航空钛合金激光焊接全熔透稳定性及其焊接物理冶金研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轻质高强、高温耐蚀、高比强度钛合金是优秀的航空航天结构材料,焊接在提高材料利用率、减轻结构重量、降低成本方面独具优势,尤其是高能量密度、高焊接精度和高焊接效率的激光焊。因此研究钛合金激光焊对充分发挥钛合金结构重量效率,提高航空结构和武器装备性能及降低制造成本具有重大意义。
    薄壁钛合金激光深熔焊过程涉及激光-等离子体-材料相互间的复杂作用、小孔周期性的形成与闭合和熔池动态行为,这一过程可外化为熔池形貌,并最终表现为焊缝成形。BT20、TC4 和Ti-23Al-17Nb 钛合金薄板的焊缝成形研究表明,激光焊模式并不是通常认为的取决于激光功率密度,还与线能量有关。这说明钛合金激光深熔焊过程的小孔形成、熔池行为和焊缝成形受激光功率密度和线能量双阈值控制。
    焊缝成形进一步研究表明,激光功率密度和线能量超过深熔焊全熔透阈值,焊缝呈钉头形或沙漏形,无量纲量背宽比(焊缝的背面宽度和表面宽度之比)可映射全熔透焊过程的稳定性。在所研究条件下,背宽比大于0.4 是2.5mm 厚BT20 钛合金获得稳定激光全熔透深熔焊过程的焊缝成形条件,进而确立出全熔透稳定焊接的激光功率-焊接速度工艺窗和激光功率密度-线能量双阈值曲线。
    但当激光功率密度和线能量处在钛合金激光深熔焊全熔透阈值附近,全熔透焊过程可出现非表观工艺参数失稳造成的不稳定,形成的焊缝表面均匀,背面交替出现熔透与未熔透。在本质上钛合金激光深熔焊全熔透过程的稳定与穿孔稳定性密切相关,受焊接过程等离子体/金属蒸汽云周期性变化的影响。为此本文提出了穿孔速度应与焊接速度相适应的全熔透深熔焊物理模型,并根据孔壁能量平衡将穿孔速度与激光功率密度、线能量、焊接速度、光束直径、材料性能和板厚联系起来,建立了穿孔速度与穿孔所需激光功率密度间的关系,已知激光能量转换率即可判断工艺参数全熔透焊的稳定性。
    在激光焊深熔焊过程,强烈金属蒸汽伴随穿孔形成上下喷发,使孔壁液体金属沿光束轴线快速迁移,同时在孔口形成对熔池具有热辐射的等离子体/金属蒸汽云。小孔开口处熔池金属因金属蒸汽力和等离子体/金属蒸汽云热辐射作用呈现强对流,小孔内的熔池金属则因金属蒸汽膨胀作用对流很小,近孔壁甚至出现层流,这种不
Titanium alloy is one of the most important materials and finds extensive application in aerospace industry because of its light weight, superior strength-to-weight ratio,and excellent corrosion resistance. Driven by cost and weight savings, technological progress is moving in the direction of replacing rivets and fasteners with welds. Laser welding with higher energy density can offer remarkable advantages over conventional fusion welding processes, such as minimal component distortion and high productivity, and is specifically suitable for joining aerospace structures. Therefore, it will be significant to investigate the laser welding of titanium alloy for developing the weight efficiency and improving the structure integrity of the military and commercial aerospace.
    The process of laser penetration welding of titanium alloy sheet involves complex reactions among the laser-plasma-material, periodical keyhole opening and closing, and melt pool flowing behavior. This process can be mapped into pool morphology and weld shape. It is well known that the mode of laser welding depend on laser power density. However, according to this study on the weld shape of BT20、TC4 and Ti-23Al-17Nb titanium alloy laser welding, the laser welding mode is not only related to the laser power density but also the heat input. Both laser power density and heat input determine the keyhole stability, melt pool behavior and weld shape of laser welding titanium alloy.
    The research shows that when the laser power density and heat input exceeded the threshold of full penetration laser welding of titanium alloy, hourglass shape weld was obtained. The back width to surface width ratio (Rw) reflected the full penetration stability of the laser welding process of titanium alloy sheet. According to the results in this paper, the condition for stable full penetration laser welding of BT20 titanium alloy of thickness of 2.5mm was that the Rw should be bigger than 0.4. Based on it, a parameter window of laser power -laser welding speed and laser power density-heat input threshold curves for stable full penetration laser welding were obtained.
