甘蓝收获关键技术及装备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过几十年的发展,我国的农业机械化水平有了较大幅度的提高,但同发达国家相比,整体的水平还比较低。目前,我国的农业生产,特别是蔬菜生产的各个环节还主要是依靠人工来完成,蔬菜生产的收获作业,季节性强、平均劳动强度大,需要大量劳动力来完成。而随着我国城镇化步伐的逐步加快,农村人口向第二、三产业转移的速度也越来越快,农村劳动力正在逐年减少,青壮年劳动力出现不足。
     结球甘蓝由于产量高、品质好、抗寒、耐储存和易运输等特点,成为我国的主要蔬菜之一。本研究针对目前国内甘蓝收获用手工完成,带来生产成本高、劳动强度大、生产效率低、损失率高等不足,结合我国广大农村实际,在试验研究的基础上,研制一种甘蓝收获机以满足甘蓝生产机械化的迫切需求。到目前为止,我国除台湾地区外还没有开发出甘蓝收获机,所以研制甘蓝收获机有十分重大的意义。本文的主要研究内容包括以下几个方面。
     (1)甘蓝的物理力学特性的研究。通过实验室和田间对收获期的早熟结球甘蓝的测定,来探求其总高度、结球尺寸和质量、根茎长度和直径等形状数据,测定其在土壤中的拔取力和根茎不同位置的水份,通过自制试验装置测定其剪切强度等力学参数。应用统计学的方法,使用Design-Expert Version6.0.10软件对试验得出数据进行了分析,试验结果表明:甘蓝在田间的拔取力为[103.0,279.0]N;甘蓝根茎自上至下4个不同部位的含水率呈逐渐减小趋势,分别为[87.85,90.89]%、[84.45,91.45]%、[75.83,83.31]%、[79.79,87.11]%;剪切强度逐渐增大,分别为[5.37x10~(-2),2.85x10~(-2)] MPa、[2.58x10~(-2),1.10x10~(-2)] MPa、[1.06,1.78] MPa、[1.25,1.97] MPa。
     (2)甘蓝收获机的方案设计。通过调查我国北方甘蓝种植模式可知,其主要为单行垄作,育苗后人工移栽,根据我国农村现有动力机器型谱,设计了甘蓝收获机的方案。确定了牵引方式、配套动力、收获行数以及主要技术参数。该机主要由双圆盘导入装置、仿形机构、双螺旋拔取装置、带式扶持装置、切根装置、链式提升输送装置、外包叶去除装置、集收装置、地轮、机架以及传动系统等组成。
     (3)甘蓝收获机拔取输送机构的设计与优化试验研究。对甘蓝拔取机构进行受力分析,建立了其受力分析模型,得出了甘蓝正常输送的条件和影响因素,为试验奠定理论基础。采用四因子五水平二次正交旋转组合设计的试验方法,根据受力模型的分析结果,选取有影响的螺杆转速、杆间距离、螺杆节间和螺杆与地面夹角等四个因素,以拔取输送率和切根不合格率为目标函数,探索甘蓝收获机拔取输送机构的最佳结构参数和各因素对目标的影响规律。
     试验结果表明,四个影响因素的贡献率依次为螺杆节距、杆间距离、螺杆转速和螺杆与地面夹角;优化后的结构和运用参数为螺杆转速627r/min、杆间距离28mm、螺杆节距38mm、螺杆与地面角度14°。
     (4)甘蓝收获机剥皮输送机构的设计与试验研究。研制一种摩擦挤压式甘蓝剥皮机构,对由滚轮和皮带组成的剥皮机构的剥皮原理进行了分析,建立了基于挤压摩擦原理的甘蓝剥皮受力分析模型,得出了影响甘蓝剥皮的主要因素。采用四因子五水平二次正交旋转组合设计的试验方法,根据装置的结构和受力模型的分析结果,选取有影响的皮带带速、滚轮转速、轮带间距以及轮带夹角等四个因素,以甘蓝剥皮率和运送率为目标函数,探索甘蓝收获机剥皮输送机构各因素对目标的影响规律和最佳结构参数。
     试验结果表明,四个影响因素的贡献率依次为滚轮转速、皮带带速、轮带间距和轮带夹角。优化后的结构和运用参数为皮带带速2.0m/s、滚轮转速192r/min、轮带间距44.5mm、轮带夹角为43°。
     (5)关键机构的研究与设计。针对甘蓝由人工移栽,垄上株间不成直线的现状,研制了双圆盘导入装置,建立了其运动模型,确定了其传动方式,该装置的功能是将偏离垄中心线的甘蓝导入到中线并喂入到拔取机构。研究并详细设计了带式扶持机构、犁状支撑机构、仿形机构、链式提升机构、机架、集收装置以及传动系统。
     (6)基于虚拟样机技术的甘蓝收获机研究。应用三维CAD软件对整机结构进行了零件建模,通过干涉检查,在优化结构和易操控性的基础上装配完成甘蓝收获机虚拟样机。应用动力学仿真软件ADAMS,建立了关键机构的受力模型,定义了机构的运动副,通过加载外力和载荷,对主要机构进行了仿真分析;应用有限元分析软件,对收获机中受力最集中的机架进行了有限元受力分析,发现了受力的关键点并重新优化了结构,机架材料用量减少了30%。
     (7)甘蓝收获机的整机设计、试制与田间性能试验。设计并试制了国内第一台甘蓝收获机样机,该机以收获结球甘蓝为主,可兼收大白菜,实现一机多用;通过甘蓝收获机样机的田间试验,得出其性能为:拔取率为93%,切根合格率92%,机器作业效率约0.08~0.1hm2/h,结球的收获速度为0.93球/秒,技术指标符合设计要求。对其作业经济性进行了评价,通过单机折旧费、人工费、油耗等指标分析,该机作业成本为902.4元/公顷,仅为人工作业费的30.1%,当年可收回购机成本,其市场应用前景十分广阔。
After decades of development, the level of Agricultural Mechanization in China has greatlyimproved, but, the overall level is still relatively low compared with the developed countries. Atpresent especially each link of vegetables production of agricultural production in China stillmainly rely on manual work.Vegetable production harvest has been strongly seasonal and largeaverage labor intensity, a lot of labor are required to complete harvest. And as our country townstep speeding up, the transfer of rural population to the second and the three industry is faster andfaster, the rural labor force reduced year by year, young labor occur shortage.
