药用野生稻基因组文库构建与大片段DNA转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
野生稻是重要的遗传资源,是栽培稻遗传改良和重要基因克隆的基础。野生稻在其漫长的进化历程中,形成了极其丰富的遗传多样性,具有多种在栽培稻中没有或已消失的优良性状,如抗病、抗虫、抗逆、细胞质雄性不育、高蛋白质含量等等。药用野生稻(Oryza officinalis)是原产我国的3种特有的珍稀野生稻种质资源之一。其优良特性表现在:有很强的抗虫能力,高抗褐飞虱、白背飞虱,对叶蝉、螟虫、稻蓟马等也有很好的抗性;对白叶枯病、稻瘟病等有强的抗性。此外,药用野生稻米粒中的蛋白质含量在12%以上。我国是水稻生产大国,也是野生稻资源最为丰富的国家之一。但利用杂交、回交等常规手段转移野生稻有利基因遇到很多困难,存在很多问题,效率也非常低。因此,我们需要开拓新的途径来研究和利用野生稻优良基因。
     植物遗传转化不仅是遗传改良的重要手段,而且是研究基因和基因组功能必不可少的技术环节。从不同途径克隆的基因都需要通过转化来验证及进行功能分析。但常规的克隆转化载体一般只能转化5~20kb的DNA片段,对超过50kb的片段就无能为力了。因此,用YAC、PAC和BAC等基因组文库
    
    进行目的基因筛选,在获得大片段(大于50Kb)的侯选克隆后,通常要进行
    亚克隆,然后对每个亚克隆逐一转化进行基因功能互补实验;不仅工作量大,
    而且有遗漏目的基因的危险。而BmAC这种双功能载体,既可用于大片段文
    库的构建,还可直接对克隆的片段进行转化,侯选克隆的插入片段(基因)
    通过农杆菌的介导直接导入宿主,并通过表达分析其功能,这样就可减小或
    消除亚克隆的危险性。此外,大片段DNA转化技术在转移基因簇(Gene
    clusters)、多基因(Multi一genes)、数量性状座位(QTL),代谢工程(pathway
    engineering),基因的图位克隆(M叩一based cloning),消除基因的位点依赖性
    表达(site一dependent gene expression),提高转基因效率等方面都有重要意义。
    所以说,大片段DNA转化既是植物转化的发展趋势,也是植物转化的现实
    要求。
     为了更好地研究和克隆药用野生稻中有利基因,我们利用新一代可转化
    的细菌人工染色体即双元细菌人工染色体(BIBAC)载体构建了第一个药用
    野生稻基因组文库。该文库包括55296个克隆贮存在144个384孔的微量培
    养板中。随机检测的140个BmAC克隆中,插入片段大小分布于15~235Kb
    之间,平均为7lKb。用来源于小麦的4个叶绿体基因和玉米的4个线粒体基
    因对文库进行筛选,结果表明,大约有0.61%的克隆含叶绿体基因组DNA的
    同源序列,有0.04%的克隆含有线粒体基因组DNA的同源序列。除去4.8%
    的不含插入片段的克隆,0.61%的含叶绿体DNA和0.04%含线粒体DNA的
    克隆,按平均插入体积71Kb及药用野生稻基因组大小为697Mb计算,该文
    库相当于5.3倍药用野生稻基因组,理论上筛选到任一药用野生稻基因或
    DNA序列的概率为99.5%。克隆稳定性实验表明,BIBAC克隆在细菌及农杆
    菌中都能稳定存在。用与褐飞虱抗性基因QbPZ紧密连锁的两个RFLp标记
    R288和C82O筛选文库,分别得到7个和8个阳性克隆。分析结果表明该文
    库具有较高的质量,适合于野生稻基因的分离、克隆以及基因组相关的研究。
     通过比较不同的受体材料,不同的预培养、共培养条件,不同的去除农
    杆菌及选择阳性愈伤的方式等对转化效率的影响,建立了适合水稻BmAC
    系统的转化体系。该体系的技术要点包括:以H1493为转化受体;以含毒性
    辅助质粒PCH32的 LBA4404菌株(HP4404)为侵染菌株;前培养的培养基
    pHS .6;以N6A代替AAM悬浮农杆菌;侵染菌液浓度为oD600二1 .0:共培
    
    养温度为24oC;采用过渡(Resting)培养除去农杆菌;采用二步法进行选择
    等。基于GUS、PCR检测,Southem分析的结果表明,BIBAC载体所携带的
    下DNA及标记基因己整合到转化植株的基因组中。这个体系的建立为在水稻
    中利用BmAC系统进行大片段DNA转化奠定基础。
     在构建野生稻BIBAC基因组文库及建立水稻BIBAC系统转化体系的基
    础上,从文库中挑选一个120Kb的BIBAC克隆(114G9),采用优化的转化
    体系,在水稻中实现了大片段DNA的转化。实验结果表明,通过BIBAC系
    统利用农杆菌介导水稻大片段DNA转化,以H1493为受体材料,以带有毒
    性辅助质粒pCH咒的农杆菌菌株LBA4404为转化菌株所获得的转化效率最
    高。通过GUS试验,PCR检测,Southern分析和荧光原位杂交(FISH)定
    位,证实BmAC载体上T-DNA及其所携带的120Kb的大片段已被转移到水
    稻基因组中。实验结果还表明,利用BIBAC系统进行的大片段转化与农杆菌
    介导的普通的双元载体转化之间的最大区别是大片段转化需要额外的毒性基
    因vi州3/virE的参与;而且在转化机制(如插入拷贝数)上存在差异。
     这套系统的建立将为野生稻优良基因的发掘和利用提供新的技术手段,
    也可能为野生稻基因克隆、基因功能分析,多基因转化及基因组相关研究开
    拓途径。
The wild germplasm is a valuable gene pool that can be used to broaden the genetic background of modern crops. Because of the massive international exchange of germplasm and repeated use of the limited number of productive parental materials in breeding programs, new varieties are usually derived from crosses among genetically related modern varieties. The genetic diversity in improved rice has narrowed, limiting the further increase in yield potential of newly developed varieties. There is thus an urgent need to explore and utilize the wild Oryza germplasm to meet various challenges affecting rice production.
    O. officinalis well ex watt, a species with a diploid CC genome, occurs wildly in the South and Southeast Asia. O. officinalis has been intensively studied.
    