    When the laser power density and heat input were near to the threshold of forming a through keyhole, unstable full penetration laser welding occurred even if the parameters were invariable. This unstable process resulted from the unstable through keyhole caused by plasma/vapor plum fluctuating periodically, which resulted in appearing alternately between partial penetration and full penetration on the weld back meanwhile the weld surface was perfect. The full penetration laser welding stability of titanium alloy is closely related to the forming of through keyhole. A physical mode of full penetration laser welding has been put forward in this paper, in which laser-welding speed should match up with drilling speed. According to energy balance on the keyhole front wall, drilling speed was related to laser power density, heat input, laser welding speed, beam diameter, materials properties and sheet thickness. A formula relating drilling speed to laser power density a forming through keyhole has been built, which can be used to evaluate the process stability of full penetration laser welding with selected welding parameters, in
    conjunction with the thermal efficiency in laser welding. During laser penetration welding process, titanium alloy evaporates strongly and the vapor breaks forth from keyhole up and down. The vapor flow takes the melt to move rapidly on the keyhole wall along the axis of laser beam, and at the same time the plasma/vapor plum forms over the keyhole opening, which radiates part of its power to the pool. As result, strong convection occurs in the part of pool near the keyhole opening due to the effects of vapor pressure and radiation of plasma/vapor plum, but weak convection, even laminar flow appears in the part of pool in the middle of the keyhole because of the vapor expanding. This uneven pool flow makes formation of the hourglass weld shape during full penetration laser welding of titanium alloy. Its thermal action can be simplified into a mode of one lineal heat source plus two point heat sources. And then a way of estimating the thermal efficiency of laser welding was put forward relying on the layered weld size and the lineal heat source conduction equation. The calculation results were close to the experimental ones. The weld undercut and porosity are two main kinds of defects in laser welding of titanium alloy. Adjusting welding parameters cannot eliminate the undercut, but with the active flux added in this paper, the undercut was eliminated. The microstructure of porosity showed that there were two sorts of porosity observed in welds of titanium alloy laser welding.One was small round metallurgical porosity with smooth inner wall, which results from the gas accumulating around the “pore nucleus”relative to the surface contamination. The other was lager irregular processing porosity that its inner wall existed the trace of the pool flowing, which results from the ruffle on the keyhole wall converging locally to close down the gas in the keyhole into bubbles because of the keyhole fluctuating. The processing porosity occurred easily when partial penetration or unstable-full penetration laser welding was conducted. The CO2 laser welding can break down the surface oxide film and produce little metallurgical porosity, and the YAG laser welding produces easily the metallurgical porosity and requires strict surface cleaning. The weld crystallization of titanium alloy laser welding is characterized by epitaxial growth, just the same as in joints of arc welding. The HAZ could be divided into a completely transformed zone with larger crystal, a partially transformed zone that new grains coexist with the old ones, and an untransformed zone that only heated. It is different from the HAZ of arc welding which is divided only into a coarse-grained zone and a fine-grained zone. It showed that weld shape influenced on distribution of weld grain size, growth direction and HAZ width. For a full penetration weld, the grains in the middle part of a weld were small and the grain grown face-to-face, and the HAZ was smaller than other parts of the weld. The grains in the part of upper and down weld were lager and the dendrite growth directed to the center of weld surface or back perpendicular to the fusion line, and the HAZ of this part was wide. The growth direction of grains between the middle and upper or down of weld changed from perpendicular to the axis of beam to an angle, because the direction of the largest heat dispersion in the center of weld varied with
    the keyhole closing and pool melt filling back. Weld shape affected this change in grain growth direction. According to the research, the weld width and Rw affected joint ductility and fatigue life of laser welding titanium alloy. Under the research condition, the microhardness in the weld and the HAZ of laser welding BT20, TC4 titanium alloy was higher than the base metal. The joint tensile strength equaled that of the base metal, but the elongation and the fatigue life were lower than that of the base metal. The joint with a thinner weld had lower elongation than that with a wider weld. Active flux could improve joint elongation and fatigue life. The vacuum heat treatment at 650℃could reduce the joint fatigue life, but could not change the joint tensile strength. The effect of post weld heat treatment (PWHT) on elongation depends on the weld width and RW. It revealed that the PWHT specification for titanium alloy arc welding is not suitable for laser welding. The distribution of joint microhardness of intermetalics Ti-23Al-17Nb alloy laser welding presents saddle shape, in which the peak hardness was located in the HAZ and the weld microhardness was higher than that of the base metal. Under the research condition, the joint tensile properties at ambient temperature and 650℃were unacceptable, and the elongation of joints improved with the weld width increasing. The 850℃vacuum heat treatment could improved the joint tensile properties at ambient temperature and 650℃that were still lower than that of the base metal. High frequency induction preheating could enlarge the width of weld and HAZ, the joint tensile properties increased, among which tensile properties at ambient temperature could be as good as that of the base metal. Preheat combining with PWHT will be beneficial to joint integrate properties. In a word, the weld shape of titanium alloy laser welding can image the behavior of pool flowing and the process stability of full penetration laser welding. The Rw of a full penetration weld can reflect the laser power density and heat input thresholds, as well as the weld shaping condition of stable full penetration laser welding. Moreover, the weld shape influencs the homogeneity of joint grains and microstructure; as a result affects properties of the titanium alloy joints. The effects of weld width and Rw on joint properties cannot be underestimated, and more research is necessary in the future.
