腈纶等离子体抗静电处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腈纶是世界主要合成纤维之一,它手感柔软,色泽鲜艳,强度和弹性都比较好。但由于它是疏水性纤维,吸湿性差,易起静电,从而限制了它的进一步发展。适当的物理和化学方法可以改善抗静电性能,但存在不同程度的环境污染问题。低温等离子体技术作为一种环境友好的新技术,节水,节能,无污染,具有显著的经济及环保效应。
     本文采用低温等离子体技术对腈纶进行表面改性,所采用的等离子体处理方法主要有真空辉光放电等离子体表面处理、常压介质阻挡放电等离子体表面处理及常压介质阻挡放电等离子体接枝处理。试验中,通过改变等离子体处理气氛、时间、压强及功率条件,研究了有关处理参数的变化对腈纶抗静电性能的影响。
     氧、氮真空辉光放电等离子体表面处理能较有效地改善腈纶的抗静电性能。抗静电性能随处理功率的增加而增加。当处理压强低于25Pa时,增加压强,纤维的抗静电性能上升,但继续增加压强,抗静电性能反而下降。短时间内,处理纤维的抗静电性能随处理时间的增加而增加,进一步延长处理时间并不能继续提高纤维的抗静电性能。
     氩气、氩气/氮气常压介质阻挡放电等离子体表面处理也能使腈纶的抗静电性能得到明显提高。两种气氛(氩气、氩气/氮气)常压介质阻挡放电等离子体表面处理的最优工艺条件都是:处理电压7000V,时间1分钟,频率19kHz。常压介质阻挡放电等离子体表面处理对腈纶的表面改性可以达到氧、氮真空辉光放电等离子体的改性效果。
     腈纶经氩气常压介质阻挡放电等离子体接枝处理后,由于季铵盐基团的引入,腈纶的抗静电性能得到明显提高。经等离子体接枝处理后,腈纶的透湿性能明显提高,透气性能略有降低。
     本文采用扫描电镜(SEM)、氮吸附比表面积测试法(BET)、X射线光电子能谱(XPS)、红外测试等现代分析技术,对不同处理条件下的腈纶纤维进行测试,研究了等离子体处理后纤维表面物理结构和化学性能的变化。SEM、BET测试结果表明,等离子体表面处理对腈纶纤维表面有明显的刻蚀作用,可使纤维表面变得粗糙,比表面积增大。XPS测试结果表明,等离子体表面处理可使腈纶纤维表面含氧量明显提高,在纤维表面引入了大量的酰胺基和羧基等亲水基团。这些亲水基团能吸收空气中的水分,纤维吸附水分的离子化以及水分诱导周围不纯物质的离子化,使纤维电导率显著增加,比电阻下降,这是腈纶抗静电性能得到改善的主要原因。红外测试结果表明,腈纶经氩气常压介质阻挡放电等离子体接枝处理后,表面引入了季铵盐基团,使腈纶的抗静电性能得到明显提高。
     X射线光电子能谱(XPS)分析表明腈纶纤维经等离子体表面处理后,纤维表面发生化学改性,酰胺基和羧基等亲水性基团被引入到纤维表面。酸性染料TECTILON Yellow 4R含有磺酸基,能与纤维表面产生的酰胺基发生吸附作用,而阳离子染料能与纤维表面产生的羧基发生吸附,两种染料吸附量的变化可用来反映等离子体处理在腈纶纤维表面引入的酰胺基和羧基数量的变化情况。染色实验具有灵敏性高、重现性好等特点,因此本文主要采用染色法结合其它方法来评价腈纶纤维表面改性的效果。
     染色结果表明,经真空辉光放电等离子处理后,腈纶纤维上两种染料的吸附量与K/S值均有较为明显的提高,表明等离子体处理后大量的酰胺基和羧基被引入到纤维表面。
     低温等离子体表面处理普遍具有时效性问题,因此本文也对腈纶等离子体改性的时效性问题进行了研究。
     研究发现,腈纶等离子体表面处理具有时效性问题,随着放置时间的延长,改性后的良好性能会逐渐退化。处理效果随放置时间延长衰退的主要原因是由于材料表面极性基团的转移和重排所致,与分子链运动的难易程度密切相关,在很大程度上取决于纤维表面的结晶程度及所放置的环境(包括介质和温度)。结晶度高的样品改性后得到的亲水性能丧失较慢;放置在亲水环境中的样品没有丧失其得到的亲水特性,而放置在疏水环境中的样品却渐渐回复了其原有的疏水特性;放置在液氮中的样品其得到的亲水特性没有丧失,放置在室温及90℃高温下的样品会部分丧失其得到的亲水特性。等离子体接枝改性的效果比较稳定,改性样品的亲水性能并不随放置时间的延长而衰减。
     综上所述,等离子体处理作为一种清洁生产新技术,应用到腈纶的表面改性中,不但能达到抗静电改性的目的,还能节省能源和化学品,减少生产过程中废物的排放量和毒性,推动环境保护和清洁生产。
Acrylic fiber is one of leading synthetic fibers due to its high strength, goodelasticity and excellent dyeability. However, the inherent poor absorbency,accompanied by the high build-up of static charges limits its further development.