    
    
    Some of these genes including resistance to brown planthopper (BPH), white backed planthooper (WBPH) and bacterial blight (BB) have been transferred from O. officinalis into several rice breeding lines by interspecific hybridization and backcrossing.
    The bacterial artificial chromosome (BAC) cloning system has provided a powerful tool for physical mapping, map-based cloning and genome sequencing in genome research. While BAC vectors are designed for cloning large fragment of DNA, they are not engineered for transformation of the cloned DNA back into plant genomes. A new generation of vector (termed binary-BAC or BIBAC) has been designed that is capable of replicating in both Escherichia coli and Agrobacterium tumefaciens and is able to deliver a large insert of DNA directly into the plant genome via Agrobacterium-mediated transformation. BIBAC libraries not only can be used as large-insert DNA libraries in genome research, but also facilitate gene discovery and functional studies by direct transformation of BIBACs carrying the genes, gene clusters (e.g., genes of disease resistance) or QTL of interest, into plant. While the BIBAC is proved as a useful system for transfer of large DNA fragments into the plant genome in dicotyledon, the construction of BIBAC library and the transfer of large insert DNA have not yet been reported in monocotyledonous plants.
    DNA transfer to plants has been accomplished by many methods, including Agrobacterium-mediated transformation, biolistic transformation (particle bombardment), and microinjection. Whereas plant transformation with DNA fragments up to circa 20 kb is routine, success in stable plant transformation with DNA fragments larger than 50 kb is limited. The technologies of cloning and transferring of large DNA fragments in plants are important for high-efficiency identification of new genes and study of gene functions. A reliable system for transforming large fragments of DNA into plant make it feasible to introduce a natural gene cluster or a series of previously unlinked foreign genes into a single locus. Thus, several diseases and/or pest resistance genes or genes encoding the enzymes of metabolic pathways can be simultaneously introduced in only
    
    transformation step. Large insert transformation would make it feasible to study the expression of plant genes or gene clusters in their native genomic context and might eliminate site-dependent gene expression, which can be serious problem in plant transformation experiments.
    To develop the resource for transferring and identifying valuable genes and carrying out genome-related research in O. officinalis, we constructed the first genomic library of wild rice using a new generation of vector BIBAC2. The library consists of 55,296 clones and stored in 144 384-well plates. A random sampling of 140 clones indicated an average insert size of 71 Kb at range of 15-235 Kb and 4.8% empty vectors. Four wheat chloroplast probes and four maize mitochondrial probes were hybridized separately to the library, showing that contamination with organellar DNAs is very low (0.61% and 0.04%, respectively). The BIBAC library provides 5.3 haploid genome equivalents, implying a 99.5% probability of recovering any specific sequence of interest. A stability test indicated that the
引文
王从丽,陆柏方,张学成等。农杆菌—植物间基因转移的分子基础。生命科学,2002,14(1):1-5
    王永勤,肖兴国,张爱民。农杆菌介导的小麦遗传转化几个影响因素的研究。遗传学报,2002,29:260-265
    王关林,方宏筠,那杰。外源基因在转化植株中的稳定性。走向21世纪的植物分子生物学,2000,科学出版社,P387-399
    刘巧泉,张竟六,王宗阳等。根癌农杆菌介导的水稻转化系统的建立。植物生理学报,1998,24(3):259-271
    皮灿辉,易自力,王志成。提高转基因植物外源基因表达效率的途径。中国生物工程杂志,2003,23(1):1-4
    李子银,胡会庆。农杆菌介导的植物遗传转化进展。生物工程进展,1998,18(3):22-26
    汤圣祥,颜辉煌等。国外对野生稻优良性状的利用进展。水稻文摘,1992,11(1):5-8
    何光存。细胞工程与分子生物学相结合—野生稻优异种质资源利用的有效途径。生物工程进展,1998,18(2):41-45
    易自力,曹守云,王力等。提高农杆菌转化水稻频率的研究。遗传学报,2001,28:352-358
    金危危。转基因水稻中外源基因整合特性的FISH研究。武汉大学博士学位论文,2001
    林拥军。农杆菌介导的水稻基因转化研究。华中农业大学博士学位论文,2001
    赵恢武,胡鸢雷,林忠平。植物遗传转化技术的研究进展。走向21世纪的植物分子生物学,2000,科学出版社,P446-454
    赵艳,于彦春,黄大年。植物中转基因的整合机制。中国生物工程杂志,2003,23(2):29-31
    陶均,李玲。农杆菌转化的分子生物学。植物生理学通讯,2002,38:639-644
    章冰,卫志明。植物遗传转化中存在的问题与对策。植物生理学通讯,2000,36:245-251
    曹明霞,卫志明,黄健秋。根癌农杆菌介导的水稻遗传转化。植物生理学通讯,2002,38:423-427
    黄臻。水稻抗褐飞虱基因遗传分析与定位及Qbp2物理图谱构建。武汉大学博士学位论文,2001
    
    
    翟文学,陈浩,颜辉煌等。一个端粒序列的水稻BAC克隆的分析和定位。中国科学(C辑),1999,29:291-296
    Aldemita RR, Hodges TK. Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta 1996, 199:612-617
    Allen GC, Thonpson WE Matrix attachment regions increase transgene expresion levels and stability in transgenic rice plants and their progency. Plant J 1999, 18:233-242
    Altabe S, De Iannino NI, De Mendoza D, ugalde RA. Expression of the Agrvobacterium tumfaciens chvB virulence region in Azospiruium spp. J. Bacterial 1990, 172:2563-2567
    Alt-Moerb J, Neddermann E Von Lintig J, Weiler EW, Schroder J. Temperature-sensitive step in Ti plasmid vir region induction and correlation wity cytokinin secretion by Agrobacteria. Mol Gen Genet 1988, 213, 1-8
    Amoah BK, Wu H, Sparks C, Jones HD. Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue. J Exp Bot 2001, 52:1135-1142
    Ashby, AM et al. Tiplasmid-speified chemotaxis of Agrobacterium tumefaciens C_(58)C_1 toward vir-inducing phenolic compounds and soluble factors from monocoty ledonous and dicotyledonous plants. J. B acteriol. 1998, 170: 4181-4187
    Atkinson RG, Richard CG. Regeneration of transgenic tamarillo plants. Plant cell Rep. 1993, 12:347-351
    Azhakanandam K, Mccabe MS, Power JB, Lowe KC, Cocking EC, Davey MR. T-DNA transfer, integration, expression and inheritance in rice: effects of plant genotype and Agrobacterium super-effects of plant genotype and Agrobacterium super-virulence. J. Plant physiol. 2000, 157:429-439
    Ballas N and Citovsky V. Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc. Natl. Acad. Sci.USA. 1997,.94:10723-10728
    Barakat A, Callois E Raynal M, Mestre-Ortega D, Sallaud C, Guiderdoni E, Delseng M. Bemardi G. The distribution of T-DNA in the genomes of transgenic Arabidosis and rice. FEBS letters 2000, 471:161-164
    Bentolila S, Hanson MR. Identification of a BIBAC clone that co-segregates with the petunia restorer of fertility (Rf) gene. Mol. Genet. Genomics 2001, 266:223-230
    