引文
[1] 李成功,傅恒志,于翘. 航空航天材料. 北京:国防工业出版社,2002
    [2] 曹春晓,闫渊林,黄旭. 我国航空系统钛合金发展与现状. 钛工业进展,2002,Vol.19(4):26~29
    [3] 王金友,葛志明,周彦邦. 航空用钛合金. 上海:上海科学技术出版社,1985
    [4] E. Schubert, M. Klassen, I. Zerner, C. Walz, G. Sepold. Light-weight structures produced by laser beam joining for future applications in automobile and aerospace industry. Journal of Materials processing technology. 2001(115),2~8
    [5] Б.Е.巴顿主编.飞机制造中的焊接技术.北京航空制造过程研究所译.2002
    [6] Patricio F. Mendez, Thomas W. Eagar. Welding processes for aeronautics. Advanced materials and processes,2001,5,39~43
    [7] F.Vollertsen, J. Schumacher, K. Schneider et al. Innovative welding strategies for the manufacture of large aircraft. Proceedings of the IIW international conference“Technical trends and future prospective of welding technology for transportation, land, sea, air and space”,2004,15~16 July, Japan, 237~253
    [8] W. W. Duley. Laser welding. New York: John Wiley & Sons Inc. 1998,6
    [9] G. Cam and M. Kocak. Progress in joining of advanced materials. International Materials Reviews, 1998, 43(1),1~41
    [10] Figgen, Achim. Easier and quicker laser welding instead of riveting of aircraft structures. AeroSpace ,2000, No. 1, Apr. 190, p. 20-23.
    [11] Ferrard, Stephane. Laser welding introduced at Airbus -The smoothing revolution. Planet AeroSpace,2001,no. 4, Sept. 191, p. 30-33
    [12] 彭艳萍,曾凡昌,王俊杰等. 国外航空钛合金的发展应用及其特点分析,材料工程,1997, No.10,3~6
    [13] 李明怡. 航空用钛合金结构材料. 世界有色金属,2000,No.6,17~20
    [14] 韩明臣,黄淑梅. 钛在美国军工中的应用,钛工业进展,2001,Vol.18(2):28~32
    [15] 赵振业,赵英涛,何鲁林等. 先进飞机结构材料的发展. 材料工程,1995, No.1,4~8,11
    [16] 宁兴龙,焊接钛合金在俄罗斯航空工业中的应用.钛工业进展,1998,Vol.15(1):22~26
    [17] James D.C., Larry P.C. and Henry R .P. Titanium alloys on the F-22 fighter airframe. Advanced Materials & Processes, 2002, No.5 ,25~28
    [18] 曹春晓. 我国航空用钛合金面临的21 世纪的挑战. 钛工业进展,1999,Vol.16(5):1~5
    [19] A380:用21 世纪的技术飞行.http://www.airbus.com/
    [20] 萧今声,许国栋.提高高温钛合金性能的途径.中国有色金属学报,1997,Vol.7,No.4,97~105
    [21] 娄贯涛. 钛合金的研究应用现状及其发展方向,钛工业进展,2003,Vol.20(2):9~13
    [22] 张永刚等主编. 金属间化合物结构材料. 北京:国防工业出版社,2001
    [23] Kim Yong-won. Ordered intermetallic alloys. JOM .1994,(7), 30~39
    [24] 林栋梁. 高温有序金属间化合物研究的新进展. 上海交通大学学报,1998,32(2),95~108
    [25] S. Djanarthany, J. C. Viala, J. Bouix. An overview of monolithic titanium aluminides based on Ti3Al and TiAl. Materials Chemistry and Physics, 2001,72,301~319
    [26] 曲恒磊,李明强,韩传玺等. Ti3Al 基合金研究. 钛工业进展,2003,Vol.20(3):11~16
    [27] 王桂生. Ti-6 Al-2Zr-1Mo-1V 合金组织与性能的研究.稀有金属,1995,Vol.1(95),352~356
    [28] 《中国航空材料手册》编辑委员会.中国航空材料手册(第2 版),北京:中国标准出版社,2002
    [29] 宁兴龙. 俄罗斯航空钛合金. 钛工业进展,1999,Vol.16(4):19~25
    [30] 程云君,魏玉新,毛智勇等. Ti-24Al-17Nb 合金的电子束焊研究,材料工程2002增刊,302~305
    [31] 顾钰熹编著.特种工程材料的焊接. 沈阳:辽宁科学技术出版社,1998,160
    [32] C. .M 古列维奇等著,尹克里译. 高强度钛合金的焊接.北京:国防工业出版社,1980
    [33] L. S. Smith,M. F. Girros. A review of weld porosity and hydride cracking in titanium an its alloy. TWI reports (658),1998,Nov.