     Due to the characteristics of high yield, good quality, cold-resistant, resistant storage and easytransportation, cabbage has been one of the main vegetables in china. So far, cabbage harvester hasbeen not developed in China except for Taiwan, so the research of cabbage harvester is greatsignificance. This study aimed at the problem such as high production cost, high labor intensity,low production efficiency, higher loss rate caused by harvesting the cabbage by hand. Thedevelopment of a cabbage harvester is the urgent need. A cabbage harvester has been developedafter full investigation, with rural reality of our country and the optimization analysis.The mainresearch contents include the following.
     (1) Study on the physical and mechanical properties of cabbages. The overall height,head sizeand weight, root length and geometric parameters were explored;pulling force, moisture content ofthe root in different parts and were explored; and cut force were explored by the self-madeexperimental device,through the field and lab determination of the ridge precocious cabbages inharvest time. The statistical recognition method is applied and the data was analyzed by means ofsoftware the Design-Expert Version6.0.10.The result of experiments showed that the pulling forcein the condition of natural growth in soil was in the range of [103.0,279.0]N. The moisture contentof roots from top to bottom gradually decreased, those were in the range of [87.85,90.89]%,[84.45,91.45]%,[75.83,83.31]%,[79.79,87.11]%. The shear strength of roots from top to bottomgradually increased, those were in the range of [5.37x10~(-2),2.85x10~(-2)] MPa,[2.58x10~(-2),1.10x10~(-2)]MPa,[1.06,1.78] MPa,[1.25,1.97] MPa.
     (2) Design of cabbage harvester. Through the investigation of northern cabbage planted inChina that Its main mode, as a single ridge, seedling after transplanting, according to China'sexisting rural power machine type spectrum, the cabbage harvester design the scheme. Traction mode, auxiliary power, harvest rows and determined the main technical parameters. This machineis mainly composed of double disc into the device, select the device profiling mechanism, thedouble helix, belt type support device, cutting device, chain lifting and conveying device, leaivesremoval device, collecting device, land wheels, frame and transmission system.
     (3) Study on the experiment of cabbage harvester conveyer. the analysis model of force wasestablished; the conditions and the influence factors of cabbage normal delivery were obtained byanalysis of the force on the cabbage pulling mechanism, which laid the theoretical foundation forthe experiment. Test method of second orthogonal rotational combination design with four factorsand five levels was applied. Screw speed, distance between the screw rod, the span of rod and angleof screw and ground were selected four factors, the delivery rate and cut the root failure rate wereselected as the objective function,based on the analysis results of the force model. The optimalstructure parameters and the influence of factors on the target of cabbage harvester transportationmechanism were explored.