     These shortcomings might be alleviated by chemical and physical modificationof the materials. Although chemical modification of the fibers has been somewhatsuccessful in improving hydrophilic and anti-static properties, there areenvironmental concerns related to the disposal of chemicals after treatment. Plasmatreatment, as a clean, dry and environmental friendly physical technique, opens up anew possibility in this field.
     Acrylic fibers were treated with three different plasma treatment methods, i.e.glow discharge plasma treatment, dielectric barrier discharge plasma treatment andplasma graft treatment. The wettability and anti-static ability of treated acrylic fiberswere researched firstly under different gas atmosphere, processing time, cabinetpressure and discharge power conditions.
     The oxygen or nitrogen glow discharge plasma treatment can improve surfacewettability and anti-static ability of acrylic fibers. A better anti-static property wasobtained with a longer plasma treating. But the excessive long treatment brought areverse result. When the power increased, the anti-static property increased. Theanti-static property was best around 25Pa, the lower or higher pressure also resultedanti-static property decreasing.
     The argon or argon/nitrogen dielectric barrier discharge plasma treatment canalso improve the anti-static property of acrylic fibers. The optimum processingcondition was as follows: the voltage 7000V, the frequency 19kHz, the processingtime lmin.
     Scanning electron microscopy (SEM) photographs and specific surface area(BET) analysis showed that plasma treatment causes the increase of surfaceroughness and the specific surface area.
     X-ray photoelectron spectroscopy (XPS) analyses revealed that plasma treatment introduces an amount of amide and carboxyl groups on the fiber surface.These polar groups will incorporate with moisture through hydrogen bonding andhelp moisture penetration and binding on the fiber surface. Under the action ofwater molecular, these polar groups will also generate ionization and lead to astructural layer of conduct electricity on the fiber surface, which enhances theelectrostatic dissipation. Therefore, the anti-static property of acrylic fiber increasedafter plasma treatment.
     The plasma graft treatment can introduce the quaternary ammonium saltgroups onto the fiber surface, so the anti-static property of acrylic fiber increaseddrastically. After plasma graft treatment, the moisture permeability increased andthe breathability decrease lightly.
     Dyeing was used to evaluate the result of plasma modification of acrylic fibers.Plasma treatment introduced the amide and carboxyl groups onto the fiber surface.The amide groups can incorporate with acid dye and the carboxyl groups canincorporate with cation dye. Therefore, the uptake of two dyes can be used to reflectthe change of the introduced amide and carboxyl groups.
     The dyeing results show that the uptake and K/S value of two dyes increasedobviously after glow discharge plasma treatment, indicating that an amount ofamide and carboxyl groups have been introduced on the fiber surface. Theincreasing time resulted an increase of the uptake and K/S value at first. But alonger processing time resulted a decrease of dye behavior. When the dischargevoltage increased, the uptake and the K/S value were increased too. An increasingpressure induced the increase of dyeing behaviors, but extremely higher pressurebrought opposite result.
     Plasma treatment is a very useful method for modifying the surface propertiesof polymer materials. However, the modification of the surface is not permanent.Often the hydrophilicity obtained is lost with time. In this paper, we also investigatethe ageing behavior of the plasma treated acrylic fibers.