    [34] W. A. Baeslack Ⅲ,A. W. Becker. Fusion zone fracture behavior of weldments in alpha-beta titanium alloys. Met. Trans,1979, Vol.10A,1803~1806
    [35] F. D. Mullins, A. W. Becker. Weldability study of advanced high temperature titanium alloys. Welding Journal,1980, Vol.59(6),177s~182s
    [36] 郝传勇,时元宝,李正林,毛先锋. Ti-5Al-4Sn-3Zr-1Mo-0.25Si-1Nd 合金焊接性. 焊接学报2 0 03,Vol.24,No.3
    [37] David S A, Horton J A, Goodwin G M et al., Weldability of a titanium aluminide. Welding Journal,1990; ,Vol.69(4): 133s~140s
    [38] W A Baeslack Ⅲ,T. J. Mascorella, T.J. Kelly. Weldability of a Titanium Aluminide. Welding Journal, 1989,Vol.68 (12), 483s~498s
    [39] J A .Fernie et al. Progress in Joining of Advanced Materials. Welding & Metal Fabrication. 1991,Vol.59, (4), 179~184
    [40] Threadgill P L. The Prospects for Joining Titanium Aluminide. Materials Science and Engineering ,1995,A192~193, 640~646
    [41] G S Martin, C E Albright, T A Jones. An evaluation of CO2 laser beam welding on a Ti3Al-Nb alloy. Welding journal, 1995,Vol.74(2),77s~82s
    [42] 张文雪,王国庆,张益坤. Ti3Al 基合金GTAW 焊接性的试验研究,航天工艺,1997; (4): 14~16
    [43] 张文雪,王国庆,张益坤, Ti3Al 基合金的电子束焊焊接性研究, 航天工艺,1997; (1): 11~12,10
    [44] Z.Li, S.L.Gobbi. Laser welding for lightweight structures. Journal of Materials Processing Technology. 1997,Vol.70,137~144
    [45] J.D Will, M.G Kistner ,. Fabrication of laser beam welded superplatically formed muti-sheet structure using advanced titanium alloys.International SAMPE Technical conference,1996,Vol.28,651~663
    [46] J.D Will, M.G Kistner, J.D Cotton. Characterization of Laser-Welded Ti-62222s/Ti-64 Superplastically-Formed Panels.TMS Annual meeting, Superplasticity and Superplastic Forming 1998,321-329
    [47] H Mourton. ,S K Marya. Optimization of laser beam welding of TA6V thick plates using a three a level factorical design. International Journal for the Joining of materials 1994, Vol.6(3),100~104
    [48] Liu Jinhe, Chen Jing ,Yang Decai. Research on CO2 laser beam welding of Ti-6Al-4V. SPIE Vol. 2888, 368~370
    [49] 王家淳.HE130 钛合金激光焊工艺研究与接头组织性能。北京有色金属研究总院,博士论文,2001
    [50] W. M. Steen, J. M. Dowden, M. P. Davis and P. Kapadia. A point and line source model of laser keyhole welding. J. Phys. D: Appl. Phys. 1988, 21(8): 1255-1260.
    [51] R. Akhter, M. P. Davis, J. M. Dowden, P. Kapadia and W. M. Steen. A method for calculating the fused zone profile of laser keyhole welds. J. Phys. D: Appl. Phys. 1989, 22(1): 23-28.
