al-Doped ZnO Films. Journal of Crystal Growth, 2000, 220: 254-262.
    [104] Krupanidhi S B and Sayer M. Position and Pressure Effects in Rf Magnetron Reactive Sputter Deposiotion of Piezoelectric Zinc Oxide. Journal of Applied Physics, 1984, 56(11): 3308-3318.
    [105] Levinson J, Shepherd F R, Scanlon P J, et al. Conductivity Behavior in Polycrystalline Semiconductor Thin Film Transistors. Journal of Applied Physics, 1982, 53(2): 1193-1202.
    [106] Wang L, Fjeldly T A, Iniguez B, et al. Self-Heating and Kink Effects in a-Si :H Thin Film Transistors. IEEE Transactions on Electron Devices, 2000, 47(2): 387-397.
    [107] Shannon J M and Gerstner E G. Source-Gated Thin-Film Transistors. IEEE Electron Device Letters, 2003, 24(6): 405-407.
    [108] Shannon J M and Balon F. High-Performance Thin-Film Transistors in Disordered and Poor-Quality Semiconductors. IEEE Transactions on Electron Devices, 2007, 54(2): 354-358.
    [109] Shannon J M, Dovinos D, Balon F, et al. Source-Gated Transistors in Poly-Silicon. IEEE Electron Device Letters, 2005, 26(10):
    [110] Weiher R L. Electrical Properties of Single Crystals of Indium Oxide. Journal of Applied Physics, 1962, 33(9): 2834-2839.
    [111] Taylor M P, Denniswreadey, Charleswteplin, et al. The Electrical, Optical and Structural Properties of InxZn1-XOy (0 <= X <= 1) Thin Films by Combinatorial Techniques. Measurement Science & Technology, 2005, 16: 90-94.
    [112] Yoshid Y, Wood D M, Gessert T A, et al. High-Mobility, Sputtered Films of Indium Oxide Doped with Molybdenum. Applied Physics Letters, 2004, 84(12): 2097-2099.
    [113] Hest M F a M V, Dabney M S, Perkins J D, et al. Titanium-Doped Indium Oxide: A High-Mobility Transparent Conductor. Applied Physics Letters, 2005, 87: 032111.
    [114] Gujar T P, Shinde V R, Lokhande C D, et al. Formation of Highly Textured (1 1 1) Bi2O3 Films by Anodization of Electrodeposited Bismuth Films. Applied Surface Science, 2006, 252(8): 2747-2751.
    [115] Wong H and Iwai H. On the Scaling Issues and High-k Replacement of Ultrathin Gate Dielectrics for Nanoscale MOS Transistors. Microelectronis Engineering, 2006, 83: 1867-1904.
    [116] Suresh A, Wellenius P, Dhawan A, et al. Room Temperature Pulsed Laser Deposited Indium Gallium Zinc Oxide Channel Based Transparent Thin Film Transistors. Applied Physics Letters, 2007, 90: 123512.
    [117] Grover M S, Hersh P A, Chiang H Q, et al. Thin-Film Transistors with Transparent Amorphous Zinc Indium Tin Oxide Channel Layer. Journal of Physics D: Applied Physics, 2007, 40: 1335-1338.
    [118] Ralland A, Richard J, Kleider J P, et al. Electrical Properties of Amorphous Silicon Transistors and Mis-Devices: Comparative Study of Top Nitride and Bottom Nitride Configurations. Journal of the Electrochemical Society, 1993, 140(12): 3679-3683.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700