     The experiment results showed that the influencing the contribution rate of four factors werescrew pitch, screw rod, screw speed and angle of screw and ground successively. Optimizedparameters were rotating speed of627r/min, the screw rod of28mm, the rod span of38mm, angleof screw and ground of14°.
     (4) Study on the experiment of peeling of cabbage harvester conveyer. A peeling mechanismof friction extrusion was developed. The principle of the peeling mechanism composed of a rollerand belt was analyzed. Analysis model of friction force of cabbage peeling was established. Themain factors of effect on the cabbage peeling were obtained. Test method of second orthogonalrotational combination design of four factors and five levels was applied, based on analysis of thestrength, the belt speed, wheel speed, distance of wheel and tire and angle of wheel and tire wereselected as four factors, the peeling rate and delivery rate were selected as the objective function,Optimum parameters the effect of each factor on the target.of peeling and conveying mechanismcabbage harvester were explored.
     The experiment results showed that the influencing the contribution rate of four factors werethe wheel speed, belt speed, distance of wheel and tire and angle of wheel and tire. Optimizedparameters were the belt speed of2.0m/s, wheel speed of192r/min, distance of wheel and tire ofangle of wheel and tire of43°.
     (5) Study on key institutions design. The cabbage by artificial transplanting, the ridge line isnot straight situation, developed double disc unit, established the motion model, the transmissionmode was determined, the functions of the device is will deviate from the ridge center line of thecabbage into the midline and fed to the pulling mechanism. Study on the belt support mechanism,support mechanism, plow profiling mechanism, chain type lifting mechanism, collecting device andtransmission system.
     (6) Study on cabbage harvester based on virtual prototype technology. The modeling of the parts on the structure was established by the application of3D CAD software. Assembly of virtualprototype of cabbage harvester was completed through the interference check, basis of easymanipulation and optimizing the structure. The force model of key institutions was established byApplication of dynamic simulation software ADAMS. Kinematic pairs of the mechanism weredefined, the simulation of the main organs were analyzed by loading force and loading;applicationof finite element analysis software, the finite element stress analysis of the framework of the mostconcentrated stress in harvester was analyzed. Optimize the structure by discovering the key pointis, reduce material consumption.
     (7) Study on the design, manufacture and field performance test of cabbage harvester. Wedesigned and manufactured a prototype of the first cabbage harvester, the machine can harvestChinese cabbage based on the harvest of cabbage, the machine achieved a multi-purpose in onemachine. Through the field test of cabbage harvester, the performances were obtained: pulling rateof93%, the root qualified rate of92%, the working efficiency of0.08~0.1hm2/h, cabbageharvest rate of0.93balls per second, technical indexes met the requirements of design. Theeconomic evaluation was analyzed, through the analysis of single depreciation cost, labor cost, fuelconsumption and other indicators, the operation cost was¥902.4/hm2, only manual operationcosts occupied30.1%, the purchase cost can be recovered in that year, so the market prospect isvery broad.
引文
[1]方荣,陈学军,周坤华.甘蓝主要农艺性状的遗传相关及因子分析[J].江西农业大学学报,2011(02):10-13.
    [2]赵荣秋,蒋欣梅,于锡宏.低温春化对甘蓝体内碳、氮代谢的影响[J].东北农业大学学报,2010.41(3):38-42.
    [3]李曙轩,等.中国农业百科全书(蔬菜卷).北京:农业出版社,1996.
    [4]戴忠良,侯喜林,潘跃平.结球甘蓝种质资源主要品质性状的研究[J].上海农业学报,2007(1):10-13.
    [5]中国农业科学院蔬菜花卉所.中国蔬菜品种志[M].北京:中国农业科技出版社,2001.
    [6]周长久.现代蔬菜育种学[M].北京:科学技术文献出版社,1996.
    [7]赵荣秋,蒋欣梅,于锡宏.低温春化对甘蓝体内碳、氮代谢的影响[J].东北农业大学学报,2010,41(3):38-42
    [8]戴忠良,侯喜林,潘跃平.结球甘蓝种质资源主要品质性状的研究[J].上海农业学报,2007(1):44-47.
