鄱阳湖水环境承载力及污染管理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄱阳湖是江西省的主要湖泊,也是长江中下游的第一大湖。鄱阳湖水环境对鄱阳湖湖区乃至整个长江中下游生态安全都有着相当大的影响。本文以鄱阳湖为研究对象,分析污染入湖途径,计算水环境容量,并以此确定湖泊水环境对湖区污水排放的承载能力。通过分析鄱阳湖几个主要河口的污染承载情况,出于水环境保护目的而削减污染物排放量,必然对“鄱阳湖生态经济区”的建设,全省实现绿色崛起、绿色发展,乃至长江中下游沿江区域的可持续发展,具有重要的战略意义。
     本文主要研究内容如下:
     (1)主要入湖污染物入湖途径,找出主要污染来源和重点污染区域。鄱阳湖污染物入湖途径主要是地表径流,其次是底泥释放和降雨。地表径流中,五河的携带为主要途径,占总入湖TP和TN总量的96%。而五河中,赣江、信江和乐安河的携带量最大,修水最少。赣江排污量大是由于赣江流域的人口总数、农业种植面积、工业产值大于其他流域,这也造成了赣江的污染断面较多,且污染断面几乎都是由工业废水排放所致。饶河流域经济的迅速发展,致使部分河段常年氨氮和TP超标。信江的磷矿企业也使信江的磷入湖量增加。水土流失也是污染物的一大来源,入湖泥沙也会携带大量的氮磷进入湖中。因此五河入湖口应作为重点控制区域,且赣江、乐安河和信江应作为控制重点。
     (2)根据湖泊主要污染源分布和湖泊水环境特征,确定不同分区的水质扩散模式,规划湖泊各分区水质均满足地表水功能区划水质目标时的湖泊最大纳污值,即湖泊的水环境污染物承载能力。07和08年TP水环境容量分别为166729.3和155798.1t/a,07年和08年COD_(Cr)容量分别为433642.06t/a和648401.48t/a,07和08年NH_3-N容量分别为-15718.24t/a和1818.49t/a。TP和COD_(Cr)容量均为正值,但鄱阳湖全湖NH_3-N的容量较小,特别是07年,已无NH_3-N容量。
     (3)分析鄱阳湖污染承载力,以水环境容量值为约束值,提出鄱阳湖污染物削减区域和总量。鄱阳湖TP的承载能力仍有很大空间,COD_(Cr)承载力接近饱和,剩余环境容量不多,鄱阳湖NH_3-N承载能力远小于污染物的排放量,主要是受赣江和乐安河负容量的影响,因此在赣江流域和乐安河流域进行NH_3-N已削减刻不容缓。
     (4)为了控制鄱阳湖富营养化进程,改善水质,本文倡导完善鄱阳湖管理、推行污染物总量控制、推行总量控制责任制、严格控制入河入湖排污口、开展宣传教育和社会参与等健全政策法规和宣传教育措施,提出了地表径流污染控制、水土保持和底泥释放控制等污染控制措施,建议加大科研投入和构建监测体系等措施,为鄱阳湖走上绿色循环经济道路,保持“一湖清水”的良好生态美景奠定基础。
     对鄱阳湖的污染物入湖途径分析和环境容量分析,为实现污染物总量控制提出建议措施提供了依据,为实现维持鄱阳湖“一湖清水”和促进经济社会协调快速发展的“共赢”建立了坚实的基础。
Poyang lake is the major lake in Jiangxi province, it is also the largest lake in the middle and lower reaches of the yangtze river. The water environment of Poyang lake has great impact on ecological security to the lake area and even the wohle middle and lower reaches of the yangtze river.
     This article set the Poyang lake as research object, based on analyzing the way of pollution into the lake and caculating the water environment volume, to confirm the carrying capacity of lake water environment to the pollution emission of the lake area. Through analyzing the pollution carrying capacity of major estuary in Poyang lake, to reduce pollution emission for the purpose of protecting water environment, which will certainly have great strategic significance on achieving the Green Rise, Green Development of the province, even on the sustainable development of middle and lower reaches of the yangtze river.