    [52] A Kaplan. A model of deep penetration laser welding based on calculation of the keyhole profile. J phys. D: Appl. Phys. 1994,Vol.27,1805~1814
    [53] K N .lankalapalli, J F Tu, M. Gartner. A model for estimating penetration depth of laser processes, J phys. D: Appl. Phys. 1996,Vol.29,1831~1841
    [54] M. A Vlachogiannis, A. D Zervaki, G. N Haidemenopoulos. A Macro -and Micro -Structural Study of Laser Welds in D36 Ship Steel Tech. Chron. Sci. J. TCG, V, 1998 No 1-2,63~75
    [55] W Guo, A. Kar. Determination of weld pool shape and temperature distribution by solving three-dimensional phase change heat conduction problem. Science and technology of welding and joining,2000,Vol5(5),317~323
    [56] J. Ray Cho, S.M. Roberts et al. Process modeling for laser beam welding of Ti-6Al-4V. Proceedings of SPIE 2003,Vol.4831,192~196
    [57] W. M . Steen. Laser material processing (2nd Edition) ,UK:Springer-Verlag london limited,1998
    [58] A Robert, T Debroy. Geometry laser spot welds from dimensionless numbers. Metallurgical and materials transaction B, 2001, Vol.32B (10),941~947
    [59] D.拉达伊著(德).熊第京,郑朝云,史耀武译.焊接热效应温度场、残余应力、变形. 北京:机械工业出版社,1997
    [60] 关桥, 彭文秀,刘纪达,卲亦陈,何万玲. 焊接热源有效利用率的测试计算法. 焊接学报,1982,Vol.3,No.1,210~220
    [61] Sindo Kou. Welding Metallurgy (Second Edition).Published by John Wiley & Sons, Inc., Hoboken New Jersey,2003
    [62] P W Fuerschbach. Measurement and prediction of energy transfer efficiency in laser beam welding. Welding Journal, 1996,76,No1,24s~34s
    [63] P W Fuerschbach,G R Eisler. Effect of laser spot weld energy and duration on melting and absorption. Science and technology of welding and joining,2002,7.No.4,241~246
    [64] C A Walsh, H K D H Bhadeshia, A Lau, B Matthias, R Oesteriein, J Drechsel. Characteristics of high-power diode-laser for industrial assembly. J of laser applications, 2003,14,No.2,68~76
    [65] 苏彦东. 激光深熔焊接热效率的研究. 北京航空航天大学博士论文,2000
    [66] JoséGreses, C. Y. Barlow, P. A. Hilton and W. M. Steen. Effects of Different Gas Environments on CO2 and Nd:YAG Laser Welding Process Efficiencies,SPIE 2003,Vol.4831,257~262
    [67] T Shida,T Terauchi. Measurement of beam energy absorption in CO2 laser welding, Quarterly Journal of the Japan welding Society,1996,14,No.3,477~482
    [68] T Shida, T Wakasa, A Taukamoto, K Horaoka. Measurement of beam energy absorption in CO2 laser welding, Quarterly Journal of the Japan welding Society,1999,17,No.4,10~17
    [69] J .M. Jouvard, K. Girard, O. Perret. Keyhole formation and power deposition in Nd:YAG laser spot welding. J. Phys. D: Appl. Phys. 2001,Vol.34, 2894~290
    [70] J. P. Weston. Laser welding of aluminium alloys. University of Cambridge, Doctor dissertation,1999
    [71] J. Dos Santos, G. Cam, F. Torster. Et al Properties of power beam welded steels, Al-and Ti-alloys: Significance of strength mismatch. Welding in the world,2000,Vol. 44(60),42~64
    [72] S.H. Wang ,M.D. Wei, L.W. Tsay. Tensile properties of LBW welds in Ti–6Al–4V alloy at evaluated temperatures below 450 ℃. Materials Letters, 2003, 571815–1823
    [73] Zhang Li, S. L. Gobbi, I. Norris, S Zolotovsky, K. H. Richter. Laser welding techniques for titanium alloy sheet. Journal of materials processing technology, 1997,65,203~208
    [74] P. E. Denny and E. A. Metzbower.. Laser beam welding of titanium. Welding Journal 1989,Vol.68(8), 342s~346s
    [75] A.C. Woloszyn, D. S. Howse, N. Sekhar et al. Development of procedures for low porosity Nd: YAG laser welding of 3.25 and 6.35mm thickness titanium alloy. TWI report, 2003,763
    [76] 杨家林,郭鹏.钛合金材料激光焊接试验研究.新技术新工艺,2003,No.6,29~31
    [77] M. Kutsuna, Q. Yan. Study on porosity formation in laser welds of aluminium alloys. IIW-doc IV-683-97
    [78] A. Matsunawa. Dynamics of keyhole and molten pool in high power laser welding. Journal of laser applications. 1998, 10(6): 247-254
    [79] S. Katayama, N. Seto, M. Mizutani and A. Matsunawa. Keyhole Dynamics and porosity formation during laser welding. Pro. of the 7th Int. Symposium, JWS,2001,Kobe,555~560