     The results showed that the surfaces of glow discharge plasma treatment showdifferent ageing process of the modification. The ageing process can be mainly ascribed to the molecular movement of polymer chains, leading to the reorientationof polar groups. The crystallinity of the treated samples has a critical influence onthe degree of ageing since the process involves the mobility of polymer chains.Increasing crystallinity reduces the rearrangement of polar groups and thus preventsthe ageing process of the modification. In addition, the environment andtemperature that the surface is stored also play an important role in the ageingprocess. A hydrophobic environment promotes faster recovery of the originalproperties. A hydrophilic environment prevents the surface from losing the polarcharacter obtained from the plasma treatment. As the temperature is high, thesample exhibits a significant ageing process since the mobility of polymer chains ispromoted. At extremely low temperature (in liquid nitrogen), the sample is expectedto maintain its hydrophilic character after plasma treatment since there is nodiffusion migration of polar groups.
     There is no obviously ageing behavior for plasma graft treated surfaces. Thisresult indicates that the effect of plasma graft is more stable than that of plasmasurface processing.
     It can be summarized that plasma treatment can enhance the wettability andanti-static ability of acrylic fibers. The application of plasma technology can greatlyreduce the consumption of water, energy and chemicals. At the same time, less toxicsubstance or pollutions will be released during process. So plasma technology offersthe potential for simultaneous economic and environmental gains in the textileindustries.
引文
1 F Votle, Supramolecular Chemistry, (Eds) Wiley, Chichester, 1991
    2 Tomiji Wakida, Seiji Tokinoetc, Surface characteristics of wool and poly(ethylene terephthalate) fabrics and film treated with low-temperature plasma under atmospheric pressure, Textile Re. J., 1993, 63(8): 433-483
    3 Nam Sik Yoon, Jin Lim, Mechanical and dyeing properties of wool and cotton fabrics treated with low temperature plasma and enzymes, Textile Re. J., 1996, 66(5): 329-336
    4 U Vohrer, M Muller, C Oehr, Glow-discharge treatment for the modification of textiles, Surface and Coatings Technology 1998, 98: 1128-1131
    5 T Yokoyama, M Kogoma, and S Okazaki, The mechanism of the stabilization of glow plasma at atmospheric pressure, J. Phys. D: Appl. 1990, 23: 1125-1128
    6 M Boris, Smirnov, Physics of Ionized Gases, John Wiley, New York, 2001
    7 C T Kuo, The study of plasma desizing, Journal of the China Textile Institute, 1999, 9(2): 148.
    8 彭国贤,气体放电—等离子体物理的应用,知识出版社,上海,1988
    9 E.布罗奇特等编,杨烈宇等译,等离子体表面工程,中国科学技术出版社,北京,1991
    10 NA克拉尔,AW特里维尔皮斯著,郭书印,黄林,邱孝明译,等离子体物理学原理,原子能出版社,北京,1973
    11 赵化侨,等离子体化学与工艺,中国科学技术大学出版社,合肥,1993
    12 张近,低温等离子体技术在表面改性中的应用进展,材料保护,1999,8:20-21
    13 徐学基,诸定昌,气体放电物理,复旦大学出版社,上海,1996
    14 宋心远,沈煜如,新型染整技术,中国纺织出版社,北京,1999
    15 陈惠敏,高性能纤维的低温等离子体表面改性,南通工学院学报,1999,3:41-44
    16 D R Liole, Handbook of chemistry and Physics, CRC Press, 1994
    17 钱苗根,姚寿山,张少宗,现代表面技术[M],机械工业出版社,北京,1999
    18 M Capitelli, R Celiberto, G Capreati, et al. Plasma Technology. Fundamentals and applications[M], Plenum Press, New Yord, 1992