     The major research content of this article is:
     (1) Based on the major way for the pollution into the lake, to find out the major pollution sources and polluted areas. The major way for the pollution into the lake is surface runoff, sediment release and rainfall. Among the surface runoff, the five main rivers are the major means, which carry 96% of the total TN and TP into the lake. The Gan River, Xin River and Le'an River, carry the a majority of pollutants in the fiver main rivers, and carrying amount of Xiu River is the least. Gan river basin is the most broad basin, with large population, agriculture and industry are well developed, which make the Gan River is the largest pollution emission source, and result in the most polluted cross-sections in Gan River. In fact, almost all the polluted cross-sections are caused by industrial wastewater discharge. Some seriously nitrogen and phosphorus polluted sections in Rao River can be ascribe to the rapid economic development in Rao River valley. Xin River's high TP concentration aslo can be asribe to the phosphate companies lied along the upper reaches of the Xin River. Soil erosion is another major source of pollutants, which causes a large amounts of sediment with nitrogen and phosphorus into the lake. Therefore, the estuary of the five main rivers should be treated as a key control areas, and the Gan River, Le'an River and Xin River should be the top priority.
     (2) According to the distribution of major pollution sources and water environment features of the lake, to confirm the water diffusion model of different subarea and plan the pollution carrying capacity of lake water environment. In the year 2007 and 2008, the TP, COD_(Cr) and NH3-N water environment carrying capacity were 166729.3 and 155798.1t/a, 433642.06 and 648401.48 t/a, -15718.24 and 1818.49 t/a respectively. TP and COD_(Cr) capacity values were all the positive number, but the NH3-N capacity of Poyang lake was very small, especially in 2007, it was negative, which means it can bear no more NH3-N emission.
     (3)To analyze the pollution carrying capacity of Poyang lake, set the water environment volume as the restricted value, brought up the the pollution abatement area and total amount of Poyang lake.There is plenty of room for TP carrying capacity of Poyang lake, the COD_(Cr) carrying capacity is closed to saturation, the remaining capacity of the environment is not too much. The NH3-N carrying capacity of Poyang lake is far less than the pollution emission, which is affected by the negative capacity of Gan river and Le'an river. So it is urgent to cut down the NH3-N emission.
     (4)In order to control the eutrophication process of Poyang lake, improve water quality, this article advocates to improve the management of Poyang lake, implement the total amount control of pollution, implement theh total control responsibility, strictly control the sewage outfall into river and lake, carry out the sound policies and regulations on publicity, education and social participation, brought up the pollution control measures such as surface runoff pollution control,soil and water conservation and sediment release control, suggests to increase R&D investment, build monitoring system, lay the foundation for achieving Green recycling economy and a good ecological beauty of "a lake of clear water".
     The analyses on the major way for the pollution into the lake and environment volume provided the basis for achieving total control of pollutants, established a solid foundation for achiving "a lake of clear water" and promoting the rapid and harmonious development of economic and social.
引文
[1]黄金贤,赵志凌,钟太洋等.加强综合协调促进湖泊保护[J].江南论坛.2000(5).
    [2]王毛兰.鄱阳湖流域氮磷时空分布及其地球化学模拟[D].南昌大学,2007.
    [3]于雷.河流水环境容量计算方法不安全因素分析[D].中国环境科学研究院,2007.
    [4]Scherer,Charles R..On the Efficient Allocation of Environmental Assimilative Capacity:The Case of Thermal Emissions to A Large Body of Water[J].Water Resource Research,1975,11(Ⅰ):180-181.
    [5]Cairns,John Jr.,Matching Heated Waste Water Discharges To Environmental Assimilative Capacity.Symp on Energy Prod and Therm Eff,Proc.Oak Brook,IL,USA,Sep 10-11 1973.
    [6]Ecker J.G..A Grometric Programming Model for Optimal Allocation of Stream Dissolved Oxygen[J].Management Science,1975,21(6):658-668.
    [7]Liebman J.C.,Lynn W.R..The Optimal Allocation of Stream Dissolved Oxygen.Water Resource Research[J].Journal of Environmental Engineering,1966,2(3):581-591.
    [8]Loucks D.P.,Revelle C.S.and Lynn W.R..Management Models for Water Quality Contral[J].Management Science,1967,14(4):166-181.
    [9]Revelle C.S,Loucks D.P.,and Lynn WR..Linear Programming Applied to Water Quality Management[J].Water Resource Research,1968,4(1):1-9.