    [80] A. Matsunawa. Understanding physical mechanisms in laser welding for mathematical modeling and process monitoring. Proceedings of the first international WLT-conference on laser in manufacturing, Munich,June2001, 79~93
    [81] N. Seto, S. Katayama and A. Matsunawa. Porosity formation mechanism and reduction method in CO2 laser welding of stainless steel. Welding International 2002 16(6)451~460
    [82] Y. Miyazaki, S. Furusako, M. Ohara. Porosity formation in CO2 laser welding of steel sheets. Welding International 2002 16(1)26~37
    [83] Beyer E, Bokowsky, L, Loosen P, Development and optical absorption properties of a laser induced plasm during CO2 laser processing.SPIE,1983,455:75~80
    [84] I.Miyamoto,H.Maruo, Y. Arata. Mechanism of bead-transition in laser welding. Int. Conf. on welding research in 1980’s,1980,103~107
    [85] 陈武柱,张旭东,任家烈等. 激光焊接时焊接模式转变规律及焊接过程稳定性的研究,中国激光,1996,Vol.A23(7)567~661
    [86] 张旭东,陈武柱,任家烈. 热透镜效应对激光焊接模式及其过程稳定性的影响.清华大学学报(自然科学版),1997,Vol.37(8),99~102
    [87] 秦国梁,杨永波,李连胜等. Nd:YAG CW 激光焊热传导焊-Ⅱ激光热传导焊临界功率的计算,焊接学报,2003,Vol.24(3)23~26
    [88] N. Seto, S. Katayama and A. Matsunawa. Porosity formation mechanism and reduction method in CO2 laser welding of stainless steel. Welding International 2002 Vol.16(6),451~460
    [89] E W Kreutz. Physical requirement for laser in processing. Proceedings of 4th Conference on laser in Manufacturing,1987,5:263~278
    [90] 张旭东. CO2 激光焊过程不稳定性的形成机理及其防止。清华大学博士论文,1997
    [91] G. Ambrosy, P. Berger, H. Hügel et al. The use of electromagnetic body forces to enhance the quality of laser welds. Proceedings of SPIE, 2003,Vol.5120,596~600
    [92] D. Farson, M. H. Cho. Modulated laser welding process. 2003 AWS Poster Session SPC 7
    [93] D. Downs, S. Mulligan. Hybrid CO2 laser-MAG welding of carbon steel—a literature review and initial study. TWI report, 2002, 739
    [94] U. Dilthey, H. Keller. Laser arc hybrid welding.Proceeding of the 7th international Symposium, JWS, Kobe,2001,397~402
    [95] R. Shinn, A. Joseph,P. Denney. Hybrid welding of titanium. Industrial Laser Solutions April, 2004
    [96] J. Xie. Dual beam laser welding. Welding journal, 2002,Vol. 81(10), 223s~230s
    [97] H.Hügel. New solid –state lasers and their application potentials. Optics and lasers in engineering 2000,Vol.34,213~229
    [98] W A Baeslack Ⅲ, C.M Banas. Comparative evaluation of laser and gas tungsten arc welding in high temperature titanium alloys. Welding Journal, 1981, Vol.60(7),121s~130s
    [99] 杜汉斌,胡伦骥,胡席远等. TC1 合金激光焊接工艺探索.应用激光, Vol. 22 , No. 6,539~542
    [100] P. S. Liu, W. A. Baeslack Ⅲ,J. Hurky. Dissimilar alloy laser beam welding of titanium: Ti-6Al-4V to beta-C. Welding Journal, 1994, Vol.73(7),175s~181s
    [101] T. Shinoda. K. Matsunaga, M. Shinhara. Laser welding of titanium alloy. Journal of light metal welding and construction, 1990, Vol.28(2),1~8
    [102] T. Shinoda. K. Matsunaga, T Akaishi. Solidification cracking of beta titanium alloy in laser welding. Journal of light metal welding and construction, 1990, Vol.28(7),291~297
    [103] 李晓红,张连锋,杜欲晓. 活性焊剂对钛合金焊缝形貌的影响. 航空制造技术,2003,No.11,26~28
    [104] D.S. Howse, W. Lucas. An investigation into arc constriction by active fluxes for TIG(A-TIG) welding. Science and Technology of Welding and Joining ,2000,5(3),189~193
    [105] D. Fan, R. Zhang, K. Nakata. YAG laser welding with surface activating flux. China welding, 2003,Vol.12(2),83~86
    [106] 吴爱萍,邹贵生,王国庆等,Ti-24Al-17Nb 合金的激光焊接,宇航材料工艺,2001; (6): 58~62
    [107] M J Cielak, T. J,Headley W.A. Baeslack Ⅲ, Effect of thermal processing on the microstructure of Ti-26Al-11Nb: application to fusion welding. Metallurgical Transactions A,1990,21A(5), 1273~1286
    [108] W.A. Baeslack Ⅲ,M J Cielak, T. J,Headley Structure,properties and fracture of pulsed Nd: YAG laser welded Ti-14.8wt%Al-21.3wt%Nb titanium aluminide. Scripta Metallurgical et Materials, 1988,Vol. 22,1155~1160
    [109] W.A. Baeslack Ⅲ,M J Cielak. Effect of heat treatment on the structure, properties and fracture of Nd: YAG laser welded Ti-14.8wt%Al-21.3wt%Nb. Scripta Metallurgical et Materials, 1989,Vol.23,717~720
    [110] J?rg Beersiek. In-process monitoring of laser beam welding。Industrial Laser Solutions, 2003 ,No.4,15~16