    
    Binns, AN et al. Inhibition of VirB-mediated transfer of diverse substrates from Agrobacterium tumefaciens by the InQ plasmid RSF 1010. J.Bacteriol. 1995, 177: 4890-4899
    Birch RG. Plant transformation: problems and strategies for practical application. Annu. Rev. Plant Physiol. Plant Mol. 1997, 48: 297-326.
    Bhalla PL, Smith N. Agrobacterium turnefaciens-mediated transformation of cauliflower, Brassica oleracea var. Botrytis. Mol Breed 1998, 4:531-541
    Brar DS, Khush GS. Alien introgression in rice. Plant Mol. Biol. 1997,35:35-47
    Breitler JC, Labegrie A, Meynard D, Legavre T, Guiderdoni E. Efficient micropjectible bombardment-mediated transformation of rice using gene cassettes. Theor. Appl. Genet 2002, 104:709-719
    Burke D T, Carle G F, Olson M V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 1987, 236: 805-811
    Citovsky V et al. Cooperative interaction of Agrobacterium VirE2 protein with single stranded DNA: Implications for the T-DNA transfer process. Proc. Natl. Acad. Sci. USA 1989, 86: 1193-1197
    Citovsky V et al. The molecular structure of Agrobacterium VirE2-single stranded DNA complexex involved in nuclear inpor. J. Mol. Biol. 1997, 271:718-727
    Citovsky V, Wong ML, Zambryski P. Cooperative interaction of Agrobacterium VirE2 Protein with single-stranded DNA: implications for the T-DNA transfer process. Proc Natl Acad Sci USA 1989, 86:1193-1197
    Citovsk V, Zupan J, Wamick D et al. Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 1992, 91:2994-2998
    Chang YL, Henriquez X, Preuss D, Copenhaver GP, Zhang HB. A plant-transformation-competent BIBAC library from the Arabidopsis thaliana Landsberg ecotype for functional and comparative genomics. Theor. Appl. Genet. 2003, 106: 269-276
    Chen L, Marmey P, Taylor NJ, Brizard JP, Espinoza C, D'crui P, Huet H, Zhang S, Kochko A, Beachy RN, Fauquet CM. Expression and inheritance of multiple transgenes in rice plants.
    
    Nat Biotechnol 1998, 16:1060-1064
    Chen L. et al. Transferred DNA (T-DNA)-associated proteins of Agrobacterium tumefaciens are exported independently of virB. Proc. Natl. Acad. Sci. USA 2000, 97:7545-7550
    Cheng M, Fry JE, Pany S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y. Genetic Transformation of wheat mediated by Agrobacterium tumefaciens. Plant physiol 1997, 115:971-980
    Cheng X, Sardana R, Kaplan H, Altosaar I. Agrobacterium-transformed rice plants expressing synthetic crylA(b) and crylA(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc. Natl Acad Sci USA 1998, 95:2767-2772
    Chilton MD, Drummond MJ, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW. Stable incorporation of plasmid DNA into higher plant cell: the molecular basis of crown gall tumorigenesis. Cell 1977, 11:263-271
    Choi S, Begum D, Koshinsky H, OW DW, Wing RA. A new approach for the indentification and cloning of genes: the PBAC wich system using cre/cox site-specific recombination Nucleic Acids Research 2000, 28(7): e19
    Christie PJ and Vogel JP. Bacterial type Ⅳ secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol. 2000, 8:354-360
    Christie PJ et al. The Agrobacterium tumefaciens virE2 gene product is a single-stranded-DNA-Binding protein that associates with T-DNA. J. Bacteriol. 1988, 170: 2659-2667
    Christie PJ. Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J.Bacteriol. 1997, 179:3085-3094
    Chu CC, Wang CC, Sun CS, Hsu SC, Yin KC, Chu CY, Bi FY. Establishment of an efficient medium for anther culture of rice through comparative experimentation on nitrogen sources. Scientia Sinica 1975, 18:659-668
    Clough SJ, Bent AF. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 1998, 16:735-743
    Collins FS, Weismann SM. Directional cloning of DNA fragments at a large distance from an initial probe: a circularization method. Proc Natl Acad Sci USA 1984, 81:6812-6816
    Cui Y, Bi YM, Brugiere N, Arnoldo M, Rothstein SJ. The S locus glycoprotein and the S
    
    receptor kinase are sufficient for self-pollen rejection in Brassica. Proc. Natl. Acad. Sci. USA 2000, 97:3713-3717
    Danesh D, Penuela S, Mudge J, Denny RL, Nordstorm H, Martinez JP, Young ND. A bacterial artificial chromosome library for soybean and identification of clones near a major cyst nematode resistance gene. Theor Appl Genet 1988, 96:196-202
    De Block M, Herrera-Estrella L, van Montagu M, Schell J, Zambryski E Expression of foreign genes in regenerated plants and their progeny. EMBO J 1984, 3:1681-1689
    De Groot M J et al. Agrobacterium tumfaciens-mediated transformation of filamentous fungi. Nat. Biotechnol. 1998, 16:839-842
    De Neve M. et al. T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNA ligation in vitro. Mol. Cell. Biol. 1997, 20:6317-6322
    Deng W et al. Agrobacterium VirD2 protein interacts with plant host cyclophilins Proc. Natl. Acad. Sci. USA 1998, 95:7040-7045
    Devos KM, Gale MD. Genome relationships: the grass model in current research. Plant Cell 2000, 12:637-646
    Ditt RF et al. Plant gene expression response to Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. USA 2001, 98:10954-10959
    Dombek P. Ream W. Funcitional domains of Agrobacterium tumefaciens single-stranded DNA-binding Protein VirF2. J Bacteriol 1997, 179:1165-1173
    Dong E Miller JT, Jackson SA, Wang GL, Ronald PC, Jiang J. Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc. Natl. Acad. Sci. USA 1998, 95, 8135-8140
    Dong J, Kharb P. Teng W., Hall TC. Characterization of rice transformed via an Agrobacteriurn-mediated inflorescence approach. Mol. Breed 2001, 7, 187-194
    Dong J., Teng W., Buchholz W.G., Hall T.C. Agrobacterium-mediated transformation of javanica rice. Mol. Breed. 1996, 2, 267-276
    Douglas C J, Staneloni RJ, Rubin RA, Nester EW, Indentification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulent region. J Bacterial 1986, 161,850-860
    Dower WJ, Miller JF, Ragsdale CW. High efficiency transformation of E.coli by high voltage
    