    [10]Thomann RX,and Sobel M.S..Estuarine Water Quality Management and forecasting[J].Journal of Sanitary Engineering Division,ASCE,1964,89(SA5):9-36.
    [11]Fujiwara O.,Gnanendran S.K.and Ohgaki S..River quality management under stochastic stream flow[J].Journal of Environmental Engineering,1986,112(2):185-198
    [12]Eheart J.W.,Park H..Effects of temperture varivation on critical stream dissolved oxygen[J].Water Resources Research,1989,25(2):145-151.
    [13]Lohani B.N.,Thanh N.C..Probabilistic water quality control polices[J].Journal of ironmental Engineering Division,1979,105(4):713-725.
    [14]李如忠.河流水环境系统不确定性问题研究[D].南京:河海大学,2004:12-20.
    [15]Donald H.B.,Edward A.M..Optimization modeling of water quality in an uncertain environment[J].Water Resources Research,1985,21(7):934-940.
    [16]Cardwell H.and Ellis H..Stochastic dynamic models for water quality management[J].Water Resources Research,1993,29(4):803-813.
    [17]Introduction to TMDLs[OL],2007:http://www.epa.gov/owow/tmdl/intro.html
    [18]V.Keller..Risk assessment of "down-the-drain" chemicals:Search for a suitable model[J].Science of the Total Environment,2006,360:305-318.
    [19]W.Kinzelbach,侯然杰,李惠明.河流中BOD-DO动态的数学模拟方法[J],环境科学学报,1981,1(2),166-179.
    [20]金相灿,张玉清,杨天行等.湘江重金属迁移转化模型研究[J],中国环境科学,1987,6, 10-15.
    [21]张永良,刘培哲.水环境容量综合手册[M].北京:清华大学出版社,1991:20-23.
    [22]夏青.流域水污染总量控制[M].北京:中国环境科学出版,1996:226.
    [23]张永良,洪继华,夏青,等.我国水环境容量研究与展望[C].环境科学论文集,北京:中国环境科学出版社,1990.
    [24]谭建强,曾雁湘,顾丁锡,湖泊岸边污染带水质预测研究[J],中国环境科学,1988,1,36-41.
    [25]叶常明,殷兴军,胡晓林,谢永明,穆环珍,杜秀英,王宏,非定向河网水质计算方法[J],环境科学学报,1986,3,327-333.
    [26]马月华.赣抚平原灌区水环境容量研究[D].扬州大学,2009.
    [27]徐祖信,卢士强.潮汐河网水环境容量的计算分析[J].上海环境科学,2003,22(4):254-257.
    [28]李鹏书,张文志.东江干流惠州市区段水环境容量计算及分析[J].人民珠江,2006,3:53-54.
    [29]李继选,王军.水环境数学模型研究进展[J].水资源保护,2006,22(1):9-15.
    [30]李怀恩.流域非点源污染模型研究进展与发展趋势[J].水资源保护,1996.
    [31]R.O.Strobl,R.D.Robillard,R.D.Shannon,etc.A Water Quality Monitoring Network Design Mathodology for the Selection of Critical Sampling Points:Part 1[J].Environmental Monitoring and Assessment,2006,112(1-3):137-158.
    [32]江西省山江湖办.鄱阳湖生态环境保护和资源综合开发利用研究报告.2008.7.
    [33]姜哲.鄱阳湖水环境承载力分析与研究[M].南昌大学.2007.
    [34]南昌大学.鄱阳湖生态环境保护和资源综合开发利用研究报告.2008.7.
    [35]马中,杜丹德.总量控制与排污权交易[M].中国环境科学出版社.1999,P75-77.
    [36]Sharpley A N,Smith S D,Nancy J W.The environmental impact of agricultural nitrogen and phosphorus use.Presented at 192nd American Chemical Society National Meeting,Anaheim,CA,USA.1986.
    [37]黄文钰,高光,舒金华,等.太湖地区“禁磷”措施的效果及在富营养化控制中的作用[J].农业生态环境,2001,17(4):26-29.
    [38]金相灿主编.湖泊富营养化控制和管理技术[M].北京:化学工业出版社.2001,50-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700