    [111] 孙承伟主编. 激光辐照效应. 北京:国防工业出版社,2002
    [112] K.H. Leong, H. K. Geyer . Laser beam welding of any metal . ICALEO,1998, sectionF,242~250
    [113] J.Xie,A .Kar,J .A .Rothenflue et al ..Temperature-dependent absorptivity and cutting capability of CO2,Nd:YAG and chemical oxygen-iodine lasers. Journal of Laser Applicationl,1997,9(2):77~85
    [114] V.S. Golubev. Laser welding and cutting :recent insights into fluid-dynamics mechanism. Proceeding of SPIE, 2003, Vol. 5121,1~14
    [115] B.R.Finke, P.D.Kapadia, J.M. Dowden. A fundamental plasma based model for energy transfer in laser material proceesing. J. Phys.D.Appl.Phys,1990,Vol.23, 643~654
    [116] JoséGreses, P. A. Hilton, C.Y. Barlow, and William M. Steen. Laser-vapor interaction in high-power cw CO2 laser welding,. Proceedings of ICALEO, 2003,546
    [117] Sokolowski W, Herzinger G , Beyer, E. Spectral plasma diagnostics in welding with CO2 laser. SPIE,1988, 1020,96~102
    [118] F Tu, Takashi Inoue,Isamu Miyamoto。Quantitative characterization of keyhole absorption mechanisms in 20Kwclass CO2 laser welding processes. J. of Phys D: Appl. Phys. 2003, 36, 192~193
    [119] K R Kim, D F Farson. CO2 laser-plume interaction in materials processing. ICALEO, 2000,SectionE,133~142
    [120] Z Szymanski,J.Kurzyna, W. Kalita. The spectroscopy of the plasma plume induced during laser welding of stainless steel and titanium. J. Phys. D: Appl. Phys, 1997, Vol.30 , 3153-3162
    [121] X. Chen, H.X. Wang. Prediction of the laser-induced plasma characteristics in laser welding: a new modeling approach including a simplified keyhole model. J. Phys. D .Appl. Phys, 2003 ,Vol.36,1634~1643
    [122] JoséGreses, P. A. Hilton, C.Y. Barlow, and William M. Steen. Laser-vapor interaction in high-power cw Nd: YAG laser welding,. Proceedings of ICALEO, 2003,1607
    [123] H. C. Peebles, R.L. Williamson. The role of the metal vapor plum in pulsed Nd: YAG laser welding on aluminum 1100, Proceedings of LAMP’87, 1987, 19~24
    [124] A. Matsunawa, J. D. Kim, T. Takemoto et al. Spectroscopic studies on lser induced plume of alumium alloys. ICALEO,1995, 719~728
    [125] C. Lampa, A. F. H. Kaplan, J. Powell, et al. An analytical thermodanamics model of laser welding. J. Phys.D.Appl.Phys,1997,Vol.30,1293~1299
    [126] J. Du, J. Longobardi, W.P. Latham et al. Weld geometry and tensile strength in laser welded thin sheet metals. Science and technology of welding and joining ,2000,Vol.5(5),304~309
    [127] D. T. Swift-Hook and A. E. F. Gick. Penetration welding with lasers. Welding Journal. 1973, 52(11):492s-499s
    [128] K.W. Carison. The role of heat input in deep penetration welding. ICALEO,1985,745~752
    [129] R. A. Willgoss. Laser welding of steels for power plants. Optics and laser technology, 1999, (4),25~30
    [130] V.V. Semak, R.J. Steele, P. W. Fuerschbach et al. Numerical prediction and measurement of the weld depth depedence on the beam focal postion during laser welding. ICALEO, 1998,Section F, 150~157
    [131] J Trappe, J Kroos, C Tix and Simon G. On the shape and location of the keyhole in deep penetration laser welding. J phys. D: Appl. Phys. 1994,(27):2152~2254
    [132] A Mastunawa, V.V. Semak. The simulation of the front keyhole wall dynamics during laser welding. J phys. D: Appl. Phys. 1997, (30):798~809
    [133] V.V. Semak, A Mastunawa.. The role of recoil pressure in energy balance during laser materials processing. J phys. D: Appl. Phys. 1997, 30:2541~2552
    [134] V.V. Semak, W. D. Bragg, B. Damkroger et al. Transient model for the keyhole during laser welding. J phys. D: Appl. Phys. 1999, (32):L61~L64
    [135] U. Dilthey, H. Keller. Laser arc hybrid welding. Proceeding of the 7th international Symposium, JWS, Kobe,2001,397~402
    [136] 陈涛,陈继明,王智勇,肖荣诗,左铁钏. 两种大功率工业激光焊接特性的比较. 中国激光,2002,Vol.A29(2),185~188
    [137] O. Perret, C. Valduc, M. Bizouard. Two experimental methods to understand keyhole formation in pulse Nd:YAG laser welding. Proceedings of SPIE --Volume 3888,2000, 778-787
    [138] D. A. Cremers, G. K. Lewis, and D. R. Korzekwa: Weld. J., 1991, 70, 159s ~167s.