    electroporation. Nucleic Acid Res 1988, 16, 6127-6145
    Ercolano MR, Ballvora A, Paal J, Steinbiss HH, Salamini F, Gebhardt C. Functional complementation analysis in potato via biolistic transformation with BAC large DNA fragments. Mol. Breed 2003 (in press).
    Euriquez-Obregon GA, Prieto-samsonov DL et al. Agrobacterium-mediated Japomica rice transformation: a procedure assisted by an antinecrotic treatment. Plant cell. Tissue and organ culture 1999, 59, 159-168
    Feng Q, Zhang Y, Hao Pet al. Sequence and analysis of rice chromosome 4. Nature 2002, 420, 316-320
    Fisher R, Emans N, Schuster F, Hellwig S, Drossard J. Towards molecular farming in future: using plant-cell-suspension cultures as Biotechnol. Appl. Biochem. 1999, 30, 109-112
    Forres E, Vaquero C, Nicholsom L et al. Rice cell culture as an alternative production system for functional diagnostic and therapeutic antibodies. Trangenic Res 1999, 8, 441-449
    Frame BR, Shou H, Chikwamba RK, Z(?)g Z, Xiang C, Fonger TM, Pegg SEK, Li B, Nettleton DS, Pei D, Wang K. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 2002, 129, 13-22
    Frary A, Hamilton CM. Efficiency and stability of high molecular weight DNA transformation: an analysis in tomato. Transgenic Res. 2001, 10, 121-132.
    Frolov MV et al. Regena (Rga), a Drosophila homolog of the global negative transcriptional regulator CDC36 (NOT2) from yeast, modifies gene expression and suppressed position effect variegation. Genetics 1998, 148, 317-329
    Fullner KJ et al. Pillus assembly by Agrobacterium T-DNA transfer genes. Science 1996, 273, 1107-1109
    Fu XD, Duc LT, Fontana S, Bong BB, Tinjuangjum R Sudhakar D. Twywan Rm, Christou R Kohli A. Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns Trangenic Res 2000, 9, 11-19
    Gay R Le CD, Steinmetz M et al. Cloning structural gene sacB, which codes for exoenzyme levansucrase of Bacillus subtilis: expression of the gene in Escherichia coli. J. Bacteriol. 1983, 153, 1424-1431
    
    
    Gelvin SB. Agrobacterium and plant genes involved in T-DNA transfer and intergration. Annu. Rev. Plant physiol. Plant Mol. Biol. 2000, 51,223-256
    Gentzbittel L, Abbott A, Galaud JP, Georgi L, Fabre E Liboz T, Alibert G. A bacterial artificial chromosome (BAC) library for sunflower, and identification of clones containing genes for putative transmembrane receptors. Mol. Genet. Genomics 2002, 266, 979-987
    Giddings G, Allison G, Brooks D, Carter A. Transgenic plants as factories for biopharmaceuticals. Nature Biotechnology 2000, 18, 1151-1155
    Gough KC, Hawes WS, Kilpatrick J, et al. Cyanobacterial GR6 glutamate-1-semialdehyde aminotransferase: a novel enzyme-based selectable marker for plant transformation plant cell Rep 2001, 20, 296-300
    Goldfarb, D. GTPase cycle for nuclear transport. Curt. Biol. 1994, 4, 57-60
    Gowda M, Venu RC, Roopalakshmi K, et al. Advances in rice breeding, genetics and genomics. Mol. Breeding 2003, 11,337-352
    Grag Ak, Kim Jk, Owens TG, Ranwala AP, choi YD, Kochian LV, Wu Rl. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc. Natl. Acad. Sci. USA 2002, 99, 15898-15903
    Guralnick B. et al. Transport of DNA into the nuclei of Xenopus oocytes by a modified VirE2 protein of Agrobacterium. Plant Cell 1996, 8, 363-373
    Haldrup A, Petersen SG, Okkels FT. The xylose isomerase gene from three moanaerobacterium thermosulfurogenes alloes effective selection of transgenic plant cells using D-xylose as the section agent. Plant Mol Biol 1998, 37, 287-296
    Hamilton C.M. A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene 1997, 200, 107-116
    Hamilton C.M., Frary A., Lewis C., Tanksley S.D. Stable transfer of intact high molecular weight DNA into plant chromosome. Proc. Natl. Acad. Sci. USA 1996, 93, 9975-9979
    Hamilton CM, Frary A, Xu Y, Tanksley SD, Zhang HB. Construction of tomato genomic DNA libraries in a binary-BAC (BIBAC) vector. Plant J. 1999, 18, 223-229
    Hansen G, Das A, Chilton MD. Constitutive expression of virulence genes improves the efficiency of plant transformation by Agrobacterium. Proc. Natl. Acad. Sci. USA 1994, 91, 7603-7607
    
    
    Hansen G, Shillito RD, Chilton MD. T-Strand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes. Proc. Natl. Acad. Sci. USA 1997, 94, 11726-11730
    Hansen G, Wright MS. Recent advances in the transformation of plants. Trends in plant science 1999, 4, 226-231
    Hare PD, Chua NH. Excision of selectable marker genes from transgenic plants Nature Biotech. 2002, 20, 575-580
    Hellens R, Mullineaux P, Klee H. A guide to Agrobacterium binary Ti vectors. Trends in plant science 2000, 5, 446-451
    He R.F, Wang Y, Shi Z, Ren X, Zhu L, Weng Q, He GC. Construction of a genomic library of wild rice and Agrobacterium-mediated transformation of large insert DNA linked to BPH resistance locus. Gene 2003, 321, 113-121
    Herve C. et al. Characterization of an Arabidopsis thaliana gene that defines a new class of putative plant receptor kinases with and extracellulat lectin-like domain. J. Mol. Biol. 1996, 258,778-788
    Hiei Y, Komari T, Kubo T. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 1997, 35, 205-218
    Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 1994, 6, 271-282
    Holger P. Removing selectable marker genes: Taking shortcut. Trends in plant sci 2000, 5, 273-274
    Hood EE, Gelvin SB, Melchers LS, Hoekema A. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 1993, 2, 208-218
    Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyed A, et al. Inheritance of functional foreign genes in plants. Science 1984, 223,496-498
    Huang et al. Plant biotechnology in China. Science 2002, 295:674
    Huang Z. He G, Shu L, Li X, Zhang Q. Identification and mapping of two brown planthopper resistance genes in rice. Theor. Appl. Genet. 2001, 102, 929-934
    Iannacoe R, Grienco P D, Cellini E Specific sequence modification of a cry3B endotxin gene
    