    19 M A Lieberman, A J Lichtenberg, Principals of plasma discharge and materials processing[M], John Wiley & Sons, New York, 1994
    20 D L Cho, Y D Lee, Surface Modification of Silicone Rubber by Low Temperature Plasma Process[A], Processings of International Rubber Conference[C], The Korean Institute of Rubber Industry, Seoul, 1999
    21 H Hillborg, J F Ankner, U W Gedde, et al. Crosslinked Polydimethyl-siloxane Exposed to Oxygen Plasma Studied by Neutron Reflectonetry and Other Surface Specific Techniques[J]. Polymer, 2000, 41(18): 6851
    22 中央民族大学,等离子体设备[P],中国,922320039-1992。
    23 傅科杰等,等离子体技术在纺织工业中应用及最新进展,上海丝绸,2002,2:7-10
    24 S Carlotti, A J Mas, Improvement of adhesion of PET fibers to rubber by argon-oxygen plasma treatment, Appl. Polym. Sci., 1998, 69: 2321
    25 A Baalmann, K D Vissing, et al. J. Adhes., 1994, 46: 57
    26 N Sekar. Plasma treatment processes in textiles-an update.Colourage, 2000, 6: 39-40
    27 J R Chen, Study on free radicals of cotton and wool fibers treated with low-temperature plasma, Jouranl of Applied Polymer Science, 1996, 62: 1325
    28 Z Cai, Y J Hwang., et al. Preliminary investigation of atmospheric pressure plasma-aided desizing for cotton fabrecs, AATCC-Review, 2002, 1 (12): 18-21
    29 T Goto, T Wakita, T Nakamishi and Y Ohta, Applicition of low temperature plasma treatment to the scouring of grey cotton fabric, 纤维学会志, 1992, 48(3): 133-137
    30 N V Bhat,棉和涤纶织物经等离子体处理和等离子体移植后的表面电阻,国外纺织技术,2002,1:34-37
    31 P Pter, L Wadsworth, Surface modification of fabrics using a one-atmosphere glow discharge plasma to improve fabic wettability, Textel Res. J., 1997, 167(5): 359
    32 金郡潮,戴瑾瑾,等离子体处理羊毛织物防毡缩性能的研究,印染,2002增刊:30-33
    33 金郡潮,戴瑾瑾,氮等离子体处理羊毛活性染料染色的研究,纺织学报,2002.4:9-10
    34 王雪燕等,等离子体处理羊毛的染色工艺研究[J],印染,1998,24(7):13-14
    35 朱若英等,羊毛低温等离子体处理后的染色性能研究,天津工业大学学报,2002.8:22-25
    36 M Radetikc, D Tocic, The effect of low temperature plasma pretreatment on wool printing [J], TCC&ADR, 2000, 32(4): L55-60
    37 K S Gregorski, A E Parlath, Fabric modification using the plasma [J]. Textel Res. J., 1982, 50: 42-45
    38 于伟东,张矫崎,羊毛的等离子体刻蚀改性探讨,高分子材料科学与工程,1991.4:88-92
    39 郭雅琳,赵明,黄故等,亚麻纤维的结构性能对染色性能的影响,大连轻工业学院学报,2001,1:67-69
    40 郭雅琳,赵玉萍,林福海,亚麻的化学组成和微观结构对染色性能的影响,化学通报,2002,6:407-410
    41 吕晶,等离子体及其在纺织染整工业中的应用,丝绸,2001,12:19-21
    42 王雪燕等,低温等离子体处理对苎麻织物的深染性的研究[J],印染,1997,23(4):5-9
    43 许德生,苎麻织物等离子体染色前处理,印染,1997,23(4):10-12.
    44 顾彪等,无声放电对聚酯织物表面的等离子体接枝改性,大连理工大学学报,1999,6:726-729
    45 张菁,真丝织物等离子体接枝聚合改性,纺织学报,1996,17(4):201-203
    46 Y Yasuda, M Gazicki and H Yasuda, Effects of glow discharges on fibres and fabrics, J. Appl. Polym. Symp., 1984, 38: 201
    47 周宏湘,国外涤纶等离子体改性技术的新进展,广西纺织科技,1991,4:46-51
    48 陈杰瑢等,氧等离子体处理提高涤纶纤维表面亲水性的机理,西北纺织工学院学报,1997,3:54-58
    49 黄文胜等,空气低温等离子体对涤纶纤维的表面改性作用,湖北民族学院学报,2000,2:59-61
    50 C J Jahagirdar, Y Srivastava, Effects of plasma treatment and metal-ion chelation on lightfastness of dyed polyester/cotton fabric, Journal of Applied Polymer Science, 2001, 82(2): 292-299
    51 M Sarmadi, A R Denes, F Denes, Improved dyeing properties of SiCi//4 (ST)-plasma treated polyester fabrics, Textile Chemist and Colorist, 1996, 28(6): 17-22
    52 Wong Wilson, Chan Kwong, Yeung Kwok Wing, Pulsed UV laser and low temperature plasma modification on polyester microfibre: Effect on the dyeing properties, Journal of the Textile Machinery Society of Japan, 2000, 53(8): 55.