    [139] A. Matsunawa, T.Ohnawa. Beam-Plume Interaction in Laser Materials Processing. Trans. JWRI, Vol. 21, No. 1, 1991
    [140] W. Sudnik, W. Erofeev, D, Radaj. Computerized simulation of laser beam welding, modeling and verification Journal of Physics D: Applied Physics,1996,29:2811~2817
    [141] T. Zacharia, S. A. David. J.M.Vitek, T. Debroy. Weld Pool Development During GTA and Laser Welding of Type 304 Stainless Steel. Part I -Theoretical Analysis. Welding journal, 1989,12,499s~509s
    [142] 王海兴,陈熙.能量平衡法确定激光焊接熔池尺寸. 工程热物理学报,2002,Vol.23(6),153~156
    [143] G R Eisler, P W Fuerschbach. Soar: an extensible suite of codes for weld analysis and optimal weld schedules. www.sandia.gov/soar/
    [144] Lucas. W. Activating flux -improving the performance of the TIG process. Welding and Metal Fabrication, 2000, Vol. 68, No. 2, February, 7-10
    [145] Yu. V. Kazakov, K. B. Koryagin, The efficiency of activating fluxes in manual argon-arc welding. Welding international, 2002, 16(11), 886~889
    [146] Paskell T., Lundin C. GTAW flux increase weld joint penetration. Welding J. 1997,76(4),57~62
    [147] Paulo J. Modenesi, Eusta?quio R. Apolina?rio, Iaci M. Pereira .TIG welding with single-component fluxes. Journal of Materials Processing Technology 99 (2000) 260~265
    [148] 林三宝,杨春利,刘凤尧,苏生,吉桂琴。TIG 焊和PAW 焊中活性剂对焊缝熔深的影响。焊接,2002(9),20~22
    [149] D.S.Howse. An investigation into the use of active fluxes for MIG/MAG welding of C-Mn steel. TWI report,2001,5,No.725
    [150] Heiple C R, Rober J R. Mechanism for minor element effect on GTA fusion zone geometry. Welding Journal, 1982,Vol.61,97~102
    [151] 刘凤尧,林三宝,杨春利,吴林.活性剂涂敷量对A-TIG 焊熔深影响的研究. 材料科学与工艺, 2002,Vol.10(3),310~313
    [152] V. A. Zelenin, E.V. Abramov. Porosity in the welding of tubes to tube plates made from titanium. Welding production. 1974,21(9)32~34
    [153] V. V. Redchits, G.D. Nikiforov. Computer examination of the behaviour of hydrogen in pores of welded jointd in active metals. Welding production. 1984,31(8)2~4
    [154] 中国科学院金属研究所编. 钛合金气孔的研究. 国外钛合金文集. 1976,240
    [155] M. Mizutani, S. Katayama,A. Matsunawa. Observation of molten metal behavior during laser irradiation-Basic experiment to understand laser welding phenomena. Proceedings of SPIE Vol. 4831 (2003),208~213
    [156] Smith S L, Threadgill P L. The Physical and welding metallurgy titanium alluminides: a review. TWI report 1998, April ,633
    [157] S.A.David, S.S. Babu, J.M. Vitek. Welding: solidification and microstructure. JOM,2003,No6
    [158] J.C.M.Li. Microstructure and properties of materials(vulume2). World Scientific.2002
    [159] 邓安华.钛合金的马氏体相变. 上海有色金属1999,Vol.20,No.4,193~200
    [160] 韩忠.钛合金焊接冶金研究进展. 材料科学与过程,2000,Vol.18,No.4,107~110,120
    [161] B. K. Damkroger, G. R. Edwards, B.B. Rath. Investigation of subsolidus weld craking in alpha-beta titanium alloys. Welding J.,1989,68,No.7,290s~302s
    [162] 陈伯蠡. 金属焊接性基础. 北京:机械工业出版社,1982,111
    [163] K Keshava Murthy, S. Sundaresan. Fracture toughness of Ti-6Al-4V after welding and postweld heat treatment. Welding Journal, 1997,76, No.2, 81s~91s
    [164] V. L. Acoff, R. G. Thompson, R. D. Griffin et al. Effect of post heat treatment on Ti-14%Al-21%Nb fusion zone structure and hardness. Welding Journal, 1995,Vol.74 (1), 1s~9s.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700