    result in high levels of expression and insect resistance. Plant Mol Biol 1997, 34, 485-496
    Ioannou P A, Amemiya C T, Games J, Kroisel P M, Shizuya H, Chen C, Batzer M A, de Jong P J. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nat Genet 1994, 6, 84-89
    Jain RK, Jain S, Wu R. Stimulatory effect of water stress on plant regeneration in aromatic indica rice varieties. Plant Cell Reports 1996, 15,449-454
    James C. Global status of commercialized transgenic crops. ISAAA, 2002, Metro Manila, Philippines
    Jang IC, Oh S J, Seo JS et al. Expression of a bifunctional Fusion of the Escherichia coli genes for treholose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stmting growth. Plant Physilolgy 2003, 131, 516-524
    Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987, 6, 3901-3907
    Jena KK, Khush GS. Introgression of genes from Oryza officinalis well ex watt to cultivated rice, O. Sativa L. Theor Appl genet 1990, 80, 737-745
    Jena KK, Khush GS, Kochert G Comparative RFLP mapping of a wild rice, Oryza officinalis, and cultivated rice, O. Sativa. Genome 1994, 37, 382-389
    Jin WW, Li ZY, Fang Q, Altosaar I, Liu LH, Song YC. Fluorescence in situ hybridization analysis of alien genes in Agrobacterium-mediated CrylA(b)-transformed rice. Annals of Botany 200, 290, 31-36
    Joersbo M, Petersen SG, Okkels SG, Parameters interacting with mannose selection employed for the production of trangemic sugar beet. Physiol plant 1999, 105, 109-115
    Jong D, An S, Kang HG et al. T-DNA insertional mutagenesis for Actrvation tagging in rice. Plant physiology 2002, 130, 1636-1644
    Kado CI. The role of the T-pilus in horizontal gene transfer and tumorigenesis Curr. Opin. Microbiol. 2000, 3,643-648
    Kanno T, Naito S, Shimamoto K. Post- transcriptional gene silence in cultured rice cells, Plant cell physiology 2000, 41,321-326
    Kausch AP, Owen TE Zachnieja SJ. Tissue-dependent enhancement of transgene expression
    
    by introns of repracement histone H_3 gene of Arabidopsis. Plant Mol Biol 2001, 45, 1-15
    Kim SR, Lee J, Jun SH, Park S, Kang HG, Kwons A, An G, Transgene structure in T-DNA-inserted rice plants. Plant Mol. Biol. 2003 (In press)
    Kishitanis, Takanami T, Suzuki M etal. Compatibility of glycinebetaine in rice plants: Evaluation using transgenic rice plants with a gene for perroxisomal betaine aldehyde dehydrogenase from barley. Plant Cell Environment 2000, 23, 107-114
    Klein TM, Fromn ME, Gradziel T, Sanford JC. Factors influencing gene delivery into Zea mays ceils by high velocity microprojectiles. Bio/Technology 1988, 6, 923-926
    Kohli A, Leech M, Vain P. Transgene orgnization in rice engineered through direct DNA transfer supports a two-phase mechanism mediated by the establishment of integration hot spots, Proc Natl Acad Sci USA 1998, 95, 7203-7208
    Kohli A, Griffiths S, Palacios. Molecular characterization of transforming plasmid rearrangrnents in transgenic rice reveals a recombination hotspots in the CaMV35S promoter and confirm the predominance of microhomology mediated recombination. The Plant J 1999, 17, 591-601
    Kohi A, Tuyman RM, Abranches R, Wegel E, Stoger E, Christou P. Transgene integration, Organization and interaction in plants. Plant mol Biol. 2003, 52, 247-258
    Komari T, Hiei Y, Saito Y et al. Vector carrying two separate T-DNAS for co-transformation of higher plants mediated by Agrobucterium tumefaciens and syregation of transformants free from selection markers plant J 1996, 10, 165-174
    Korarik A, Van Hondt H, Holy A, Depicker A. Drug-induced hypomethylation of a post-transeriptionally silenced transgene locus of tobacco leads to partial release of silencing. FEBS letter 2000, 467, 47-51
    Kumar S, Fladung. Controlling transgene in integration in plants. Trends plant sci 2001 6, 155-159
    Kumfia R, Waie B, Rajam MV. Plant regeneration from transformed embryogenic callus of an elite indica rice via Agrobacterium. Plant Cell, Tissue and Organ Culture 2001, 67, 63-71
    Kunik T.et al. Genetic transformation of HeLa cells by Agrobacterium. Proc. Natl. Acad. Sci.USA 2001, 98, 1871-1876
    Lafayetle PR, Parrott WA. A non-antibiptic marker for amplification of plant transformation
    
    vectors in E.coli plant cell Rep 2001, 20, 338-342
    Lai EM and Kado CI. Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacteriura tumefaciens. J.Bacteriol. 1998, 180, 2711-2717
    Lazo GR, Stein PA, Ludwig RA. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Bio/Technology 1991, 9, 963-967
    Le VQ, Belles-Isles J. et al. An improved procedure for production of white spruce (picea glauca) transgenic plants using Agrobacterium tumefaciens. J. Experimental Botany. 2001, 52, 2089-2095
    Liu CN, Li XQ, Gelvin SB. Multiple copies of virG enhance the transient transformation of celery, carrot and rice tissue by Agrobacterium tumefaciens. Plant Mol Biol 1992, 20, 1071-1087
    Liu L, Liu YG, Xu X, Li B. Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system. Proc. Natl. Acad. Sci.USA 2003, 100, 5962-5967
    Li Z, Zhu Y. Rice male sterile cytoplasm and fertility restoration. 1988, p85-102 in Hybrid Rice. International Rice Research Institute, Manila, Philippines.
    Liu YG, Liu H, Chen L, Qiu W, Zhang Q, Wu H, Yang C, Su J, Wang Z, Tian D, Mei M. Development of new transformation-competent artificial chromosome vectors and rice genomic libraries for efficient gene cloning. Gene 2002, 282, 247-255
    Liu YG, Shirano Y, Fukaki H, Yanai Y, Tasaka M, Tabata S, Shibata D. Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc. Natl. Acad. Sci.USA 1999, 96, 6535-6540
    Llosa M. et al. The N-and C-terminal portions of the Agrobacterium VirB1 protain independently enhance tumorigenesis. J.Bacteriol. 2000, 182, 3437-3445
    Loppes R, Radoux M. Identification of short promter regions ivolved in the transcription expression of the nitrate redutase gene in chalamudomonas reinhadtii. Plant Molecular Biology, 2001, 45,215-227
    Lucca P, Ye X, Potrykus I. Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol Breeding 2001, 7, 43-49
    