    53 R Paul, P D Pardeshi, S G Manjrekar, Plasma treatment-an effective tool for polymer surface modification, Synthetic Fibres, 2001, 30(4): 5-11
    54 张庆等,低温等离子体处理涤纶织物的染色性能,印染,2002,11:1-2
    55 Gu Biao, Peng Jing, Zhang Yanchen, Plasma-grafting modification of polyester fabrics surface by silent discharge, Journal of Dalian University of Technology, 1999, 39(6): 726-729
    56 李敏等,氧等离子体改性细旦涤纶生产工艺,污染防治技术,1999,12:225-227
    57 顾彪等,无声放电对聚酯织物表面的等离子体接枝改性,大连理工大学学报,1999,6:726-729
    58 Uchida, Emiko, Uyama, Yoshikimi, Ikada, Yoshito, Antistatic properties of surface-modified polyester fabrics, Textile Research Journal, 1991, 61(8): 483-488
    59 A Sarmadi, K Majid, Improved water repellency and surface dyeing of polyester fabrics by plasma treatment, Textile Chemist and Colorist, 1993, 25(12): 33-40
    60 J Janca, P Stahel, J Buchta, A plasma surface treatment of polyester textile fabrics used for reinforcement of car tires, Plasmas and Polymers, 2001, 6(1): 15-26
    61 J Rahel, M Cemak, I Hudec, Surface modification of polyester monofilaments by atmospheric-pressure nitrogen plasma, Plasmas and Polymers, 2001, 5(3): 119-127
    62 J Rahel, M Stefecka, I Hudec, Atmospheric-pressure plasma treatment of polyester monofilaments for rubber reinforcing, Journal of Materials Science Letters, 2000, 19(20): 1869-1871
    63 C Elisete, TI Hwie, Demarouette, Nicole; Oxygen plasma treatment of sisal fibers and polypropylene: Effects on mechanical properties of composites, Polymer Engineering and Science, 2002, 42(4): 790-797
    64 C Luigi, M Giovanni, P Wilma, Cold plasma treatment of polypropylene surface: A study on wettability and adhesion, Journal of Materials Processing Technology, 2002, 121(2): 373-382
    65 P Epaillard, F Chang, Relations between surface energy and surface potentials of a nitrogen plasma-modified polypropylene, Langmuir, 2000, 16(3): 1450-1453
    66 R Mahlberg, H E Niemi, M Denes, F Rowell, Effect of oxygen and hexamethyldisiloxane plasma on morphology, wettability and adhesion properties of polypropylene and lignocellulosics, International Journal of Adhesion and Adhesives, 1998, 18(4): 283-297
    67 M F Richard, R D Short, Plasma treatment of polymers: The effects of energy transfer from an argon plasma on the surface chemistry of polystyrene, and polypropylene. A high-energy resolution X-ray photoelectron spectroscopy study, Langmuir, 1998, 14(17): 4827-4835
    68 Chou Shen, Chen Shuh-Heng, Effect of plasma polymerization of monomers on glass fibre surfaces on adhesion to polypropylene, Polymers and Polymer Composites, 2000, 8(4): 267-279
    69 C Muehlhan, S Weidner, J Friedrich, H Nowack, Improvement of bonding properties of polypropylene by low-pressure plasma treatment, Surface and Coatings Technology, 1999, 116: 783-787
    70 N V Bhat, D J padhyay, Plasma-induced surface modification and adhesion enhancement of polypropylene surface, Journal of Applied Polymer Science, 2002, 86(4): 925-936
    71 I Gancarz, J Piglowski, Studies on adhesion of polyamide 6 to microwave-plasma-modified polypropylene, Polimery, 2001, 46(9): 622-630