    [9]杨立梅,方智远,刘玉梅等.“十一五”我国甘蓝遗传育种研究进展[J].中国蔬菜,2011,(2):1-10.
    [10]吉立柱,贾占温,孙德岭.早熟甘蓝几个性状的相关和通径分析[J].天津农业科学,2005.11(3):12-13.
    [11]Kaoru kohyAmA, Atsushi TAkAdA, Naokis AkurAi ect. Tensile Test of Cabbage Leaves forQuality Evaluation of Shredded Cabbage[J]. Food Sci. Technol. Res.,2008.14(4):337-344.
    [12]季坚柯,梅德韦杰夫,赫沃斯托夫,等.蔬菜收获机械[M].北京:中国农业机械出版社,1981.
    [13]姚会玲,徐丽明.结球叶菜收获机械研究现状及发展对策[J],农机化研究,2007(4):185-188.
    [14]王芬娥,郭维俊,曹新惠,等.甘蓝生产现状及其机械化收获技术研究[J].中国农机化,2009(3):79-82.
    [15]Roger Chagnon P.Development of a Cabbage Harvester.ASAEAnnuaI Meeting,2004.
    [16]Richard C F, Dale R H, Lawrence H H.Developmentof a florida mechanical cabbageharvester[J].Florida State Horticultural Society,1968(5):140-147.
    [17] Mikio K,Kenji Y.Development of Chinese Cabbage Harvester[J].JARQ,1996(30):35-41.
    [18]华国柱,等.中国农业百科全书(农业机械化卷).北京:农业出版社,1996.
    [19]张森富,魏炳华.甘蓝收获机之观念功能设计[J].农业工程学报(台湾),1987.33(3):42-50.
    [20]施清田,郑荣瑞,栾家敏.二行式甘蓝收获机之研制[J].台南区农业改良场研究汇报,2000(37):71-85.
    [21]王志强,郭维俊,王芬娥,等.4YB-I型甘蓝收获机的总体设计[J]甘肃农业大学学报.2012.46(3)126-130.
    [22]姚会玲.大白菜收获机关键部件的研究[D],中国农业大学硕士学位论文,2007.
    [23]Kanamitsu M,Yamamoto K,Shibano Y,Suzuki M.Development of a Chinese cabbageharvester(partl).JSAM,1993,55(5):133~140.
    [24] Kanamitsu M, Yamamoto K, Shibano Y.Suzuki M.Development of a Chinesecabbageharvester(part2).JSAM,1993,55(6):121、128.
    [25] Kanamitsu H,Yamamoto K,Shibano Y,Kaneko K,Murata K.Development of a Chinesecabbage harvester(part3).JSAM,1994,56(2):127~133.
    [26]H.Φ.[苏],季坚柯,等.蔬菜收获机械.北京:中国农业机械出版社,1981.
    [27]ASA-LIFT Inc.Cabbage harvester.[EB/OL].[2011-03-20]. http://www.asa-lift.com/index.html.
    [28]Baertschi-FOBRO Inc.cabbage harvester for fresh market and industry cabbage.[EB/OL].
    [2011-05-15]. http://www.fobro.com/export/EN/Gemusebau/FOBRO-Pamtec-Kohlernter.html.
    [29] Kanemitsu, M., K.Yamamoto, Y.Shibano. Development of a Chinese Cabbage Harvester (Part1)[J]. JSAM,1993,55(5):133-140.
    [30] Noriyuki Murakami, Kanji Otsuka, Keiichi Inoue. Robotic Cabbage Harvester[J]. JSAM,1994,56(4):67-74.
    [31]Rehkugler. Research and development of a lettuce harvester. ASAE,1974,17(2):212-216.
    [32]村上则幸,大塚宽治,井上慶一,等.キャベツ收穫ロポットの開発(第1報)[J].農業機械学会誌,1999,61(5):85-92.
    [33]村上则幸,大塚宽治,井上慶一,等.キャベツ收穫ロポットの開発(第2報)[J].農業機械学会誌,1999,61(5):93-100.
    [34]佐藤禎捻,宫本啓二,松田清明.三次元视覚センサにょるキャベッ结球の形状計测と收穫適期判定[J].農業機械学会誌,2001,63(1):87-92.