    
    Luehrsen KR, Walbot V. Intron enhancement of gene expression and the splicing efficiency of introns in maize cells. Mol Gen Genet 1991, 225, 81-93
    Maas C, Laufs J, Grants, Korfhage C, Werr W. The combination of a novel stimulatory element in the first exon of the maize shrunken-1 gene with the following introns 1 enhances reporter gene expression up to 1000-fold. Plant Mol Biol 1991, 16, 199-207
    Mattghsse AG, Thomas DL, white AR. Mechanism of cellulose synthesis in Agrobacterium tumefaciens. J.Bacteriol 1995, 177, 1076-1081
    Mayerhofer R, Koncz-kalman Z, Nawrath C, Bakkeren G, Grmeri A, Angelis K, Redei GP, Schell J, Hohn B. T-DNA integration: A mode of illegitimate recombination in plants. EMBO J. 1991, 10, 697-704
    McCouch SR, Kochert G; Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD. Molecular mapping of rice chromosome. Theor. Appl. Genet. 1988, 76, 815-829
    McCubbin AG, Zuniga C, Kao TH. Construction of a binary bacterial artificial chromosome library of Petunia inflata and the isolation of large genomic fragments linked to the self-incompatibility (S-) locus. Genome 2000, 43, 820-826
    Ming XT, Yuan HY. Wang LJ. et al. Agrobacterrum-mediated transformation of rice with help of bombardment. Acta Botanica simica. 2001, 43, 72-76
    Mlynarova L, Jansen RC, Conner AJ. The MAR-media reduction in position effect can be uncoupled from compy number-dependent expression in transgenic plant. Plant J. 1995, 7, 599-609
    Mohanty A, Sarma NP, Tyagi AK. Agrobacteriurn-mediated high frequency transformation of an elite indica rice variety Pusa Basmati 1 and transmission of the transgens to R2 progeny. Plant Sci. 1999, 147, 127-137
    Murashige T, Skoog E A revised media for rapid growth and bioassay with tobacco tissue cultures. Physiologia Plantarum 1962, 15,473-479
    Mysore KS, Kumar CTR, Gelvin SB. Arabidopsis ecotypes and mutants that are recalcitrant to Agrobacterium root transformation are susceptible to germ-line transformation. Plant J. 2000, 21, 9-16
    Mysore KS et al. An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proc. Natl. Acad. Sci. USA 2000, 97,948-953
    
    
    Mysore KS et al. Role of the Agrobacterium tumefaciens VirD2 protein in T-DNA transfer and integration. Mol. Plant-Microbe Interact. 1998, 11,668-683
    Nadolska-Orczyk A, Orczyk W, Study of the factors influencing Agrobacterium-mediated transformation of pea (Pisum sativum L.). Mol. Breeding 2000, 6, 185-194
    Nakielny S and Dreyfuss G. Transport of proteins and RNAs in and out of the nucleus. Cell 1999, 99, 677-690
    Nam J. et al. Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell 1997, 9, 317-333
    Nam, J. et al. Indentification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium. Mol. Gen. Genet 1999, 261,429-438
    Narasimhulu SB. et al. Early transcription of Agrobacterium T-DNA genes in tobacco and maize. Plant Cell 1996, 8, 873-886
    Newell CA. Plant transformation technology: Developments and applications. Mol. Biotechnol. 2001, 18, 53-65
    Ogita S, Uefuji H, Yamaguchi Y, Koizumi N, Sano H. Producing decaffeinated coffee plants. Nature 2003, 423,823
    Ooms G, Hooykaas PJJ, van Veen RJM, van Beelen R Regensburg-Tuink AJG, Schilperoort RA. Octopine Ti-plasmid deletion mutants of Agrobacterium tumefaciens with emphasis on the right side of the T-region. Plasrnid 1982, 7, 15-29
    Pan SQ, Jin S, Boulton MI. et al. An Agrobacterium virulence factor encoded by a Ti plasmid gene or a chromosomal gene is required for T-DNA transfer into plants. Mol Microbiol 1995, 17, 259-269
    Park SH, Lee BM, Salas MG, Srivatanakul M, Smith RH. Shorter T-DNA or additional virulence genes improve Agrobacterium-mediated transformation. Theor. Appl. Genet. 2000, 101, 1015-1020
    Pelak FJ, Fuchs R L, Dean D A, et al. Modification of the coding sequence enhances plant expressing of insect control protein genes. Proc Natl Acad Sci USA 1991, 88, 3324-3328
    Peng J, Wen F, Lister RL, Hodges TK. Inheritance of gusA and neo genes in transgenic rice. Plant Mol Biol 1993, 21,871-884
    Peng S, Cassman KG, Virmani SS, Sheehy J, Khush GS. Yield potential trends of tropical rice
    
    since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci. 1999, 39, 1552-1559
    Petersen K, Knudsen S, Cameron-Mills V. Matrix attachment regions (MARs) enhance transformation frequencies and reduce variance of transgene expression in barley. Plant Mol Biol 2002, 49, 45-48
    Pierce JC, Sauer B, Steinberg N. A positive selection vector for cloning high molecular weight DNA by bacteriophyage P1 system: Improved cloning efficacy. Proc Natl Acad Sci USA 1992, 89, 2056-206
    Piers K,L. et al. Agrobacterium tumefaciens-mediated transformation of yeast. Proc. Natl. Acad. Sci. USA 1996, 93, 1613-1618
    Puch H, Dujon B, Hohn B. Two different but related mechanism are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci USA 1996, 93, 5055-5056
    Quist D, Chapela IH. Transgenic DNA introgressed into traditonal maize land races in Oaxaca, Mexico Nature 2001, 414, 541-543
    Regensburg-Tuink AJ and Hooykaas PJ. Transgenic N.glauca plants expressing bacterial virulence gene virF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein. Curt. Biol. 1993, 11,258-262
    Reuhs BL, Kim Js, Matthysse ACt Attachment of Agrobacterium tumefaciens to carrot cells and Arabidopsis wound sites is correlated with the presence of cell-associated, acidic polysaccharide. J.Bacterial 1997, 179, 5372-5379
    Rhee Y. et at. A genetic system for detection of protein nuclear import and export, Nat. Biotechnol. 2000, 18,433-437
    Rossi L. et al. Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein ofAgrobacterium tumefaciens. Proc. Natl. Acad. Sci. USA 1996, 93, 126-130
    Sagulenko V. et al. VirB7 lipoprotein is exocelluar and associates with the Agrobacterium tumefaciens T Pilus. J.Bacteriol. 2001, 183, 3642-3651
    Salas MG, et al. Temperature influence on stable T-DNA integration in plant cells. Plant Cell Rep. 2001, 20, 701-705
    