    72 Shi Laishun, Approach using CF//4/CH//4 plasma-induced surface modification to impart flame retardancy to polypropylene, Journal of Polymer Engineering, 2000, 20: 313-328
    73 J P Youngblood, T J McCarthy, Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma, Macromolecules, 1999, 32(20): 6800-6806
    74 A Geschewski, H Thomas, H Hocker, Plasma-assisted permanent hydrophilizing of polypropylene with maleic acid anhydride, DWI-Reports, 2000, 123: 454-459
    75 S A Majid, T Ying, Surfa-ce modification of polypropylene fabrics by acrylonitrile cold plasma, Textel Res. J., 1993, 63: 697-705
    76 秦伟等,冷等离子体处理对PET纤维/环氧复合材料界面改性的研究,复合材料学报,2002,8:25-28
    77 李志军等,等离子体处理在玻璃纤维增强聚丙烯复合材料中的应用,中国塑料,2000,6:45-48
    78 笪有仙等,聚丙烯表面冷等离子体改性的研究,玻璃钢/复合材料,1995,3:13-15
    79 刘声雷,低温等离子体在塑料表面改性上的应用,江苏化工,1994,1:42-43
    80 刘倩等,低温等离子体处理尼龙66表面形态结构的研究,塑料工业,1994,2:52-55
    81 刘丽等,芳纶表面及界面改性技术的研究现状及发展趋势,高科技纤维与 应用,2002,8:12-17
    82 蔡汉海等,低温等离子体技术在橡胶制品中的应用,特种橡胶制品,2001,5:40-42
    83 沈新元,世界腈纶工业的现状和发展趋势,国际纺织导报,1998,1:7-10
    84 金离尘,世界腈纶及丙烯腈发展预测,合成纤维工业,1997,1(1):46-48
    85 任铃子,世界腈纶发展新趋势,金山油化纤,1998,2:33-40
    86 王艳芝,张玺旺,腈纶生产形势与新产品开发,广东化纤,1997,4:19-21
    87 顾利霞,刘兆峰等编,亲水性纤维,中国石化出版社,北京,1997
    88 高绪珊,童俨,《导电纤维及抗静电纤维》,纺织工业出版社,北京,1990
    89 宋钧才,李汝勤,《纤维和纺织品的测试原理与仪器》,中国纺大出版社,上海,1995
    90 M.利温,S.B.塞洛,《纺织品功能整理》,纺织工业出版社
    91 T Oktem, N Seventekin, H Ayhan, E Piskin, Modification of PAN Fabrics by in Situ-plasma Polymerisation Methods, Melliand Textilberichte, 2001, 82(3): 190-195
    92 S Pane, R Tedesco, and R. Greger, Acrylic fabrics treated with plasma for outdoor applications, Journal of Industrial Textiles. 2001, 31 (2): 135-145
    93 A S Tschegolja, E J Weiman, N M Beder, J I Mittschenko, Ways of Improving The Comfort Properties of Textiles Composed of Acrylic Fibers, Melliand Textilberichte-International Textile Reports, 1980, 9: 1410-1415
    94 李汝勤,宋钧才,纤维和纺织品的测试原理与仪器,中国纺织大学出版社,上海,1995
    95 潘承璜,赵良冲,电子能谱基础,科学出版社,北京,1981
    96 刘密新等,仪器分析,清华大学出版社,北京,2002
    97 M Christopher, Carretal, X-ray photoelectron spectroscopic study of the wool surface, Textile Research Institute, 1986, 56(7): 457-461
    98 董钴嵩,颗粒粒度与比表面测定原理,上海科学技术文献出版社,上海,1986
    99 邵建国,流动重量法用于固体比表面积和孔径分布的测定,化学通报,1994,12:45-47
    100 武建英,印染废水处理后污泥的资源化处置研究,硕士论文,2004
    101 L A Faria, M Prestat, J F Koenig, Surface properties of Ni+Co mixed oxides: a study by X-rays, XPS, BET and PZC, Electrochimica Acta, 1998, 44: 1481-1489
    102 H J Busscher, A W van Pelt, P de Boer, H P de Jang, and J. Arends, Colloids Surf. 1984, 9: 319
    103 D Chan, M H Hozbor, E Bayramli, and R L Powell, Carbon, 1991, 29: 1091
    104 严灏景,纤维材料学导论,纺织工业出版社,北京,1990
    105 吴宏仁、吴立峰,纺织纤维的结构和性能,纺织工业出版社,北京,1985
    106 王菊生,染整工艺原理,中国纺织出版社,上海,1984
    107 M Morra, E Occhiello, F Garbassi, J Appl Polym Sci., 1993, 48: 1331
    108 C Canal, R Molina, E Bertran, Erra, E Rev Quim Text., 2003, 162: 54
    109 J Nakamatsu, L F Delgado, R D Silva, F J Soberon, Adhesion Sci Technol., 1999, 13: 753

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700