    [35]周成,陈海涛,李丽霞.结球甘蓝特性及收获机械化现状分析[J].东北农业大学学报,2012.43(8).135-138
    [36]周成,陈海涛,李丽霞.结球甘蓝收获机械研究现状分析[J].现代化农业,2012(6).58-59
    [37]周成,陈海涛,李丽霞.结球甘蓝特性及收获机械研究现状[J].《中国农业工程学会2011年学术年会论文集》,2011.
    [38]农业部.中国农业统计资料(2009)[M].北京:中国农业出版社,2010.
    [39]国家粮食局.2009中国粮食年鉴[M].北京:经济管理出版社,2010.
    [40]陈锦秀,薄天岳,任云英,等.结球甘蓝主要商品性状与农艺性状的遗传相关分析[J].上海农业学报,2007(02):35-38.
    [41]涂同明.我国蔬菜生产机械化亟待突破[J].现代农业装备,2005(5):72.
    [42]国家发展和改革委员会价格司.2008年全国农产品成本收益资料汇编[M].北京:中国统计出版社,2008.
    [43]韩灿功,孙化军.我国夏甘蓝良种分类及其生产应用[J],当代蔬菜,2005(2):12-13.
    [44]刘小平.无公害甘蓝需肥特性及配方施肥技术[J],西北园艺,2010(7):50-51.
    [45]高富欣,刘佳.我国甘蓝品种市场需求的变化趋势[J].中国蔬菜,2005(2):41-42.
    [46]窦全兴.甘蓝型春油菜机械化收获技术[J],科学种养,2008(2):56-57.
    [47]孙学岩.谈蔬菜自动化收获机械研究现状[J].农业机械,2008(4):43.
    [48]梁松练,李志伟.南方蔬菜生产机械化的特点与对策[J].农机化研究,2004(9):47-48.
    [49]王芬娥,郭维俊.甘蓝生产现状及其机械化收获技术研究[J].中国农机化,2009(3):79-82.
    [50]具本弘,甘露,石铁.我国棚室蔬菜机械化发展现状及发展趋势[J].农机使用与维修,2007(3):16-17.
    [51]曾义龙,刘开顺.油菜机械化种植和收获技术[J],农业机械.2008(11):42-43.
    [52]耿端阳,张铁中,罗辉,等.我国农业机械发展趋势分析[J].农业机械学报,2004(4):208-210.
    [53]辜松,江林斌.国内外蔬菜嫁接机的发展现状[J].东北农业大学学报,2007,38(6):847-851.
    [54]周成,陈海涛,李丽霞.结球甘蓝物理力学特性研究[J].农机化研究,2013(6).45-48.
    [55]邵明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版社,2006.
    [56]NY/T52-1987,土壤水分测定法[S].
    [57]Mikio KANAMITSU and Kenji YAMAMOTO. Development of Chinese Cabbage Harvester[J].JARQ.1996(30):35-41.
    [58]中国农业机械化科学研究院.农业机械设计手册[M].北京:中国农业科学技术出版社,2007.
    [59]陈海涛,任珂珂,余嘉.北方垄作萝卜物理力学特性[J].农业工程学报,2010,26(6):163-169
    [60]Chen Haitao, Masami Iwasaki, Hiroshi Takeda, et al.Development of an automatic plantingsystem for baker’sgarlic in a sandy field—Optimization of parameters of theseed bulb clusterseparator using response surfacemethodology[J]. Sand Dune Research: Nihon SakyuGakaishi,2004,51(1):33-45.
    [61]GB/T1931-2009,木材含水率测定方法[S].
    [62]王业成,陈海涛,付威.黑加仑物理力学特性研究[J].东北农业大学学报,2009,40(3):110-114.
    [63]李玉道,杜现军,宋占华,等.棉花秸秆剪切力学性能试验[J].农业工程学报,2011,27(2):124-128.
    [64]梁莉,郭玉明.作物茎秆生物力学性质与形态特性相关性研究[J].农业工程学报,2008,24(7):1-6.
    [65]刘鸿文.材料力学[M].北京:高等教育出版社,2004.
    [66]周祖锷.农业物料学[M].北京:中国农业出版社,1990.
    [67]沈晓阳,王平,蒋升,等.棉秆压缩与剪切力学性能的研究[J].农机化研究,2010,(9):155-158.
    [68]杜现军,李玉道,颜世涛,等.棉秆力学性能试验[J].农业机械学报,2011,42(4):87-91.
    [69]胡发春,董忠利,张宏如,等.露地无公害早熟甘蓝生产技术[J]北方园艺,2006(2):70-71.