    
    Sambrook J, Russell DW. Molecular cloning—a laboratory manual, 3 rd edn. 2001, Cold Spring Harbor Laboratory Press. Cold Spring Harbor, New York.
    Schmidt-Eisenlohr H. et al. Vir proteins stabilize VirB5 and mediate its association with the T pilus ofAgrobacterium tumefaciens. J. Bacteriol. 1999, 181, 7485-7492
    Schrammeijer B. et al. Interaction of eht virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein. Curr. Biol. 2001, 11,258-262
    Simore M. et al. The carboxy-terminus of VirE2 form Agrobacterium tumefaciens is required for its transport to host cells by the virB-encoded type Ⅳ transport system. Mol. Microbiol. 2001, 41,1283-1293
    Sheng J and Citovsky V. Agrobacterium-plant cell interaction: have virulence proteins-will travel. Plant Cell 1996, 8, 1699-1710
    Shibata D, Liu YG, Agrobacterium-mediated plant transformation with large DNA fragments. Trends Plant Sci. 2000, 5, 354-357
    Shimamoto K, Kyozuka J. Rice as model for comparative genomics of plants. Annu. Rev. Plant Biol. 2002, 53,399-419
    Shi Y, Wang M B, Powell K S, et al. Use of the rice sucrose synthase-1 promoter to direct phloem-specific expression of betaglucuromidase and snowdrop lectin genes in transgenic tobacco plants. J Exp Bot 1994, 45, 623-631
    Shizuya H, Birren B, Kim UJ, et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. USA, 1992, 89, 8794-8797
    Shurvinton, C.E. et al. A nuclear localization signal and the C-terminal omega sequence in the Agrobacterium tummefaciens VirD2 endonuclease are important for tumor formation. Proc. Natl. Acad. Sci. USA 1992, 89, 11837-11841
    Smith R.H, Hood EE. Review and interpretation: Agrobacterium tumefaciens transformation of Monocotyledoms. Crop Sci. 1995, 35, 301-309
    Song WY, Wang GL, Chen L, Kim HS, Pi LY, Gardner J, Wang B, Holsten T, Zhai WX, Zhu LH, Fauquet C, Ronald PC. A receptor kinase-like protein encoded by the rice disease resistance gene Xa21. Science 1995, 270, 1804-1806
    Song YC, Gustafson JP. The physical location of fourteen RFLP markers in rice (Oryza sativa
    
    L.). Theor Appl. Genet. 1995, 90, 113-119
    Spencer TM, O'Brien JV, Start WG, Adams TR, Gordo-Kamm WJ, Lemaux PG. Segregation of transgens in maize. Plant Mol Biol 1992, 18, 201-210
    Spiker S, Thompson W F. Nuclear matrix attachment regions and transgene expression in plants. Plant Physiol 1996, 110, 15-21
    Srivastava V, Vasil V, Vasil IK. Molecular characterization of the fate of transgenes in transformed wheat (Triticum aestivum L.). Theor Appl Genet 1996, 92, 1031-1037
    Srivatanalul M, Park SH, Salas MG; Smith RH. Additonal virulence genes influence transgene expression: transgene copy number, integration pattern and expression. J. Plant Physiol. 2000, 157, 685-690
    Stachel SE, Zambryski E VirA and VirD control the plant-induced actirvation of the T-DNA transfer process of Agrobacterium tumefaciens. Cell 1986, 46, 325-333
    Stachel SE. et al. Activation of Agrobacterium tumefaciens vir gene expression generates multiple single-stranded T-strand molecules from the p TiA6 T-region: requirement for 5'virD gene products. EMBO J. 1987, 6, 857-863
    Strong ST, Ohta Y, Litman GW, Amemiya CT. Marked improvement of PAC and BAC cloning is achieved using electroelution of pulsed-field gel-separated partial digests of genomic DNA. Nucleic Acids Res. 1997, 25, 3969-3961
    Su J, Shen Q, Ho THD. Dehydration-stress-regulated transgene expression in stably transformed rice plant. Plant Physiol 1998, 117, 911-922
    Sun Y. et al. Integrin-like proteins in the pollen tube: detection, localization and function. Plant Cell Physiol. 2000, 41, 1136-1142
    Sunilkumar G, Rathore KS. Transgenic cotton: Factors infuencing Agrobacterium-mediated transformation and regeneration. Molecular Breeding 2001, 8,37-52
    Suzuki S, Nakano M. Agrobacterium-mediated production of transgenic plants ofmuscari armeniaum LeichtliexBat. Plant Cell Rep 2002, 20, 835-841
    Svitashev S, Somers DA. Characterization of transgene coci in plants using FISH: A picture is worth a thousand words. Plant Cell, Tissue and Organ culture 2002, 69,205-214
    Swart S, et al. Purification and partial characterization of a glycoprotein from pea (Pisum sativum) with recptor activity for rhicadhesin: an attachment protein of Rhizobiaceal.
    
    Plant Mol Biol 1994, 24, 171-183
    Tachaberry ES, Dudani AK. Prior F, et al. Development of biopharmaceuticals in plant expression systems: Clone, expression and immunological B (UL55) in seeds of transgenic tabacco. Vaccine 1999, 17, 3020-3027
    Tang W. Additional virulence genes and sonication enhance Agrobacterium tumefaciens-mediated loblolly pine transformation. Plant Cell Rep 2003, 21,555-562
    Tanksley SD, McCouch SR. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 1997, 277, 1063-1066.
    Tinland B, et al. The Agrobacterium tumefaciens Virulence D2 protein is responsible for precise integration of T-DNA into the plant genome. EMBO J. 1995, 14, 3585-3595
    Toyoda-Yamamoto, A. et al. Genetic analysis of the signal sensing region of the histidine protein kinase VirA of Agrobacterium tumefaciens. Mol. Gen. Genet. 2000, 263, 939-947
    Tsukahara M, Hirosawa T. Simple dehydration treatment promotes plantlet regeneration of rice (Oryza sativa L.) callus. Plant Cell Rep 1992, 11,550-553
    Turk SCHJ, Melchers LS, den Dulk-Ras H, Regensburg-tuink AJG, Hooykaas PJJ. Environmental conditions differentially affect vir gene induction in different Agrobacterium strains: role of the Vir A sensor protein. Plant Mol Biol 1991, 16, 1051-1059
    Tzfira T, Citovsky V. From host recongnition to T-DNA integration: the function of bacterial and plant genes in the Agrobacteriun-plant cell interaction-plant cell interaction. Mol. Plant Pathol. 2000, 1,201-212
    Tzfira T, Citovsky V. Comparison between nuclear import of nopaline-and octopine-specific VirE2 protein of Agrobacterium in plant and animal cells. Mol. Plant Pathol. 2001, 2, 171-176
    Tzfira T. et al. VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J. 2001, 20, 3596-3607
    Tzfira T, Citovsky V. Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends in cell biology 2002, 12, 121-129
    Ulian EC, Magill JM, Smith RH. Expression and inheritance pattern of two foreign genes in
    
    petunia. Theor Appl Genet 1994, 88,433-440
    Uozu S, Ikehashi H, Ohmido N, Ohtsubo H, Ohtsubo E, Fukui K. Repetitive sequences: cause for variation in genome size and chromosome morphology in the genus Oryza. Plant Mol. Biol. 1997, 35,791-799
    Upadhyaga NM, Surin B, Ramm K, et al. Agrobacterium-mediated transformation of Australian rice culture Jarrah and Arnaroo using modified promoters and selectable markers. Aust. J. Plant physiol. 2000, 27, 201-210
    Urushibara S, Tozavva Y, Kawagish-kobagasbi M, Wakasa K. Efficient Transformation of susperrsion-caltured rice cells mediated by Agrobacterium tumefaciens. Breeding science 2001, 51,33-38
    Usami S, Okamoto S, Takebe I, Machida Y. Factor inducing Agrobacterium tumefaciens vir gene expression is present in monocotyledonous plants. Proc Natl Acad Sci USA 1988, 85, 3748-3752
    Vain P, Worland B, Kohli A, Snape JW, Christon P, Allen GC, Thompson WF. Matrix attachment regions increase transgenic expression levels and stability in transgenic rice plants and their progency. Plant J. 1999, 13, 233-242
    Vergunst AC, Hooykaas PJJ. Cre/lox-mediated site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana by transtent expression of Cre. Plant Mol Biol 1998, 38, 393-406
    Vergunst AC, et al. VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 2000,290, 979-982
    Vijay A, Chandra K, Palanichelva M, Veluthambi K. Rice scutellum induces Agrobacteruim tumefaciens vir genes and T-strand generation. Plant mol Biol 1995, 29, 125-133
    Villemont E, Dubois E Samgwan RS, Vassenr G, Bourgeois Y. Role of the host cell cycle in the Agrobacterium-mediated genetic transfomation of petunia: evidence of an S-plase control mechanism for T-DNA transfer. Planta 1997, 202, 160-172
    Wang GL, Holsten TE, Song WY, Wang HP, Ronald PC. Construction of a rice bacterial artifical chromosome library and identification of clones linked to the Xa-21 disease resistance locus. Plant J. 1995, 7, 525-533
    Wagner VT, Matthysse AG. Involvement of vitomectin-like Protein in attachment of
    
    Agrobacterium tumefaciens to carrot suspension culture cells. J. Bacteriol. 1992, 174, 5999-6003
    Wang W, Zhai W, Luo M, Jiang G, Chen X, Li X, Wing RA, Zhu L. Chromosome landing at the bacterial blight resistance gene Xa4 Locus using a deep coverage rice BAC library. Mol. Genet. Genomics 2001, 265, 118-125
    Wirawan IGP, Kojima MA. Chromosomal virulence gene (acvB) product of Agrobacterium tumefaciencs that binds to a T-strand to mediate its transfer to host plant cells. Biosci Biotechnol Biochem. 1996, 60, 44-49
    Xiao J, Grandillo S, Ahn SN, McCouch SR, Tanksley SD, Li J, Yuan L. Genes from wild rice improve yield. Nature 1996, 384, 223-224
    Yang CJ, Yang ZH, Hu JF, He GC, Shu LH. Study on the brown planthopper resistance in introgressive lines from wild rice. Acta Phytophylacica Sinica 1999, 26, 197-202
    Ye X, A1-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I. Engineering the provitamin A (B-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 2000, 287, 303-305
    Yi H, et al. Expression of the Arabidopsis histone H2A-1 gene correlates with susceptibility to Agrobacterium transformation. Plant J. 2000, 32, 285-298
    Yin Z, Wang GL. Evidence of multiple complex patterns of T-DNA integration into the rice genome. Theor. Appl. Genet. 2000, 100, 461-470
    Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome (Oryza Sativa L. SSP. Indica). Science 2002, 296, 79-92
    Zaenen I, van Larebeke N, Teuchy H, van Montagu M, Schell J. Supercoiled circular DNA in crown gall inducing Agrobacterium strains. J Mol Biol 1974, 86, 109-127
    Zambryski R Joos H, Genetello C, Leemans J, van Montagu M, Schell J. Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 1983, 2, 2143-2150
    Zamir D. Improving plant breeding with exotic genetic libraries. Nature Rev. Genet. 2001, 2. 983-989
    Zhang HB, Wu CC. BAC as tools for genome sequencing. Plant Physiol. Biochem. 2001, 39. 195-209
    
    
    Zhang HB, Zhao XP, Ding XL, Paterson AH, Wing RA. Preparation of megabase DNA from plant nuclei. Plant J 1995, 7, 175-184
    Zhang S, Warkentin D, Sun B, Zhong H, Sticklen M. Variation in the inheritance of expression among subclones for unselected (uidA) and selected (bar) transgenes in maize (Zea mays L.). Theor Appl Genet 1996, 92, 752-761
    Zhao, Z, et al. Activities of virE1 and the VirE1 secretion chaperone in export of the multifunctional VirE2 effector via an Agrobacterium type Ⅳ secretion pathway. J.Bacteriol. 2001, 183, 3855-3865
    Zhao ZY, Gu W, Cai T, Tagliani L, Hondred D, Bond D, Schroeder S, Rudert M, Pierce D. High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breed 2001, 8, 323-333
    Ziemienowicz A, et al. Import of DNA into mammalian muclei by proteins originating from a plant pathogemic bacterium. Proc. Natl.Acad. Sci. USA,1999, 96, 3729-3733
    Ziemienowicz A, et al. Import of Agrobacterium T-DNA into plant nuclei: two distinct functions of VirD2 and VirE2 proteins. Plant Cell 2001, 13,369-384
    Zupan J, et al. Agrobacterium VirE2 protein mediates muclear uptake of ssDNA in plant cells. Proc. Natl. Acad. Sci. USA 1996, 93, 2392-2397
    Zupan JR, et al. Assembly of the VirB transport complex for DNA transfer from Agrobacterium fumefaciens to plant cells. Curr. Opin. Microbiol. 1998, 1,649-655
    Zupan JR, Zambryski P. Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol 1995, 107, 1041-1047
    Zwick MS, Hanson RE, Mcknight TD, Islam-Faridi WN, Stelly DM, Wing RA, Drice HJ. A rapid procedure for the isolation of Cot-Ⅰ DNA from plants. Genome 1997, 40, 138-142

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700