    [70]任松.农业机械的设计[],现代农业科技,2012(6):258、266.
    [71]叶红.我国拖拉机市场发展态势解析[J],农机市场,2009(3):15-20.
    [72]宋春华,区颖刚,刘庆庭.螺旋机构与甘蔗的摩擦对甘蔗扶起效果的影响[J],湖南农业大学学报(自然科学版),2012,38(3):330-332.
    [73]NY/T1412-2007.甜菜收获机作业质量[S].
    [74]刘振学,黄仁和,田爱民.实验设计与数据处理[M].北京:化学工业出版社,2004:62-132.
    [75]郑少华,姜奉华.实验设计与数据处理[M].北京:中国建材工业出版社,2003:67-125.
    [76]张成军.实验设计与数据处理[M].北京:化学工业出版社,2004:82-136.
    [77]NY/T1355-2007,玉米收获机作业质量标准[S]
    [78]Prsson S.The study on rotating doudle cutter of mover[J].Transaction of the ASAE,1993,36(6):1517-1523.
    [79]陈海涛,周成,张子浩.结球甘蓝收获机双圆盘导入机构:中国,201220165508.3[P].2012-12-21.
    [80]闻邦椿等.机械设计手册(第5版)[M].机械工业出版社,北京,2010.
    [81]常德功,樊智敏,孟兆明.带传动和链传动设计手册[M].北京:化学工业出版社,2010.
    [82]范国昌,马大敏,籍俊杰,等.锯齿式双圆盘切割器的研究[J].河北农业技术师范学院学报,1998,12(2):40-43.
    [83]于惠力,冯新敏.轴系零部件设计与实用数据速查.北京:机械工业出版社,2010.
    [84]张利平.液压传动系统及设计[M].北京:化学工业出版社,2005.
    [85]周成,王静学,马增奇.虚拟样机技术及其在农机产品开发中的应用[J].现代化农业,2004.11:30-32.
    [86]周成.基于三维软件的滚筒烘干机开发方法.现代化农业,2007(6):37-38.
    [87]肖田元.虚拟制造[M].北京:清华大学出版社,2004.
    [88]ShuklaC, VazquezM,ChenFF.Virtual manufac-turing:an overview[J]Computers and IndustrialEngineering,1996,31(1):79-82.
    [89]宁汝新,郑轨.虚拟装配技术的研究进展及发展趋势分析[J].中国机械工程,2005(15):1398-1404.
    [90]宗晓杰,房俊龙,吴亚春,施文.现代农业机械产品设计中VR可视化技术应用.农机化研究,2003(3):173-174.
    [91]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002.
    [92]李军,邢俊文,覃文洁. ADAMS实例教程[M].北京:北京理工大学出版社,2002.
    [93]朱奇.液压挖掘机动臂动力数值仿真研究及优化设计[D],长沙理工大学硕士学位论文,2007.
    [94]秦柏.深孔加工动力减振镗杆的动力学仿真与参数化分析[D],哈尔滨理工大学硕士学位论,2006年.
    [95]夏天,吴立军.UG二次开发技术基础[M].北京:电子工业出版社,2005.
    [96]曾向阳,谢国明,王学平.UGNX基础及应用教程[M].北京:电子工业出版社,2003.
    [97]王岩,王娟,赵睿明,等.虚拟装配在联合收割机脱粒装置设计中的应用[J].农机化研究,2006(10):179-180.
    [98]李勇,曾志新,叶茂,等.虚拟样机技术在小型农用装载机设计中的应用[J].农业工程学报,2004(5):134-137.
    [99]王志华,陈翠英.基于ADAMS的联合收割机振动筛虚拟设计.农业机械学报,2003(4):53-56.
    [100]柴山,张艳飞,焦学健,等.虚拟装配及其在农业装备设计中的应用[J],农机化研究,2009(2):228-230.
    [101]张洪武.有限元分析与CAE技术基础[M].北京:清华大学出版社,2004.
    [102]廉光赫.大型悬挂式大豆密植平作精密播种机机架设计与优化研究[D],东北农业大学硕士学位论文,2009年.
    [103]张克平,田斌,寇明杰.马铃薯中耕机机架的有限元分析及改进设计[J].机械研究与应用,2009(6):132-133.
    [104]张德珍,史松霞.有限元法在农业机械设计中的应用[J].南方农机,2006(3):27~28.
    [105]高焕文.农业机械化管理学[M].北京:中国农业大学出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700